
HIGHLIGHTS OF MAGNETOSTATICS

Magnetostatics is based on two Laws: the Biot–Savart–Laplace Law for the magnetic

field of steady currents in wires (discovered in 1820)

B(x) =
µ0
4π

∫

wire

I dy×
(x− y)

|x− y|3
, (1)

and the Ampere’s Force Law for the magnetic force on a wire (discovered in 1823)

F =

∫

wire

I dx×B(x). (2)

Both formulae easily generalize from currents in thin wires to volume currents in thick

conductors,

B(x) =
µ0
4π

∫∫∫

d3y J(y)×
(x− y)

|x− y|3
, (3)

and to forces on such currents,

F =

∫∫∫

d3xJ(x)×B(x). (4)

Let me illustrate the Biot–Savart–Laplace Law and the Ampere’s Force Law with the

canonical example of two parallel wires. For the sake of definiteness, let the first wire run

along the x3 axis while the second wire runs parallel to it at x1 = a > 0 and x2 = 0. The

magnetic field of the first wire at some point on the second wire is

B1(a, 0, x3) =
µ0
4π

+∞
∫

−∞

I1 dy3 ×
(0, 0, 1)× (a, 0, x3 − y3)

[a2 + (y3 − x3)2]3/2

=
µ0I1
4π

+∞
∫

−∞

(0, a, 0) dℓ

[a2 + ℓ2]3/2
=

µ0I1
4π

2

a2
(0, a, 0)

=
µ0I1
2πa

(0, 1, 0).

(5)

By the rotational symmetry of the first wire — and hence of the field around it — this formula

generalizes to give the magnetic field everywhere else in space: in cylindrical coordinates
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(s, φ, z), a becomes s— the radial distance from the first wire, while the unit vector (0, 1, 0) =

n2 becomes the unit vector nφ in the φ direction, i.e., the circular direction around the wire,

thus

B1 =
µ0I1
2πs

nφ . (6)

Going back to the second wire and plugging back the field (5) into the Ampere’s Force

Law, we have

I2 dx×B1 =
µ0I1I2
2πa

dx3
(

nz × nφ = −ns) (7)

and therefore

Force

Length
=

µ0I1I2
2πa

(−ns). (8)

The direction of this force is attractive if the two currents flow in the same direction (I1I2 > 0)

but repulsive if the two currents flow in opposite directions (I1I2 < 0).

Third Law of Newton

Together, the Biot–Savart–Laplace Law and the Ampere’s Force Law provide a rather

complicated formula for the magnetic force between two electric circuits, so let’s make sure

the Third Law of Newton does work for the magnetic forces. For simplicity, let’s start with

a simple case of each circuit comprising a single closed loop of thin wire carrying a constant

currents — respectively current I1 in the loop L1 and current I2 in the loop L2. Then,

combining the BSL Law and the magnetic force law, we have

F1 on 2 =

∮

L2

I2 dx×Bloop#1(x) =

∮

L2

I2 dx×
µ0
4π

∮

L1

I1 dy ×
(x− y)

|x− y|3
. (9)

Combining the two integrals into a single integral over 2 variables, we may rewrite this

formula as

F1 on 2 =
µ0I1I2
4π

∮

x∈L2

∮

y∈L1

dx×

(

dy ×
(x− y)

|x− y|3

)

, (10)
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where the integrand can be rearranged as

dx×

(

dy×
(x− y)

|x− y|3

)

= −
(

dx · dy
) (x− y)

|x− y|3
+ dy

(

dx ·
(x− y)

|x− y|3

)

. (11)

Separating the two terms into separate integrals, we arrive at

F1 on 2 = −
µ0I1I2
4π

∮

x∈L2

∮

y∈L1

(

dx·dy
) (x− y)

|x− y|3
+

µ0I1I2
4π

∮

x∈L2

∮

y∈L1

dy

(

dx ·
(x− y)

|x− y|3

)

