
RADIATION BY COMPACT ANTENNAS

Introduction

In these notes we consider radiation of EM waves by compact antennas fed by the

harmonic current I(t) = I0e
−iωt. The current density J and the charge density ρ in such

antennas may have complicated space dependence, but their time dependence is purely

harmonic,

J(x, t) = J(x)e−iωt, ρ(x, t) = ρ(x)e−iωt, (1)

so the EM field emitted by the antenna also have harmonic time dependence,

E(x, t) = E(x)e−iωt, H(x, t) = H(x)e−iωt. (2)

By compact antenna I mean an antenna whose size L is much smaller that the wavelength

λ = 2πc/ω. For simplicity, let’s also assume there is nothing of interest outside the antenna

itself — no electric conductors, no dielectrics, no magnetic materials, just vacuum and the

EM radiation emitted by the antenna. In practice, an antenna is often surrounded by air,

but since the air has ǫ ≈ 1, µ ≈ 1, and σ ≈ 0, it may be approximated by the vacuum.

With these assumptions, outside the antenna itself

∇×H = ǫ0
∂E

∂t
= −iωǫ0E = −i

k

Z0
E

where k = ω/c and Z0 =
√

µ0

ǫ0
≈ 377 Ω. Consequently, the magnetic field outside the

antenna completely determines the electric field as

E(x) =
iZ0

k
∇×H(x). (3)

Or in terms of the vector potential

A(x, t) = A(x)e−iωt, (4)

H(x) =
1

µ0
∇×A(x), (5)
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E(x) =
iZ0

µ0k
∇× (∇×A(x)). (6)

In the Landau gauge, the vector potential obeys

A(x, t) = µ0J(x, t), (7)

so it can be found using the retarded Green’s function of the wave equation as

A(x, t) =
µ0
4π

∫∫∫

d3y
J(y, tret)

|x− y|
(8)

where the current inside the integral is at the retarded time

tret = t −
|x− y|

c
. (9)

For a harmonic current,

exp(−iωtret) = exp(−iωt)× exp(+ik|x− y|), (10)

hence

A(x, t) = A(x)e−iωt , (11)

A(x) =
µ0
4π

∫∫∫

d3y J(y)
exp(ik|x− y|)

|x− y|
. (12)

There are no exact formulae for this integral for general currents and general locations x.

Instead, we are useful approximations valid for different distances r = |x| from the antenna.

Specifically, consider 3 different zones of distance:
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1. The near zone (AKA the static zone) of

r ∼ antenna size L ≪
1

k
. (13)

2. The intermediate zone (AKA the induction zone) of

r ∼
1

k
. (14)

3. The far zone (AKA the radiation zone) of

r ≫
1

k
. (15)

In the near zone both x and y are much smaller that 1/k, hence

k|x− y| ≪ 1 =⇒ exp(ik|x− y|) ≈ 1 (16)

and therefore

A(x) ≈
µ0
4π

∫∫∫

d3y
J(y)

|x− y|
, (17)

similar to vector potential of a stationary current. Consequently, the magnetic field H(x)

obtains from the Biot–Savart–Laplace formula just as if J(x) was a stationary current. Like-

wise, the electric field in the near zone obtains from the quasi-static Coulomb formula

E(x) ≈ −∇Φ(x) where Φ(x) =
1

4πǫ0

∫∫∫

d3y
ρ(y)

|x− y|
. (18)

On the other hand, in the intermediate and far zones the distance r = |x| to the observer
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is much larger than the antenna’s size, hence

|x| >∼
1

k
≫ L ≥ |y| (19)

and therefore

|x− y| ≈ r − n · y for r = |x| and n =
x

r
. (20)

In the context of the integral (12), this approximation means

exp(ik|x− y|) ≈ exp(ikr)× exp(−ikn · y)

while
1

|x− y|
≈

1

r
,

(21)

hence

A(x) ≈
eikr

r
µ0f(n) (22)

for

f(n) =
1

4π

∫∫∫

d3y J(y) exp(−ikn · y). (23)

This vector potential has a form of a spherical divergent wave I shall explain in a moment.

Spherical Waves

Before addressing the spherical electromagnetic waves, let me explain the spherical waves

of a scalar field ψ(x). A spherically symmetric divergent wave has a form

ψ(x) =
Ae+ikr

r
where r = |x| and A = const (24)

This wave is an exact eigenstate of the −∇2 operator in infinite space with eigenvalue k2,

hence

Ψ(x, t) = ψ(x)e−iωt (25)

is the exact solution of the wave equation for ω = k× vwave. The amplitude of the spherical

divergent wave A/r diminishes with distance as 1/r, so the power carried by the wave
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diminishes as 1/r2. Indeed, the equivalent of the Poynting vector for the scalar wave is

S = 1
2 Im

(

ψ∗∇ψ
)

= 1
2 |ψ|

2∇(phase(ψ)) , (26)

hence for the spherical divergent wave (24),

S =
|A|2

2r2
kn : (27)

the power flows uniformly in all direction, but the flux diminishes with distance as 1/r2.

