
MAGNETIC ENERGY

Before I get to the magnetic energy, let me remind you of the Faraday’s Law of Induction.

Take any closed loop of coil of wire and place it in presence of magnetic fields; let Φ be the

net magnetic flux through this loop or coil. If the flux Φ changes for any reason whosoever,

this induces an electromotive force (EMF) in the loop/coil according to

E = −
dΦ

dt
. (1)

The minus sign in this formula reflects the Lenz rule: the EMF (1) leads to a current in the

loop whose magnetic field has opposite direction to the ∆Φ.

Now consider an inductor coil. For simplicity, let’s assume that the coil either does

not have a ferromagnetic core or else the ferromagnetic material of the core is linear, which

means inside the core B = µµ0H. Consequently, when we run a current I through the coil,

the magnetic fields H(x) and B(x) are proportional to the current and hence the magnetic

flux Φ through the coil is also proportional to the current. Thus

Φ = L× I (2)

for some constant coefficient L called the self-inductance of the coil. When the current

through the coil changes for any reason, the flux also changes according to eq. (2), and

according to the Faraday’s law (1) this induces EMF in the coil,

E = −L×
dI

dt
. (3)

Given these preliminaries, we may turn to the magnetic energy, and let’s start with the

magnetic energy stored in the inductor coil. Suppose we try to increase the current in the

coil by an infinitesimal amount δI. Changing the current induces EMF in the coil, and to

compensate for this negative EMF the power source providing the current must also provide

voltage

V = −E + a bit extra for the ohmic losses in the coil, (4)

and hence power P = I × V . Some of this power is dissipated by the ohmic losses, but that

would happen even for a time-independent current and hence E = 0. So let’s focus on the
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extra power due to −E × I and hence the extra work done by the power supply while the

current increases by δI in time δt:

δWextra = −E × I × δt = +L×
δI

δt
× I × δt = LI × δI = δ

(

1
2
LI2

)

. (5)

This extra work — which is independent on the time δt it takes to raise the current — goes

to the magnetic energy of the coil

U = 1
2
LI2 = 1

2
ΦI =

Φ2

2L
. (6)

Now let’s express this magnetic energy in terms of the magnetic field B(x) inside the

coil. The magnetic flux though the coil can be expressed in terms of the vector potential as

Φ =

∮

coil

dx ·A(x), (7)

hence the magnetic energy

U = 1
2
IΦ =

1

2

∮

coil

I dx ·A(x). (8)

This formula assumes a coil made of thin wires; if we replace them with thicker conductors

carrying some volume currents J(x), then in the integral (8) we replace I dx → d3xJ(x),

hence

U =
1

2

∫∫∫

d3x J(x) ·A(x). (9)

Now let’s integrate by parts using ∇×A = B and the Ampere’s Law ∇×H = J. For any

vector fields f and g, we have

∇ · (f × g) = g · (∇× f) − f · (∇× g), (10)
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hence

∇ · (H×A) = A · (∇×H) − H · (∇×A) = A · J − H ·B (11)

and therefore
∫∫∫

V

d3xJ ·A =

∫∫

S

(H×A) · d2a +

∫∫∫

V

d3xH ·B. (12)

for any integration volume V and its surface S. In eq. (9), we integrate over the conductor’s

volume, but we may just as well extend the integration volume V to the whole space. Conse-

quently, in eq. (12) the surface integral on the RHS goes away, and the magnetic energy (9)

becomes

U =
1

2

∫∫∫

whole
space

d3x H ·B. (13)

Eq. (13) applies to magnetic energy in linear materials — the vacuum, diamagnetics,

paramagnetics, and very soft ferromagnetics in weak fields, but we need a different approach

to non-linear media. So let’s go back to the inductor coil, but allow for a non-linear depen-

dence between the current I and the magnetic flux Φ. Increasing the current in the coil —

and hence the magnetic flux Φ — requires extra work by the power supply

δWextra = −E × I × δt = +
δΦ

δt
× I × δt = δΦ× I, (14)

but this time we cannot re-express this work as δU without knowing the dependence of the

flux Φ on the current I. If the relation between the current and the flux is non-linear but

single-valued, then integrating eq. (12) yields magnetic energy

U(I) =

I
∫

0

I ′ × dΦ(I ′), (15)

but if there is hysteresis and Φ depends on the past history of the current, then the magnetic
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work

W =

∫

I dΦ (16)

is irreversible and cannot be accounted by any magnetic energy as a function of the current.