, (12)

where the second integral happens to vanish. To see how this works, note that in the double

integral over x ∈ L2 and y ∈ L1, we may integrate over the two variables in whichever order

we like, so let’s first integrate over the x at a fixed y and only then integrate over the y,

thus

(second term) =
µ0I1I2
4π

∮

y∈L1

dy





∮

x∈L2

dx ·
(x− y)

|x− y|3



 . (13)

Since the inner integral dx is taken at a fixed y, we have

dx ·
(x− y)

|x− y|3
= dx · ∇x

(

−1

|x− y|

)

= d

(

−1

|x− y|

)

, (14)

and an integral of a total differential over any closed loop such as L2 always vanishes,

∮

x∈L2

dx ·
(x− y)

|x− y|3
=

∮

L2

d

(

−1

|x− y|

)

=

[

−1

|x− y|

]x=end of L2

x=start of L2

= 0. (15)

Thus, the second term in eq. (12) for the force is zero.

The remaining first term in eq. (12) looks rather symmetric between the two loops:

F1 on 2 = −
µ0I1I2
4π

∮

x∈L2

∮

y∈L1

(

dx · dy
) (x− y)

|x− y|3
, (16)

where the pre-integral factor is symmetric between the two loops, the double integral itself
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and the (dx · dy) factor are also symmetric, while the remaining factor

(x− y)

|x− y|3

is antisymmetric — it changes overall sign when we exchange toe two loos and hence x ↔ y.

Consequently, the net force is antisymmetric WRT exchanging the two loops,

F2 on 1 = −F1 on 2 (17)

— in perfect agreement with the Third Law of Newton.

Now consider two general circuits, each one comprising many wires, as long as the current

in each wire is steady. By the Kirchhoff Law of Currents, each such circuit can be viewed as

a superposition of several closed current loops, each loop Li having is own constant current

Ii, for example

I1 I2 I3

I1 + I2 + I3 = 0

= I1 I3

(18)

And since both the Biot–Savart–Laplace formula and the magnetic force formula are linear,

the net magnetic force between the two circuits is simply the sum of forces between the

current loops comprising the two circuits,

F
from circuit#1
on circuit#2 =

∑

Li∈circuit#1

∑

Lj∈circuit#2

FLi onLj
. (19)

The magnetic forces between the loops Li and Lj in this sum are exactly as in eq. (9) and

hence as in eq. (16). As we saw above, such forces are antisymmetric WRT exchanging the
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loops Li ↔ Lj , so the net force (19) is also antisymmetric WRT exchanging the two whole

circuits, thus

F
from circuit#1
on circuit#2 = −F

from circuit#2
on circuit#1 , (20)

in perfect agreement with the Third Law of Newton. Quod erat demonstrandum.

Magnetic Field Equations

In electrostatics, we may start with the Coulomb Law and then use it to derive the

field equations for the electric field such as the Gauss Law ∇ · E = ρ/ǫ0 and the zero-curl

law ∇ × E = 0. But we may also start with these field equations and then derive the

Coulomb Law as a solution. Likewise, in magnetostatics, the Biot–Savart–Laplace Law is

mathematically equivalent to a pair of differential equations: the magnetic Gauss law

∇ ·B(x) = 0, (21)

which holds for any magnetic field, static or time-dependent; and the Ampere’s Circuital

Law — or simply the Ampere’s Law —

∇×B(x) = µ0J(x) (22)

— which holds only for the static fields of steady currents.

In the integral form, the magnetic Gauss law says that the magnetic flux through any

closed surface is zero,
∫∫

any closed surface

B · d2area = 0, (23)

or by analogy with the electric Gauss Law, there are no magnetic charges. As to the integral

form of the Ampere’s Circuital Law — which was named by J. C. Maxwell by analogy with

similar formulae in hydrodynamics — it says that for any closed loop L in space

∮

L

B · d~ℓ = µ0 I
net[through the loop L]. (24)

For the currents in wires, the RHS here obtains by simply counting the wires which go inside

the loop L and adding up the current they carry. For the volume current J(x), we need to

5



pick a surface S spanning the loop L and then integrate

Inet[through the loop L] =

∫∫

S

J · d2area. (25)

Since a steady current J(x) must have zero divergence, ∇ · J = 0, we may integrate over

any surface S spanning the loop L, the integral would be the same. (And for non-steady

currents with ∇ · J 6= 0, the Ampere’s Circuital Law does not work anyway, and we would

need the Ampere–Maxwell Law instead.)