Physically, this means a fixed power emitted into a unit of solid angle dΩ:

dP = S · darea =
k|A|2

r2
n · (r2 dΩn) =

k|A|2

2
dΩ , (28)

thus

dP

dΩ
=

k|A|2

2
. (29)

More general spherical divergent waves are not uniform in all directions but have non-

trivial directional dependence f(θ, φ), thus

ψ(r, θ, φ) ≈
Aeikr

r
× f(θ, φ). (30)

Alas, such waves are not exact eigenstates of the −∇2 operator, although they asymptote to

the eigenstates for kr → ∞. Instead, the exact eigenstates are power series in 1/kr where

the approximate waves (30) are merely the leading terms for kr ≫ 1, thus

ψ(r, θ, φ) =
Aeikr

r
×

(

f(θ, φ) +
∞
∑

n=1

f (n)(θ, φ)

(ikr)n

)

(31)

where the angular dependencies f (n(θ, φ) of the subleading terms obtain by acting with the

L2 operator on the leading f(θ, φ). Specifically, for the leading angular dependence Af(θ, φ)
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expanding into spherical harmonics as

Af(θ, φ) =
∑

ℓ,m

Aℓ,mYℓ,m(θ, φ), (32)

the exact spherical divergent wave becomes

ψ(r, θ, φ) =
eikr

r

∑

ℓ,m

Aℓ,mYℓ,m(θ, φ)×

(

1 +

ℓ
∑

n=1

(ℓ+ n)!

(ℓ− n)!n!

1

(2ikr)n

)

. (33)

But regardless of the details of the subleading terms, for kr ≫ 1 we have

|ψ|2 =
|A|2

r2
× |f(θ, φ)|2 ×

(

1 + O

(

1

k2r2

))

(34)

while

∇ phase(ψ) = kn +
1

r
∇ phase(f) + O

(

1

kr2

)

= k

(

n + O

(

1

kr

))

, (35)

hence the power density at long distances kr ≫ 1 is

S =
k|A|2 |f(θ, φ)|2

2r2

(

n + O

(

1

kr

))

, (36)

and the power flowing into a small solid angle dΩ

dP

dΩ
=

k|A|2 |f(θ, φ)|2

2

(

1 + O

(

1

kr

))

. (37)

Thus, at long distances r ≫ (1/k) from the source of the spherical divergent wave, the

angular distribution of the wave power is proportional to the |f(θ, φ)|2,

dP

dΩ
=

k|A|2

2
× |f(θ, φ)2|. (38)

The divergent spherical waves of a scalar field have direct application to the scattering

theory in quantum mechanics where ψ(x) is the wave function of the particle being scattered.
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In that setting, the incident wave ψ = eikz is the plane wave representing the uniform beam of

the incoming particles, while the outgoing wave is the divergent spherical wave representing

the particles scattered in all possible directions. Altogether, we look for a solution to the

Schrödinger equation of the form

ψ(x) = eikz +
eikr

r
f(θ, φ) + O

(

1

r2

)

, (39)

where the angular function f(θ, φ) — or rather its magnitude2 — gives us the partial cross-

section for scattering in a particular direction,

dσ

dΩ
= |f(θ, φ)|2. (40)

Spherical Electromagnetic Waves

Now let’s turn out attention to the spherical electromagnetic waves. Earlier in these notes

we saw that in the intermediate and far distances from the antenna the vector potential has

approximate form

A(x, t) ≈
eikr−iωt

r
µ0f(n) (22)

for

f(n) =
1

4π

∫∫∫

d3y J(y) exp(−ikn · y). (23)

We shall learn how to evaluate the integral (23) later in these notes; for the moment, let

f(, θ, φ) be a generic vector-valued function of the direction n towards the observer at x.

Similarly to what we saw for the scalar waves, the spherical EM wave (22) is not an exact

solution of the wave equation A(x, t) = 0 but rather an asymptotic limit of a solution at

large radii r ≫ (1/k). An exact solution would be given by a power series in 1/kr in

which (22) is but the leading term,

A(x, t) = µ0
e+ikr−iωr

r

(

f(θ, φ) +
∞
∑

n=1

f (n)(θ, φ)

(ikr)n

)

, (41)

although the series becomes a polynomial of finite degree ℓ when f(θ, φ) happens to be a

spherical harmonic. Later in class, I’ll let you work out in a homework the subleading terms
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in this expansion — and hence in the similar expansion for the electric and the magnetic

fields — for ℓ = 1 and maybe for ℓ = 2. But for the present purposes, let’s focus on the

leading term (22) dominating the vector potential in the far zone r ≫ (1/k).