Indeed, if we change the current back and force and come back to its original value, then

the net work (16) is the area of the hysteresis loop in the (I,Φ) plot,

I

Φ

and this net work is dissipated as heat rather than stored as magnetic energy.

Similar formulae obtains in terms of the magnetic fields H and B:

δW = I × δΦ =

∮

coil

I dx · δA(x)

−→

∫∫∫

d3x J(x) · δA(x)

=

∫∫∫

whole
space

d3x H(x) · δB(x).

(17)

If the relation between the H and the B fields is linear, then this magnetic work is accounted

by the magnetic energy (13). If the relation is non-linear but single-valued, then the magnetic

4



energy becomes

U =

∫∫∫

d3xF (B) where F (B) =

B
∫

0

H(B′) · dB′. (18)

But if there is hysteresis, then the magnetic work is irreversible and cannot be wholly ac-

counted by the energy of the fields in the ferromagnetic involved. Instead, if we vary the

magnetic field but eventually get back to the same field we have started from, we get a net

energy loss

Wloss =

∫∫∫

d3x [area of the hysteresis loop in the (H,B) plane] (19)

H

B

Magnetic Forces

In this section I explain the forces magnetic fields exert on magnetic materials, be they

diamagnetic, paramagnetic, or ferromagnetic. But for simplicity, I focus on the linear mag-

netic materials inside which B = µµ0H.

Let’s start by considering a small displacement of a piece of magnetic material near a

current-carrying coil. In the process, the coil’s self-inductance L changes by δL, which affects
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the magnetic energy U = 1
2
I2L stored in the coil. In general, the current I through the coil

may also change by δI, so the net change of the coil’s magnetic energy is

δU = δ
(

1
2
I2L

)

= IL× δI + 1
2
I2 × δL. (20)

At the same time, the magnetic flux Φ = IL through the coil changes by

δΦ = L× δI + I × δL, (21)

which induces EMF E = −dΦ/dt in the circuit supplying the current I to the coil. This

EMF makes the battery ultimately supplying this current to perform extra electric work

δWel = −E × Iδt = +
δ

δt

(

LδI + IδL
)

× Iδt = IL× δI + I2 × δL. (22)

Note the difference between this electric work and the change (20) of the coil’s magnetic

energy,

δWel − δU = +1
2
I2 × δL. (23)

This difference must come from the mechanical work involved in moving the magnetic ma-

terial to change the self-inductance L of the coil. Defining the sign of the mechanical work

as the work done by the coil on the magnetic material, we have

δWmech = δWel − δU = +1
2
I2 × δL. (24)

In terms of the magnetic force on the magnetic material we move δWmech = Fδx, hence the

force is

F = 1
2
I2 ×

dL

dx
. (25)

The direction of this force is the direction of the motion which would increase the coil’s

self-inductance, and the stronger the increase, the stronger the force. Thus:

• the ferromagnetic materials are strongly pulled into the coil;
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• the paramagnetic material are weakly pulled into the coil;

• the diamagnetic material are weakly pushed out from the coil.

Going beyond the inductor coil, consider inserting of a piece of magnetic material into a

space where some currents J0(x) create a magnetic field H0(x). For simplicity, let’s assume

we somehow maintain a fixed, time-independent conduction current J(x) = J0(x) during the

insertion, although the magnetic fields change from H0(x) and B0(x) = µ0H0(x) to H(x)

and B(x) = µ0(H(x) +M(x)). Consequently, inserting the magnetic material changes the

magnetic energy of the system by

∆U = U − U0 =
1

2

∫∫∫

(

J ·A
)

d3x −
1

2

∫∫∫

(

J0 ·A0

)

d3x

〈〈 using J(x) = J0(x) 〉〉

=
1

2

∫∫∫

J0 · (A−A0) d
3x

(26)