I can formally verify that the magnetic field given by the Biot–Savart–Laplace formula (1)

or (3) obeys the magnetic Gauss law and the Ampere’s circuital law, but in these notes I

would like to do it the other way around: I am going to formally solve the differential

equations (21) and (22) by means of the magnetic vector potential, and then we shall see

that the solution is precisely the Biot–Savart–Laplace formula (1) or (3).

Vector Potential for the Magnetic Field

Let me start with two theorems of Vector Calculus:

Theorem 1: If a vector field has zero curl everywhere in space, then that field is a gradient

of some scalar field.

Theorem 2: If a vector field has zero divergence everywhere in space, then that field is a

curl of some other vector field.

The first theorem allows us to introduce the scalar potential for the static electric field,

∇×E(x) = 0 ∀x =⇒ E(x) = −∇Φ(x) for some Φ(x), (26)

while the second theorem allows us to introduce the vector potential for the magnetic field,

∇ ·B(x) = 0 ∀x =⇒ B(x) = ∇×A(x) for some A(x). (27)

The potentials (26) and (27) have many uses. In particular, they are needed for Lagrangian

or Hamiltonian description of a charged particle’s motion in classical mechanics,

L(x,v) =
m

2
v2 − qΦ(x) + qv ·A(x), (28)
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H(x,p) =
1

2m

(

p − qA(x)
)2

+ qΦ(x), (29)

or in quantum mechanics,

Ĥ =
1

2m

(

p̂ − qA(x̂)
)2

+ qΦ(x̂). (30)

I shall explain these issues in some detail in my next extra lecture on 2/7 about the “Dynamics

of a Charged Particle in Classical and Quantum Mechanics”, and then I’ll use them in the

follow-up follow-up extra lectures about Aharonov–Bohm effect, magnetic monopoles, and

superconductivity. But for the regular class we are having now, let us focus on using the

vector potential A(x) to calculate the magnetic field.

Let me start with some general properties of the vector potential. While the electrostatic

field E(x) determines the scalar potential Φ(x) up to an overall constant term, the magnetic

field B(x) determines the vector potential A(x) only up to a gradient of an arbitrary scalar

field Λ(x). Indeed, the vector potentials A(x) and

A′(x) = A(x) + ∇Λ(x) (31)

have the same curl everywhere, so they correspond to the same magnetic field,

B′(x) = ∇×A′(x) = ∇×A(x) + ∇×∇Λ(x) = B(x) + 0. (32)

The relations (31) between different vector potentials for the same magnetic field are called

gauge transforms.

Despite the ambiguity of the vector potential itself, some of its properties are gauge

invariant, i.e., the same for all potentials related by gauge transforms. For example, for any

closed loop L, the integral
∮

L

A · d~ℓ (33)
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is gauge invariant; indeed,

∮

L

A′(x)·dx−

∮

L

A(x)·dx =

∮

L

∇Λ(x)·dx =

∮

L

dΛ(x) = Λ(end of L)−Λ(start of L) = 0.

(34)

Physically, the integral (33) is the magnetic flux through the loop L. Indeed, take any surface

S spanning the loop L; by the Stokes’ theorem,

ΦB[through S] =

∫∫

S

B · d2area =

∫∫

S

(∇×A) · d2area =

∮

L

A · d~ℓ. (35)

We may use eq. (35) to easily find the vector potential for a magnetic field which have

some symmetries. For example, consider the uniform magnetic field B = (0, 0, B) inside a

long solenoid. By the symmetries of the solenoid — rotations around the axis and translations

along the axis, — in the cylindrical coordinates (s, φ, z) the vector potential should have form

A(s, φ, z) = A(s)nφ, (36)

for some function A(s) which follows from eq. (35): Take a circle of radius s < Rsolenoid,

then
∮

circle

A · d~ℓ = A(s)× 2πs, (37)

while the magnetic flux through that circle is

ΦB[circle] = B × πs2, (38)

hence

A(s) =
B × πs2

2πs
= 1

2Bs. (39)

