
PHY–387 K. Problem set #13. Due April 29, 2022.

1. Consider a microwave resonator cavity in the shape of a sphere of radius R. The spherical

TM waves in this cavity have form:

H(r, θ, φ) = H0 jℓ(kr)LYℓ,m(θ, φ), (1.a)

E(r, θ, φ) =
iZ0

k
∇×H(r, θ, φ), (1.b)

while the spherical TE waves have form

E(r, θ, φ) = E0 jℓ(kr)LYℓ,m(θ, φ), (2.a)

H(r, θ, φ) =
1

ikZ0

∇× E(r, θ, φ). (2.b)

Note: for both kinds of waves, the jℓ(kr) is the spherical Bessel function that is regular at

the center kr = 0.

(a) Separate the radial components of the EM fields from their transverse components (in

the directions of θ and φ) and show that:

for a TM wave,

Hr = 0, (3.a)

Ht = H0 jℓ(kr)LYℓ,m(θ, φ), (3.b)

Er = −Z0H0

ℓ(ℓ+ 1)

kr
jℓ(kr) Yℓ,m(θ, φ), (3.c)

Et = iZ0H0

(

jℓ(kr)

kr
+ j′ℓ(kr)

)

n(θ, φ)× LYℓ,m(θ, φ) , (3.d)

while for a TE wave

Er = 0, (4.a)

Et = E0 jℓ(kr)LYℓ,m(θ, φ), (4.b)

Hr =
E0

Z0

ℓ(ℓ+ 1)

kr
jℓ(kr) Yℓ,m(θ, φ), (4.c)

Ht = −i
E0

Z0

(

jℓ(kr)

kr
+ j′ℓ(kr)

)

n(θ, φ)× LYℓ,m(θ, φ) , (4.d)

where j′ℓ(x) = djℓ(x)/dx.
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(b) Suppose the surface of the spherical cavity is perfectly conducting. Apply the boundary

conditions at that surface to the TE and the TM waves and show that they resonate at

frequencies for which

jℓ(x) = 0 @ x = kR for a TEℓ wave, (5.a)

yj′ℓ(y) + jℓ(y) = 0 @ y = kR for a TMℓ wave. (5.b)

In other words, the resonant frequencies are

ωn(TEℓ) =
c

R
× xℓ,n , ωn(TMℓ) =

c

R
× yℓ,n , (6)

where xℓ,n is the nth positive zero of jℓ(x) while yℓ,n is the nth positive zero of

fℓ(y) = yj′ℓ(y) + jℓ(y) =
d

dy

(

yjℓ(y)
)

. (7)

(c) Use Mathematica to find the 4 lowest frequencies numerically (in units of c/R). Also,

state which modes these frequencies belong to.

(d) Now suppose the outer wall of the spherical cavity has a small surface resistivity Rs.

Calculate the quality factor Q of the spherical resonator for all the modes and show that

all the TE modes have

Q =
Z0

2Rs
× (xℓ,n = ωR/c), (8)

while the TE modes have

Q =
Z0

2Rs
×

(

yℓ,n −
ℓ(ℓ+ 1)

yℓ,n

)

=
Z0

2Rs
×

(

(ωR/c) −
ℓ(ℓ+ 1)

(ωR/c)

)

. (9)

Math help: spherical Bessel functions obey all kinds of rather obscure identities. In

particular, here are a couple of integral identities you need for this problem:
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(i) For any X = xℓ,n such that jℓ(X) = 0,

X
∫

0

dx x2
(

jℓ(x)
)2

=
X3

2
×
(

j′ℓ(X)
)2
. (10)

(ii) For any Y = yℓ,n such that Y j′ℓ(Y ) + jℓ(Y ) = 0,

Y
∫

0

dx x2
(

jℓ(x)
)2

=
Y

2

(

Y 2
− ℓ(ℓ+ 1)

)

×
(

jℓ(Y )
)2
. (11)

2. Consider a linear antenna that’s precisely one wavelength long L = λ. The antenna is fed at

a point at distance L/4 from one end rather than at in the middle,

generator

3

4
L

1

4
L

I0e
−iωt

I0e
−iωt

For simplicity, approximate the current in the antenna by a sine wave with nodes at both

ends, thus

I(z) = −I0 sin
2πz

L = λ
z

I

(12)

Note: this sine wave is different from the current waves in the center-fed antennas, so the ra-

diation pattern of this antenna is quite different from the L = λ center-fed antanna discussed

in class.
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(a) Calculate the f(n) for this antenna without using the multipole expansion.

(b) Plot the angular dependence of the power (per solid angle) emitted by the antenna in

question in the direction n as a function of the angle θ between that direction and the

antenna’s axis.

(c) Calculate the net power emitted by the antenna and hence the antenna’s radiation

resistance. Note: the integral here requires special functions or numeric integration.

Don’t try to do it by hand but use Mathematica or equivalent software.

Although the antenna in question is too long to trust the multipole expansion, let’s use it

anyway and see how far off the mark we would get by using just the leading multipoles. In

terms of the multipole expansion,

f(n) =

∞
∑

m=0

fm(n), (13)

fm(n) =
(−ik)m

4πm!

∫∫∫

antenna

d3y J(y) (n · y)m. (14)

(d) Use symmetries of the antenna in question to argue that it nas zero magnetic multipole

moments for all ℓ, while the electric multipole moments vanish for all odd ℓ. Thus, the

only multipole moments for this antenna are the electric quadrupole, electric 16-pole,

electric 64-pole, etc..

To avoid the messy indexologies of the higher multipole moments, it is easier to directly

calculate the fm(n) for the antenna in question. In light of part (c), the fm should vanish

for all even m = 0, 2, 4, 6, . . ..

(e) Verify this, then calculate the three leading non-zero terms fm(n) for the oddm = 1, 3, 5.

(f) Use successive approximations

fa(n) = f1(n),

fb(n) = f1(n) + f3(n),

fc(n) = f1(n) + f3(n) + f5(n),

(15)

to calculate the dP/dΩ and the net power emitted by the antenna. Compare the angular

distributions of the power to the ‘exact’ result from part (a) — and plot them all on the

same graph — and also compare the net power to the result from part (b).
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