
PHY–387 K. Problem set #5. Due February 25, 2022.

1. Consider a bunch of permanent magnets. For simplicity, assume the ferromagnetic mate-

rial in the magnets is so hard that its magnetization M stays constant despite the variable

H field of the other magnets and/or electromagnets.

Let’s start with one permanent magnet and one current-carrying coil. The magnet is fixed

in place, but the coil may move around it. Also, the current in the coil may change with

time.

(a) Show that for this system, the net electric + mechanical work is reversible, that is

Welectric + Wmechanic = ∆U(I, coil′s position). (1)

for some well-defined magnetic energy U — there is no irreversibly lost work due to

hysteresis. Also, show that

U =
µ0
2

∫∫∫

whole
space

H
2(x) d3x + const. (2)

Note: the H field here is the net field due to both the current in the coil and the

magnetization M of the permanent magnet. Thus, even though the magnetization

M does not appear in eq. (2) directly, it does affect the net magnetic energy of the

system via its effect on the H field.

Now consider a system of several permanent magnets, each having constant magnetization

M despite theH fields from the other magnets. But there are no coils or other macroscopic

electric currents.

(b) Argue that the magnetic forces and torques on the magnets follow from the potential

energy U(geometry) which has exactly the same form as in eq. (2).

Hint: first, in a setup of part (a) move the magnet around the coil and use the

relativity of motion. Second, replace the coil with another permanent magnet. Finally,

generalize to several magents.
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(c) Show that without conduction currents

∫∫∫

whole
space

H ·B d3x = 0, (3)

then use this formula to rewrite the magnetic energy (2) as

U = −µ0
2

magnets
∑

i6=j

∫∫∫

magnet#i

Mi ·H[magnet#j] d3x + const. (4)

(d) To check this formula, consider a system of two small magnets separated by a much

larger distance. Approximating each magnet as a pure dipole of magnetic moment

m1 or m2, show that for this system

U + const = −µ0
2

(

M1 ·H2(x1) + M2 ·H(x2)
)

= −M1 ·B2(x1) = −M2 ·B1(x2).

(5)

Then use eq. (5) to argue that the forces and the torques on the magnets stemming

from the magnetic energy (4) = (5) agree with the usual formulae for the forces and

the torques on magnetic dipoles,

F = ∇(m ·B), ~τ = m×B. (6)
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2. A transformer is made of 2 coils on a common ferromagnetic core. The coils have respective

self-inductances L1 and L2 and mutual inductance M12 = M21 = k
√
L1L2. The primary

coil is plugged into an AC power source of voltage V1 and frequency ω, while the secondary

coil is connected to a load of impedance Z2:

∼ V1 Z2

I1 I2

For simplicity, consider an ideal transformer: perfectly linear ferromagnetic core with no

hysteresis, no eddy currents in the core, no ohmic losses in the wiring of the coils, and

perfect magnetic coupling of the two coils, k = 1.

(a) Write down linear equations for the complex amplitudes of the currents in the two

coils and the voltages on them. Then solve the equations and show that

V2
V1

= n,
I2
I1

=
1

n
× jωL2

jωL2 + Z2
(7)

for n being the stepping ratio

n =

√

L2

L1
. (8)

In particular, show that even for an ideal transformer, the simple ratios

V2
V1

= n,
I2
I1

=
1

n
(9)

obtain only for |Z2| ≪ ωL2.
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(b) Now consider a somewhat less ideal transformer with a coupling coefficient k just a

little bit smaller than 1, so that 1 − k2 ≪ 1. Again, calculate the transformer ratios

V2/V1 and I2/I1 and show that they approximate the simple ratios (9) for the load

impedance Z2 in the range

ωL2 ≫ |Z2| ≫ (1− k2)× ωL2 , (10)

but outside of this range we need more complicated formulae.

(c) Finally, for a transformer made of two coils of respectively N1 and N2 turns wound

around a common toroidal ferromagnetic core, check that n ≈ N2/N1. Also, explain

what causes k < 1 and argue that in the limit of very high permeability µ of the

ferromagnetic core k → 1.
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