In Cartesian coordinates, this vector potential becomes

A =
B

2
snφ =

B

2
(−x2,+x1, 0), (40)

which makes it easy to verify ∇×A = (0, 0, B) = B.
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Eq. (40) gives the vector potential inside the long solenoid. Outside the solenoid, the

magnetic field is negligible, but the flux through a circle of radius s > Rsolenoid is non-zero

due to the flux inside the solenoid. Thus,

ΦB[circle] = B × πR2 (41)

and hence

2πs×A(s) = ΦB = πR2B =⇒ A(s) =
BR2

2s
. (42)

In vector notations,

A =
BR2

2

nφ

s
=

BR2

2

(−x2,+x1, 0)

x2 + y2
=

BR2

2
∇φ, (43)

which agrees with zero magnetic field outside the solenoid,

B = ∇×A =
BR2

2
∇×∇φ = 0. (44)

Equations for the Vector Potential

A static magnetic field of steady currents obeys equations

∇ ·B = 0, (45)

∇×B = µ0J. (46)

In terms of the vector potential A(x), the zero-divergence equation (45) is automatic: any

B = ∇×A has zero divergence. On the other hand, the Ampere Circuital Law (46) becomes

a second-order differential equation

µ0J = ∇× (∇×A) = ∇(∇ ·A) − ∇2A. (47)

Moreover, for any solution A(x) of this equation for any given current density J(x), there

is a whole family of other solutions related to each other by the gauge transforms

A′(x) = A(x) + ∇Λ(x), any Λ(x). (31)

To avoid this redundancy, it is often convenient to impose an extra gauge-fixing condition

on the vector potential besides ∇ × A = B. In magnetostatics, the most commonly used
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condition is the transverse gauge ∇ ·A = 0. Note that any vector potential can be gauge-

transformed to a potential which obeys the transversality condition. Indeed, suppose∇·A0 6=

0, then for

Λ(x) =

∫∫∫

(∇ ·A0)(y)

4π |x− y|
d3y (48)

we have

∇2Λ(x) = −∇ ·A0(x) (49)

and therefore A = A0 +∇Λ — which is gauge-equivalent to the A0 — has zero divergence,

∇ ·A = ∇ ·A0 + ∇2Λ = 0. (50)

In the transverse gauge, ∇ × B becomes simply the (minus) Laplacian of the vector

potential,

∇×B = ∇× (∇×A) = ∇(∇ ·A) − ∇2A −→ −∇2A, (51)

so the Ampere Law equation (47) becomes the Poisson equation for the vector potential,

∇2A(x) = −µ0 J(x). (52)

Component by component, it looks exactly like the Poisson equation for the scalar potential

of the electrostatics,

∇2Φ(x) = −
1

ǫ0
ρ(x), (53)

so its solution has a similar Coulomb-like form

A(x) =
µ0
4π

∫∫∫

J(y) d3y

|x− y|
. (54)

As written, this formula is for the volume current J(x) in a thick conductor; for a current
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in a thin wire it becomes

A(x) =
µ0
4π

∫

wire

I dy

|x− y|
. (55)

The Biot–Savart–Laplace formulae (1) and (3) follow from these formulae by simply

taking the curl of the vector potential. For example, for the volume current J(y),

B(x) = ∇×A[from eq. (54)] = ∇×

(

µ0
4π

∫∫∫

J(y) d3y

|x− y|

)

=
µ0
4π

∫∫∫

∇x ×

(

J(y)

|x− y|

)

d3y =
µ0
4π

∫∫∫
(

∇x

1

|x− y|

)

× J(y) d3y

=
µ0
4π

∫∫∫

−(x− y)

|x− y|3
× J(y) d3y =

µ0
4π

∫∫∫

d3y J(y)×
x− y

|x− y|3
.

(56)

Quod erat demonstrandum.