At long distances, the fastest changing factor in eq. (22) is the eikr factor; indeed,

∇eikr = (ikn) eikr while ∇
1

r
=

−n

r2
and ∇f = O

(

f

r

)

, (42)

hence the magnetic field of the spherical EM wave is

H =
1

µ0
∇×A =

eikr

r
ikn× f + eikrO(f/r2) = ik

eikr

r

(

n× f + O(f/kr)
)

. (43)

Similarly, the electric field of the spherical EM wave obtains as

E =
iZ0

k
∇×H = −ikZ0

eikr

r

(

n× (n× f) + O(f/kr)
)

. (44)

Thus, far away from the radiating antenna, the electric and the magnetic fields of the spher-

ical wave locally look like the fields of a plane wave moving in the radial direction n with an

amplitude ∝ 1/r. Indeed, locally

E ⊥ n, H ⊥ n, E ⊥ H (45)

and more specifically

E = −Z0 n×H (46)

The Poynting vector of such a wave

S = 1
2 Im

(

E×H∗
)

=
Z0

2
Im
(

H∗ × (n×H)
)

=
Z0

2
|H|2 n (47)

has a radial direction (to the leading order in 1/kr) while its magnitude diminishes with the

8



distance as |amplitude|2 ∝ /r. Specifically,

Sleading =
Z0k

2

2r2
|n× f(n)|2 n, (48)

so the EM power radiated into a solid angle dΩ is

dP

dΩ
=

k2Z0

2
|n× f(n)|2 . (49)

In the following sections of these notes, we shall work out the angular dependence of this

radiated power — as well as the net power — for the waves emitted by the oscillating electric

dipoles, magnetic dipoles, and electric quadrupoles.

MULTIPOLE EXPANSION

Given the general formulae (43) and (44)— for the EM fields of a spherical wave and

eq. (49) for the radiated power, our next task is to learn how to calculate the angular

amplitude

f(n) =
1

4π

∫∫∫

d3y J(y) exp(−ikn · y) (50)

for the wave emitted by a particular source current J(y). Suppose our source is compact

and has size ≪ (1/k). In this case, kn · y is a small number everywhere within the source,

so we may expand

exp(−ikn · y) = 1 − ik(n · y) − 1
2k

2(n · y)2 + · · · =

∞
∑

m=0

(−ik)m

m!
(n · y)m (51)

and hence

f(n) =
∞
∑

m=0

fm(n) (52)

where

fm(n) =
(−ik)m

4πm!

∫∫∫

d3y (n · y)m J(y). (53)

We shall see later in this section that
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• the f0(n) is related to the oscillating electric dipole moment of the antenna;

• the f1(n) is related to the oscillating magnetic dipole moment and/or the electric

quadrupole moment;

• etc., etc.

⋆ In general, the fm(n) is related to the magnetic 2m–pole moment and/or the electric

2m+1–pole moment.

Note that the expansion starts with the electric dipole moment rather than the monopole

momenta AKA the net charge Qnet. The reason is very simple: the net charge is conserved,

so it cannot possibly oscillate with a non-zero frequency ω.

Electric Dipole Radiation

For a compact antenna of size L≪ (1/k), we start by approximating exp(−ikn ·y) ≈ 1,

hence

f(n) ≈ f0 =
1

4π

∫∫∫

d3y J(y), (54)

same for all space directions n. The integral here is related to the antenna’s oscillating dipole

moment

p =

∫∫∫

d3y y ρ(y) (55)

by the continuity equation for the oscillating charge density ρ(x, t) = ρ(x)e−iωt:

∇ · J = −
∂ρ

∂t
= +iωρ , (56)

hence

pi =
−i

ω

∫∫∫

d3y yi (∇ · J = ∇jJj)

〈〈 integrating by parts 〉〉

=
+i

ω

∫∫∫

d3y Jj(y) (∇jyi = δij)

=
+i

ω

∫∫∫

d3y Ji(y)

=
4πi

ω
(f0)i ,

(57)
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thus

f0 =
−iω

4π
p. (58)

In the electric dipole approximation, the spherical wave radiated by the antenna becomes

H(x) =
kω

4π

eikr

r
(−n× p)

(

1 +O(1/kr)
)

, (59)

E(x) =
Z0kω

4π

eikr

r
(n× (n× p))

(

1 +O(1/kr)
)

, (60)

and the EM power radiated into a solid angle dΩ is

dP

dΩ
=

Z0k
2ω2

32π2
‖n× p‖2 . (61)

To understand the angular distribution of this radiation, please note that p is the complex

amplitude of the oscillating dipole moment pe−iωt. In general, the 3 components (px, py, pz)

of the dipole moment may oscillate with different phases; for example, a charged particle

moving in a circle in the (x, y) plane has px(t) and py(t) oscillating with phases different by

90◦, thus p = p(1,±i, 0). On the other hand, for a linear dipole — that is, a dipole moment

oscillating back and forth along a fixed axis, — all 3 components (px, py, pz) of the complex

amplitude have the same phase. For such a linear dipole,

‖n× p‖2 = ‖p‖2 × sin2 θ (62)

where θ is the angle between the dipole’s axis and the direction n of a distant detector of

the EM wave. Consequently, the power emitted in any particular direction is proportional

to sin2 θ, as illustrated by this radiation power diagram

plane ⊥ to the dipole axis

dipole axis
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Note: the radiation is strongest in the directions ⊥ to the dipole axis, weaker in other

directions, and there is no radiation at all in the direction of the dipole axis itself. For

example, a vertical antenna has vertical dipole moment p, hence the radiation is strongest

in the horizontal direction, weaker in directions at some angles above or below the horizon,

and no radiation at all goes vertically up or vertically down.