However, to keep the currents constant despite changing the magnetic fluxes, the power

supply have to provide extra work. Generalizing the electric work equation for a coil

Wel = I ×∆Φ =

∮

coil

I dx ·∆A(x) (27)

to the volume currents, we get

∆Wel =

∫∫∫

d3x J(x) ·∆A(x). (28)

Consequently, the mechanical work of moving the magnetic material into the system is

Wmech = ∆U − Wel = −
1

2

∫∫∫

d3x J0 · (A−A0). (29)

Integrating by parts, we turn this formula into

Wmech = −
1

2

∫∫∫

whole

space

d3x H0 · (B−B0), (30)

where

B − B0 = µ0(H+M−H0) = µ0(M+∆H). (31)

Consequently, the mechanical work of inserting a piece of magnetic material into a pre-
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existing magnetic field H0 evaluates to

Wmech = −
µ0
2

∫∫∫

whole

space

d3x H0 · (M+∆H). (32)

This formula explains why ferromagnetic and paramagnetic materials are attracted to

regions where the magnetic field is strongest while diamagnetic materials are repelled by

them. Indeed, take a small ball of magnetic material, so small that over its size we mat

approximate H0(x) ≈ const = H0(center). Then proceeding similarly to the dielectric case

we find that the H field inside the ball is

Hinside =
3

µ+ 2
H0 , (33)

hence

M = (µ− 1)Hinside =
3(µ− 1)

µ+ 2
H0 , (34)

while

∆H = H − H0 =
1− µ

µ+ 2
H0 = −

1

3
M. (35)

Consequently, integrating over the inside of the ball, we get

∫∫∫

inside

d3xH0 · (M+∆H) =
2

3
(H0 ·M) ∗ ball’s volume

=
2(µ− 1)

µ+ 2
H2

0 ∗
4πR3

3
.

(36)

But the space integral in eq. (32) is over the whole space, so we must add the integral over

the outside of the ball, where

M = 0 but ∆H(x) = dipole field =
3(m · n)n−m

r3
. (37)

The m here is the net dipole moment of the ball; since its direction is the same as the H0
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magnetic field, we have

H0·(∆H+M) = H0·∆H =
3(H0 · n)(m · n)− (H0 ·m)

r3
=

m

H0

∗
3(H0 · n)

2 −H2
0

r3
, (38)

so the volume integral over the outside of the ball becomes

∫∫∫

outside

d3xH0 · (M+∆H) =
m

H0

∞
∫

R

dr r2

r3
∗

∫∫

d2Ω(n)
[

3(H0 · n)
2 −H2

0

]

. (39)

The angular integral here vanishes, so the entire integral in eq. (32) comes from the inside

of the ball. Altogether,

Wmech = −H2
0 ∗

(µ− 1)µ0
µ+ 2

∗
4πR3

3
. (40)

The H2
0 factor in this formula should be evaluated at the ball’s location, and the Wmech

is the mechanical work of bringing the ball to that location from infinitely far away. Con-

sequently, this mechanical work as a function of the ball’s location acts as its potential

energy

Upotential(x) = −
4πR3µ0
3(µ+ 2)

∗ (µ− 1) ∗H2
0(x). (41)

This potential energy governs the magnetic force on the ball according to

F = −∇Upotential = (µ− 1) ∗

(

positive

factor

)

∗ ∇(H2
0), (42)

so the direction of this force on diamagnetic material is opposite from the force on param-

agnetic or ferromagnetic materials. Specifically:

• the ferromagnetic materials with µ ≫ 1 are strongly pulled towards the locations where

H2
0 is strongest such as magnet’s poles;

• the paramagnetic materials with µ = 1 + small are pulled in the same direction but

with a weaker force;
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• the diamagnetic materials with µ = 1 − small are pushed in the opposite direction,

away from the magnet.

Thus, the diamagnetic materials — such as water — can be levitated above a strong

magnet. Here is the famous levitating frog demo illustrating this effect.
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https://www.youtube.com/watch?v=A1vyB-O5i6E

