
PHY–387 K. Problem set #9. Due April 1, 2022.

1. This problem is about birefringence in anisotropic materials. The dielectric “constant” of

anisotropic dielectric is a tensor ǫij rather than a scalar, thus

Di = ǫijǫ0Ej . (1)

For simplicity, let’s assume that at the optical frequencies ǫij(ω) is a real symmetric tensor,

and that the material in question is non-conducting and non-magnetic, σ = 0 and µ = 1.

Consider a plane EM wave

E(x, t) = ~E exp(ik · x− iωt) (2)

propagating through such anisotropic material.

(a) Show that the electric and magnetic fields of this wave obey

−k× (k×E) = ω2µ0D, H =
k

ωµ0
× E, (3)

where the magnetic field H and the electric displacement field D are transverse to the

wave direction, but the electric tension field E is generally not transverse.

(b) A plane EM wave in an isotropic medium has its energy moving in the same direction

as the wavefront, i.e. the direction k̂ = k/|k| of the wave vector. But this is generally

not true in an anisotropic medium: Show that for a plane wave with E 6⊥ k, the wave’s

energy and the wavefront move in somewhat different directions.

In an anisotropic medium, the refraction index n = c|k|/ω depends on the direction

k̂ = k/|k| of the wave vector. Moreover, for a given direction k the two independent

polarizations of the wave generally have different refraction indices n1 6= n2.
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(c) Use eq. (3) to show that the refraction indices and the polarization vectors of the two

independent polarizations obtain from the generalized eigenvalue problem

(

ǫij − n2
(

δij − k̂ik̂j
)

)

Ej = 0. (4)

In particular, the (squares of the) refraction indices obtain as zeros of the determinant

χ(n2) = det
(

ǫij − n2
(

δij − k̂ik̂j
)

)

. (5)

From now on, let’s work in a Cartesian coordinate system where the ǫij tensor is diagonal,

ǫij = ǫiδij .

(d) Calculate the determinant (5) in this basis and show that

χ(n2) =
3

∑

i=1

k̂i
2ǫi ×

∏

j 6=i

(n2 − ǫj). (6)

If you get bogged down in algebra, use Mathematica.

(e) Suppose the three eigenvalues of the ǫij tensor are different, say ǫ1 > ǫ2 > ǫ3 > 0.

Show that in this case, the square of one of the refraction indices lies between ǫ1 and

ǫ2 while the square of the other lies between ǫ2 and ǫ3,

ǫ1 ≥ n21 ≥ ǫ2 ≥ n22 ≥ ǫ3 . (7)

Moreover, all these inequalities become strict when all 3 of the k̂21, k̂
2
2, k̂

2
3 are positive,

i.e. when the wave vector k is not parallel to any principal axis of the ǫij tensor. Also,

in this case, the χ(n2) = 0 equation is equivalent to the Fresnel equation

3
∑

i=1

ǫik̂
2
i

n2 − ǫi
= 0. (8)

Now suppose ǫ1 = ǫ2 6= ǫ3; birefringence like this is called uniaxial, and the direction of

the non-degenerate eigenvector is called the optical axis. For the waves traveling in the

direction of that optical axis, there is no birefringence — both polarizations have the same

n =
√
ǫ1 = ǫ2.
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(f) Check this statement.

(g) Show that for the waves in all other directions k 6= ±m3, there are two independent

polarizations with different refraction indices. Specifically:

(⊥) ~E is normal to both the optical axis and the wave direction k̂; for this wave,

n =
√
ǫ1 regardless of the ǫ3 or the angle θ.

( ‖ ) ~E lies in the same plane as k̂ and the optical axis; for this wave,

n =

(

sin2 θ

ǫ3
+

cos2 θ

ǫ1

)−1/2

(9)

where θ is the angle between the wave direction k and the optical axis.