As to the net power of the dipole radiation, it obtains by integration the directional

power (61) over the 4π directions of n,

Pnet =

∫∫

d2Ω(n)
Z0k

2ω2

32π2
‖n× p‖2 =

Z0k
2ω2

32π2
‖p‖2 ×

∫∫

d2Ω(θ, φ) sin2 θ (63)

where
∫∫

d2Ω(θ, φ) sin2 θ =
2

3
× 4π =

8π

3
, (64)

hence

Pnet =
Z0k

2ω2

12π
‖p‖2 =

Z0

12πc2
ω4‖p‖2. (65)

Linear Antenna Example

As an example of dipole radiation, consider a center-fed linear antenna of length L≪ λ,

generator L

I0e
−iωt

I0e
−iωt

Neglecting the antenna’s thickness, we can write the current in the antenna as

J(x, y, z, t) = I(z)δ(x)δ(y)nz e
−iωt (66)
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hence oscillating charge density

ρ(x, y, z, t) =
1

iω
∇ · J =

1

iω

dI

dz
δ(x)δ(y) e−iωt. (67)

For an antenna of uniform thickness — and hence uniform capacitance, — this charge density

is uniform along each half of the antenna, which means uniform dI/dz over each half. Further

more, no current flows through the ends of the antenna at z = ±L
2 while the current at z = 0

is the feed current I0e
−iωt, thus

I(z) = I0

(

1 −
2|z|

L

)

(68)

and hence

ρ(x, y, z, t) =
2iI0
ωL

sign(z)δ(x)δ(y)e−iωt. (69)

For this antenna, the electric dipole moment is obviously vertical, p = (0, 0, pz), and the

amplitude of its vertical component is

pz =
2iI0
ωL

+L/2
∫

−L/2

dz z sign(z) =
2iI0
ωL

× 2

L/2
∫

0

dz z =
2iI0
ωL

× 2×
L2

8
=

iLI0
2ω

, (70)

so the net EM power radiated by this antenna is

Pnet =
Z0

12πc2
ω4 ×

L2|I0|
2

4ω2
=

|I0|
2

2
×
Z0ω

2L2

24πc2
=

|I0|
2

2
×
πZ0

6
×
L2

λ2
. (71)

A close cousin to the center-fed monopole antenna is the “monopole antenna” rising
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vertically from the ground:

ground

generator
h

antenna’s

image

The ground acts as a good conductor, so the charged antenna above the ground is accompa-

nied by its mirror image (of the opposite charge) below the ground. Together, the antenna

and its image act as a combined center-fed dipole antenna of net length L = 2h, hence the

dipole moment amplitude

pz =
i(2h)I0
2ω

. (72)

Above the ground, this dipole moment radiates as any other electric dipole, thus

dP

dΩ
=

Z0ω
4|pz|

2

32π2c2
× sin2 θ, (73)

but only for the above-the-ground θ < π
2 ; in the directions below the horizontal, there is no

radiation at all. Consequently, the net radiated power is

Pnet =
Z0ω

4|pz|
2

32π2c2
×

(

4π

3
instead of

8π

3

)

=
Z0ω

4|pz|
2

24π2c2
, (74)

or in terms of the “monopole” antenna’s height h and the radiation’s wavelength λ = 2πc/ω,

Pnet =
|I0|

2

2
×
πZ0

3
×
h2

λ2
. (75)

From the RF generator’s point of view, the antenna is a load of some impedance Z,
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which consumes RF power

P =
|I0|

2

2
× Re(Z). (76)

Neglecting the antenna’s ohmic resistance, the power it consumes from the RF generator is

the net power it radiates, so the real part of the antenna’s impedance as a load is called its

radiation resistance

Rrad = Re(Zrad) =
2P net

radiation

|I0|2
. (77)

Interpreting eqs. (71) and (75) in terms of the radiation resistance, we have:

For a center-fed dipole antenna of length L≪ λ,

Rrad =
πZ0

6
×
L2

λ2
≈ (197 Ω)×

L2

λ2
. (78)

For a vertical “monopole” antenna of height h≪ λ,

Rrad =
πZ0

3
×
h2

λ2
≈ (394 Ω)×

h2

λ2
. (79)

For example, consider a mast antenna of height h = 30 m ≈ 100 ft broadcasting AT radio at

frequency 750 kHz and wavelength λ = 400 m. For this antenna, the radiation resistance is

Rrad ≈ 2.22 Ω, (80)

so in order to radiate its quota of 50 kW of RF power, the generator must feed it with the

current of amplitude |I0| = 212 A (i.e., RMS current of 150 A).

PS: The impedance of an antenna as a load to the RF generator generally has both real and

imaginary parts. The real part — called the radiation resistance — is related to the power

broadcast by the antenna as we saw above, but the imaginary part — called the radiation

reactance — is much harder to calculate. In principle, the net impedance obtains as

Z =
voltage V in the gap at z = 

feed current I
, (81)

but calculating the voltage in the gap involves understanding the near-range electric field

right next to the antenna. Moreover, this near-range field depends on the exact geometry of
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the antenna’s ends right next to the gap — the gap length, the antenna’s diameter, whether

the antenna’s ends at the gap are flat or hemispherical (or whatever), etc., etc., — so the

calculation of the gap voltage is generally quite hard. Thus, the only thing I can say about the

radiation reactance is that for short dipole or ‘monopole” antennas the capacitance is more

important than the inductance, so the sign of Im(Z) should be negative. But calculating the

magnitude of this reactance is beyond the scope of this class.

Back to the Electric Dipole Radiation

Now consider the non-linear electric dipole moments p whose components (px, py, pz)

have different phases. The net EM power radiated by such a dipole is given by exactly the

same formula

Pnet =
Z0k

2ω2

12π
‖p‖2 =

Z0

12πc2
ω4‖p‖2 (82)

as for the linear dipoles. Indeed, the directional power radiated by the dipole is

dP

dΩ
=

Z0ω
4

32π2c2
‖n× p‖2 (61)

where

‖n× p‖2 = ǫijknjpk × ǫiℓmnℓp
∗
m

= (δjℓδkm − δjmδkℓ)njnℓpkp
∗
m

= (δkm − nknm)pkp
∗
m ,

(83)

hence
∫∫

d2Ω(n) ‖n× p‖2 = pkp
∗
m ×

∫∫

d2Ω(n) (δkm − nknm). (84)

By the rotational symmetry, the integral here has form

∫∫

d2Ω(n) (δkm − nknm) = A× δkm (85)

where the coefficient A obtains by multiplying both sides of this equation by δkm: on the
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RHS

Aδkm × δkm = 3A (86)

while on the LHS

(δkm − nknm)× δkm = 3 − n2 = 2, (87)

hence

δkm ×

∫∫

d2Ω(n) (δkm − nknm) = 2

∫∫

d2Ω(n) = 2× 4π (88)

and therefore

A =
8π

3
. (89)

In the context of eq. (84), this means that

∫∫

d2Ω(n) ‖n× p‖2 = pkp
∗
m ×

8π

3
δkm =

8π

3
‖p‖2 (90)

and therefore

Pnet =

∫∫

d2Ω
dP

dΩ
=

Z0ω
4

32π2c2
×

8π

3
‖p‖2 =

Z0ω
4

12πc2
‖p‖2. (91)

For an example, consider the Rutherford model of a hydrogen atom: a classical electron

in a circular orbit around the nucleus. This atom has a rotating dipole moment

p(t) = −er(cos(ωt), sin(ωt), 0) = −erRe
(

e−iωt(1, i, 0)
)

(92)

which we may interpret as oscillating dipole moment with a non-linear complex amplitude

p = −er(1, i, 0). (93)

This dipole moment radiates EM waves at net power

P =
Z0 ω

4

12πc2
×
(

‖p‖2 = 2e2r2
)

=
Z0e

2

6πc2
× ω4r2, (94)

where the frequency ω and the orbital radius r of the atom are related by the Kepler-like
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formula

meω
2r =

e2

4πǫ0r2
=⇒ ω2 × r3 =

e2

4πǫ0me
= const, (95)

hence

P =
Z0e

6

96π3ǫ20 c
2m2

e

×
1

r4
. (96)

Thus power is radiated at the expense of the atom’s energy

U =
meω

2r2

2
−

e2

4πǫ0r
= −

e2

8πǫ0r
, (97)

which therefore changes with time as

dU

dt
= −P. (98)

In terms of the orbital radius, this formula means the radius shrinks with time according to

e2

8πǫ0

d

dt

(

−1

r

)

= −
Z0e

6

96π3ǫ20 c
2m2

e

×
1

r4
, (99)

hence

1

r2
dr

dt
= −

Z0e
4

12π2ǫ0 c2m2
e
×

1

r4
, (100)

d(r3/3)

dt
= r2 ×

dr

dt
= −

Z0e
4

12π2ǫ0 c2m2
e

= const, (101)

and therefore

r3(t) = r30 −
Z0e

4

4π2ǫ0 c2m2
e
× t. (102)

Note: this orbital radius shrinks all the way to zero in a finite time, so the classical Rutherford

atom has a finite lifetime

T = r30 ×
4π2ǫ0 c

2m2
e

Z0e4
(103)

before the electron spirals down all the way to the nucleus! Numerically, this lifetime is

T = (1.05 · 10−10 s)×
(

r0[in Å]
)3
; (104)

for example, for r0 = 0.53 Å (Bohr radius of the quantum atom in the ground state), the

classical lifetime is only T = 1.6 · 10−11 s.
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Going back to the general non-linear electric dipoles, while the net EM power radiated by

such dipoles is the same as for the linear dipoles with similar ‖p‖2, the angular distribution

of the radiated power is quite different from the sin2 θ rule for the linear dipoles. In general,

dP

dΩ
∝ ‖p‖2 − (n · Rep)2 − (n · Imp)2. (105)