(h) Finally, show that for the (⊥) polarization, the wave’s energy moves in the same

direction k̂ as the wavefront; but for the ( ‖ ) polarization, the energy moves in a

different direction from k̂. Also, calculate the angle between the directions of the

energy’s and the wave-front’s motion for the ( ‖ ) polarization.

2. Now consider plasma in a uniform magnetic field B. For simplicity, ignore the ions in the

plasma and focus on the effect of the free electrons.

(a) Show that for a radio wave of frequency ω propagating through this plasma, the

effective permittivity tensor is

ǫij = δij −
ω2
p

ω2(ω2 − Ω2)

(

ω2δij − Ω2b̂ib̂j − iωΩǫijk b̂k

)

(10)

where ωp =
√

e2ne/ǫ0me is the plasma frequency, Ω = (e/me)B is the cyclotron

frequency of an electron in the magnetic field B, and b̂ = (b̂x, b̂y, b̂z) is the unit vector

in the magnetic field’s direction.

The tensor (10) is complex rather than real, but its matrix is Hermitian, ǫ∗ij = ǫji, so it has

real eigenvalues ǫ1, ǫ2, ǫ3, although the corresponding eigenvectors m1,m2,m3 are complex

rather than real.
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(b) Find these eigenvalues and eigenvectors. For simplicity, work in the coordinate system

where the z axis points in the direction of the magnetic field, thus b̂ = (0, 0, 1).

(c) Go back to the previous problem and show that for a complex orthonormal basis

(m1,m2,m3) for vectors’ components,

m∗
i ·mj = δij ∀i, j = 1, 2, 3, (11)

any vector v =
∑

i

vimi for vi = m∗
i · v, (12)

eq. (4) becomes
(

ǫij − n2
(

δij − k̂ik̂
∗
j

)

)

Ej = 0. (13)

Also show that for the (m1,m2,m3) being complex eigenvectors of an Hermitian per-

mittivity tensor, the Fresnel equation for the refraction indices2 becomes

3
∑

i=1

ǫi ×
(

|k̂i|2 = |m∗
i · k̂|2

)

n2 − ǫi
= 0. (14)

Now return to the plasma in a magnetic field, and consider a wave propagating in a direction

at angle θ from the direction of B.

(d) Solve the Fresnel equation (14) for the plasma in the the high-frequency limit ω ≫ ωp.

• For simplicity, you may assume that ω ≫ Ω as well as ω ≫ ωp; in this limit, you

should get

n21,2 = 1 −
ω2
p

ω2
±

ω2
pΩcos θ

ω3
+ O(1/ω4). (15)

⋆ For extra credit, assume ω(ω − Ω) ≫ ω2
p but do not assume that ω ≫ Ω.
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• Updated 3/25 at 19:30:

Problem 3 below is postponed to the next homework assignment.

3. Finally, a problem on a very different subject, namely the TE and TM waves in a triangular

waveguide. Specifically, consider a waveguide whose cross-section is a right isosceles triangle

a

a

(a) Let’s mirror-reflect the triangle off its long side, so the original triangle plus its image

form a square,

(16)

Suppose ψ(x, y) obeys the eigenstate equation (∇2 + Γ)2ψ = 0 and the Neumann or

Dirichlet boundary conditions on all 3 sides of the triangle. Let’s continue this ψ to

the whole square by mirror reflection off the diagonal side,

ψ(xmirror) = ±ψ(xorig) (17)

where the sign is + for the Neumann boundary conditions and − for Dirichlet.

Show that the extended ψ obeys the eigenstate equation and the Neumann/Dirichlet

boundary conditions for the whole square. In particular, show that ψ(x, y) and all
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its derivatives are continuous across the diagonal line separating the original triangle

from its image.

(b) Using the results of part (a), find all the eigenstates and the eigenvalues for the original

triangle.

(c) Finally, using the results of part (b), describe all the TM and TE waves of the triangular

waveguide. For simplicity, assume that the waveguide is filled with air or vacuum and

let ǫ = µ = 1.
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