For example, for the dipole moment rotating in the (x, y) plane — like an electron circling

the nucleus, — we have

p = p(1, i, 0) =⇒
dP

dΩ
∝ 2 − n2x − n2y = 1 + n2z = 1 + cos2 θ. (106)

Here is the radiation power diagram for this rotating dipole:

(x, y) plane

z axis

Next Order of the Multipole Expansion

Thus far, we have focused on the leading term in the multipole expansion for the radiation

by a compact antenna — the electric dipole radiation. But for antennas with zero electric

dipole moments, we need to consider the subleading orders of the multipole expansion

f(n) =
∞
∑

m=0

fm(n) (52)

where
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fm(n) =
(−ik)m

4πm!

∫∫∫

d3y (n · y)m J(y). (107)

So let’s focus on the first subleading order f1(n) which is related to the magnetic dipole

moment and the electric quadrupole moment of the antenna. Specifically,

f1(n) =
−ik

4π

∫

d3y J(y)(n · y) = fMd + fEq (108)

where

fMd(n) =
−ik

8π

∫

d3y
(

J(y · n) − y(J · n)
)

(109)

and

fEq(n) =
−ik

8π

∫

d3y
(

J(y · n) + y(J · n)
)

. (110)

The relation of these integrals to the magnetic dipole moment and the electric quadrupole

moment will become clear in a moment.

Magnetic Dipole Radiation

Let’s start with the integral (109) and its relation to the magnetic dipole moment. By

the double-cross-product formula

J(y · n) − y(J · n) = n× (J× y), (111)

hence

fMd(n) =
−ik

8π
n×

∫

d3y J(y)× y, (112)

where the integral is precisely 2m — (twice) the magnetic dipole moment of the antenna,

thus

fMd(n) =
−ik

4π
(n×m). (113)

Consequently, in the radiation zone far away from the antenna,

H ≈ −

(

k2

4π
=

ω2

4πc2

)

(

n× (n×m)
) eikr−iωt

r
, (114)
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E ≈ +
Z0 ω

2

4πc2
(

n× (n× (n×m))
) eikr−iωt

r

= −
Z0 ω

2

4πc2
(n×m)

eikr−iωt

r
. (115)

Note that the magnetic field (114) of the magnetic dipole behaves exactly like the electric

field (59) of the electric dipole, while the electric field (115) of the magnetic dipole behaves

exactly like the magnetic field (60) of the electric dipole.

Likewise, the power of the magnetic dipole radiation

dP

dΩ
=

Z0 ω
4

32π2c4

∥

∥n× (n×m)
∥

∥

2
=

Z0 ω
4

32π2c4

∥

∥n×m
∥

∥

2
(116)

has similar angular distribution and similar net power

Pnet =
Z0 ω

4

12πc4
‖m‖2 (117)

to the radiation of electric dipole

p =
m

c
. (118)

As an example, consider a loop antenna — a flat loop of wire of area A. Or more often,

a flat coil having N turns of area A. When this coil is fed a harmonic current of frequency

ω and amplitude I0, it has oscillating magnetic moment of amplitude m = NAI0 in the

direction of the coil’s axis, i.e. ⊥ to the plane of the flat coil. As a complex vector, m is real

up to an overall phase, hence the angular distribution of the loop antenna’s radiation is

dP

dΩ
∝ sin2 θ (119)

where θ is the angle between the antenna’s axis and the direction of the radiation. Thus,

the radiation is strongest within the plane of the loop, while no power is emitted along the

loop’s axis. Graphically, the angular distribution (119) is illustrated by the radiation power
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diagram

plane of the loop

axis

The net power emitted by the loop antenna is

Pnet =
Z0 ω

4

12πc4
(NA |I0|)

2. (120)

From the point of view of the RF generator feeding the current of amplitude I0 to the

antenna, the antenna is a load of some impedance Z, and the power radiated by the antenna

is the power consumed by this load,

Pnet =
|I0|

2

2
× Re(Z). (121)

In light of eq. (120), the real (active) part of this impedance — also called the radiation

resistance — is

Rrad = Re(Z) =
Z0

6π
× (ω/c)4 × (NA)2 =

Z0

6π
×

(

NA×

(

2π

λ

)2
)2

. (122)

For example, take antenna made of 10 turns of area A = 1 m2, and let it radiate short-wave

radio signal at wavelength λ = 20 m (frequency ω = 2π × 15 MHz). For this antenna,

Rrad ≈ 20 Ω, so if we feed it with current of amplitude I0 = 10 A, it would radiate 1 kW of

net radio power.
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Electric Quadrupole Radiation

Warning: In different textbooks, the definitions of the electric quadrupole tensor differ

by a factor of 2. In my convention — which I borrowed from Griffith’s textbook, —

Qij =

∫

d3y ρ(y)
(

3
2yiyj − 1

2δijy
2
)

, (123)

while Jackson’s textbook uses

Qij =

∫

d3y ρ(y)
(

3yiyj − δijy
2
)

. (124)

Consequenly, the formulae I’ll derive in this section for the EM fields radiated by an oscillat-

ing electric quadrupole are going to differ from Jackson’s by the factor of 2, and the formular

for the radiated power — by the factor of 4.

Anyhow, the electric quadrupole contribution to the EM radiation stems from the

fEq(n) =
−ik

8π

∫

d3y
(

J(y · n) + y(J · n)
)

(110)

contribution to the first subleading term in the expansion of f into powers of k × (size).

To see the relation of this fEd to the electric quadrupole moment tensor (123), we use the

continuity equation for the harmonic charge and current densities,

∇ · J = −
∂ρ

∂t
= +iωρ. (125)

In light of this formula,

iωQij =

∫

d3y (∇ · J)
(

3
2yiyj − 1

2δijy
2
)

〈〈 integrating by parts 〉〉

= −

∫

d3y Jk(y)∇k

(

3
2yiyj − 1

2δijy
2
)

= −

∫

d3y Jk

(

3
2δkiyj + 3

2yiδkj − δijyk

)

= −

∫

d3y
(

3
2Jiyj + 3

2yiJj − δij(y · J)
)

,

(126)
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and hence

iωQijnj = −

∫

d3y
(

3
2Ji(y · n) + 3

2yi(J · n) − ni(y · J)
)

= −
3

2

∫

d3y
(

J(y · n) + y(J · n)
)

i
+ ni

∫

d3y (y · J).

(127)

The first term on the second line here is similar to eq. (110) for the fEq — except for the

overall coefficient — while the second term has a form n times a scalar. Therefore,

fEq(n) = −
ωk

12π
(Q ◦ n) + (scalar)n (128)

where (Q ◦ n) is a vector with components (Q ◦ n)i = Qijnj .

Moreover, the second term (scalar)n in eq. (128) does not affect the EM fields E and H

or the power of the EM waves, at least not in the radiation zone of r ≫ λ. Indeed, in that

zone

H = ik
eikr

r
n× f(n), (43)

E = −ikZ0
eikr

r
n× (n× f(n)), (44)

dP

dΩ
=

k2Z0

2
‖n× f(n)‖2, (49)

and in all these formulae thef(n) appears only in the combination n × f(n). Consequently,

from the radiation point of view,

f(n) + (any scalar)n ∼= f(n). (129)

In particular, for the electric quadrupole radiation,

fEq(n) ∼= −
ωk

12π
(Q ◦ n). (130)

In terms of the EM fields in the radiation zone, this means

H ≈ +i
k2ω

12π

(

n× (Q ◦ n)
) eikr−iωt

r
, (131)
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E ≈ −i
Z0k

2ω

12π

(

n× (n× (Q ◦ n))
) eikr−iωt

r
, (132)

while the EM power radiated per unit of solid angle is

dP

dΩ
=

Z0k
4ω2

288π2
∥

∥n× (Q ◦ n)
∥

∥

2
=

Z0 ω
6

288π2c4

(

(Q∗
ijnj)(Qiknk) − |niQijnj |

2
)

. (133)

To calculate the net radiated power, we need to integrate eq. (133) over the 4π solid

angle. In components,

∫∫

d2Ω
(

(Q∗ ·n) · (Q·n) −
∣

∣n · Q ·n
∣

∣

2
)

= Q∗
ijQik

∫∫

d2Ωnjnk − Q∗
ijQkℓ

∫∫

d2Ωninjnknℓ

(134)

where the remaining integrals on the RHS must be rotationally invariant and also totally

symmetric in the indices of all the n vectors. Thus

∫∫

d2Ωnjnk = A2δjk ,

∫∫

d2Ωninjnknℓ = A4

(

δijδkℓ + δikδjℓ + δiℓδjk
)

(135)

for some overall coefficients A2 and A4 which obtain by setting all the indices to 3 (i.e., z):

A2 =

∫∫

d2Ω cos2 θ =
4π

3
, 3A4 =

∫∫

d2Ω cos4 θ =
4π

5
. (136)

Consequently,

∫∫

d2Ω
(

(Q∗ ◦ n) · (Q ◦ n) −
∣

∣n ◦ Q ◦ n
∣

∣

2
)

=

= Q∗
ijQik ×

4π

3
δjk − Q∗

ijQkℓ ×
4π

15

(

δijδkℓ + δikδjℓ + δiℓδjk
)

=
4π

3
Q∗

ijQij −
4π

15

(

Q∗
iiQkk + Q∗

ijQji + Q∗
ijQij

)

〈〈 using symmetry and tracelessness of the quadrupole moment tensor 〉〉

=
4π

3
Q∗

ijQij −
4π

15

(

0 + 2Q∗
ijQij

)

=
4π

5
Q∗

ijQij =
4π

5
tr
(

Q†Q
)

,

(137)
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and therefore the net radiated power is

Pnet =
Z0

360πc4
ω6 tr

(

Q†Q
)

. (138)

The angular distribution of the quadrupole radiation depends on the structure of the

quadrupole moment tensor, which can range from a linear quadrupole (all charges arranged

along a line) to planar quadrupole (all charges in the same plane) to complicated 3D setups

where the charges move in different directions with different phases. For specific examples,

let’s consider the quadrupole moment tensors proportional to the spherical harmonics Yℓ,m

with ℓ = 2, namely

Q(m=0) =
Q

√

3/2





− 1

2
0 0

0 − 1

2
0

0 0 +1



 ,

Q(m=±1) =
Q

2





0 0 +1

0 0 ±i

+1 ±i 0



 ,

Q(m=±2) =
Q

2





+1 ±i 0

±i −1 0

0 0 0



 .

(139)

• The m = 0 quadrupole mode included all linear quadrupoles as well as other config-

urations with similar symmetries. (An axial symmetry, or at least a symmetry of 90◦

rotations around the z axis.) For this mode

Q ◦ n =
Q

√

3/2







−1
2nx

−1
2ny

+nz






=⇒

‖Q ◦ n‖2 =
Q2

3/2

(

1
4n

2
x +

1
4n

2
y + n2z)

=
Q2

6

(

1 + 3n2z = 1 + 3 cos2 θ
)

(140)

while

n ◦ Q ◦ n =
Q

√

3/2

(

−1
2n

2
x −

1
2n

2
y + n2z = 3

2n
2
z −

1
2 = 3

2 cos
2 θ − 1

2

)

. (141)
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Consequently,

‖Q ◦ n‖2 − |n ◦ Q ◦ n|2 =
Q2

6

(

1 + 3 cos2 θ
)

−
Q2

3/2

(

3
2 cos

2 θ − 1
2

)2

=
Q2

6

(

1 + 3 cos2 θ − 1 + 6 cos2 θ − 9 cos4 θ
)

=
Q2

6
(9 cos2 θ − 9 cos4 θ)

=
3Q2

2
× cos2 θ sin2 θ

(142)

and therefore the angular distribution of the radiated power is

dP

dΩ
∝ cos2 θ sin2 θ. (143)

Here is the radiation power diagram for this distribution:

(x, y) plane

z axis

• Next, consider the m = ±1 quadrupole modes, for which

Q ◦ n =
Q

2







+nz

±inz

nx ± iny






=⇒

‖Q ◦ n‖2 =
Q2

4

(

2n2z + n2x + n2y
)

=
Q2

4
(1 + cos2 θ)

(144)
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while

n ◦ Q ◦ n =
Q

2
× 2nz(nx ± iny) = Q× cos θ sin θ e±iφ. (145)

Consequently,

‖Q ◦ n‖2 − |n ◦ Q ◦ n|2 =
Q2

4
(1 + cos2 θ) − Q2 cos2 θ sin2 θ

=
Q2

4
×
(

1− 3 cos2 θ + 4 cos4 θ
)

(146)

and therefore

dP

dΩ
∝ 1 − 3 cos2 θ + 4 cos4 θ. (147)

The radiation power diagram for this distribution looks like

(x, y) plane

z axis

• Finally, the m = ±2 quadrupole modes, which include the planar quadrupoles. For
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these modes

Q ◦ n =
Q

2







nx ± iny

±inx − ny

0






=⇒

‖Q ◦ n‖2 =
Q2

4
× 2|nx ± iny|

2

=
Q2

2
sin2 θ

(148)

while

n ◦ Q ◦ n =
Q

2
× (nx ± iny)

2 =
Q

2
× sin2 θ e±2iφ. (149)

Consequently,

‖Q ◦ n‖2 − |n ◦ Q ◦ n|2 =
Q2

2
× sin2 θ −

Q2

4
× sin4 θ

=
Q2

4
× (sin2 = 1− cos2 θ)× (2− sin2 θ = 1 + cos2 θ)

=
Q2

4
× (1− cos4 θ)

(150)

and therefore

dP

dΩ
∝ 1− cos4 θ. (151)

Here is the radiation power diagram for this angular distribution.

(x, y) plane

z axis
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Higher orders of the Multipole Expansion

Let me finish these notes with a few words about the higher orders

fm(n) =
(−ik)m

4πm!

∫∫∫

d3y J(y) (n · y)m (152)

of the multipole expansion. These higher orders become relevant when all the lower order

terms happen to vanish for some compact antenna. Or if the antenna is not so compact, and

we need to sum up the whole expansion series for the

f(n) =

∞
∑

m=0

fm(n). (153)

Similar to the f1(n) — which is related to the magnetic dipole moment and the electric

quadrupole moment of the antenna, — each higher-order fm is related to the magnetic 2m–

pole moment and the electric 2m+1–pole moment, thus

fm(n) = fM :ℓ=m(n) + fE:ℓ=m+1(n). (154)

To save time, I am not going to work out the details of all these higher-order moments or

their precise relations to the fm(n). If you ever need them, you can sweat them out by

yourself.

THE END
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