Examples of Calculating the Magnetic Field:

For the practical calculation of the magnetic field of some wire circuits, sometimes it’s

more convenient to use the Biot–Savart–Laplace equation directly, while sometimes it’s more

convenient to first calculate the vector potential using eqs. (55) or or (54), and then take the

curl.

As an example of direct usage of the Biot–Savart–Laplace formula, consider a circular

wire loop of radius R carrying current I, and let’s calculate the magnetic field along the axis

through the loop’s center and ⊥ to the plane of the loop. In Cartesian coordinates,

y = (R cosφ,R sin φ, 0) for 0 ≤ φ ≤ 2π, (57)

while we focus on the magnetic field at x = (0, 0, x3) only. This makes the problem axially

symmetric, with a constant denominator in the Biot–Savart–Laplace formula (1):

1

|x− y|3
=

1

[R2 + x23]
3/2

= const, (58)
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while in the numerator

I dy× (x− y) = IR(− sinφ,+cosφ, 0) dφ× (−R cosφ,−R sinφ,+x3)

= IR(x3 cosφ, x3 sin φ,R) dφ.
(59)

Also,

2π
∫

0

(x3 cosφ, x3 sin φ,R) dφ = (0, 0, 2πR) = 2πRnaxis (60)

where naxis(0, 0, 1) is the unit vector along the axis. Altogether, the magnetic field at point

(0, 0, x3) on the axis is

B(0, 0, x3) =
µ0
4π

∫

wire

I dy× (x− y) = IR(x3 cosφ, x3 sin φ,R) dφ

|x− y|3 = [R2 + x23]
3/2

=
µ0
4π

IR

[R2 + x23]
3/2

2π
∫

0

(x3 cosφ, x3 sin φ,R) dφ

=
µ0IR

2

2[R2 + x23]
3/2

naxis .

(61)

In particular, at the center of the ring the field is B(0) = (µ0I/2R)naxis.

In this case, using the BSL equation directly is easier because along the x3 symmetry

axis the integral for the magnetic field is drastically simplified by the constant denominator.

Away from the axis, we would have ended up with a horrible elliptic integral. But had we

tried to calculate the vector potential first and then take its curl, we would need to find

the A not just along the axis but also in its infinitesimal vicinity, and for an off-axis x, the

integral

A(x) =
µ0
4π

2π
∫

0

IR(− sinφ, cosφ, 0)

|x− y|
(62)

is a messy elliptic function that’s not easy to work with.
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In another example — an infinitely long straight wire — both ways of calculating the

magnetic field are easy, so let’s do it using the vector potential. A quick look at eq. (55) —

here it is again,

A(x) =
µ0
4π

∫

wire

I dy

|x− y|
, (55)

— tells us that the vector potential A(x) has the same direction nz = (0, 0, 1) as the current

in the wire, while its magnitude

A(x) =
µ0
4π

∫

wire

I dyz
|x− y|

(63)

has the same form as the scalar potential of a uniformly charged straight wire, thus

A(x) =
µ0I

2π

(

− log(s) + const
)

nz , (64)

where s is the distance from the wire. Taking the curl of this vector potential in cylindrical

coordinates, we immediately obtain

B(x) =
µ0I

2πs
nφ (65)

where nφ is the unit vector in the circular direction around the wire.

For another example, consider a flat current sheet in the (x1, x2) plane with uniform 2D

current density K in the x2 direction. In terms of the 3D current density,

J(x) = Kδ(x3)n2 . (66)

Consequently, the Poisson equation for the vector potential of the current sheet is

∇2A = −µ0Kδ(x3)n2 . (67)

Thanks to the symmetries of this equation, we may look for a solution of the form

A(x) = A(x3 only)n2 (68)
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where A(x3) obey the 1D Poisson equation

d2A

dx23
= −µ0Kδ(x3). (69)

Despite the delta function on the RHS, the solution of this differential equation is continuous

at x3 = 0, namely

A(x3) = −1
2µ0K × |x3| , (70)⋆

although its derivative has a discontinuity,

disc

(

dA

dx3

)

= −µ0K. (71)

In terms of the magnetic field B, the vector potential

A = −1
2µ0K |x3|n2 (72)

means

B =

{

+1
2µ0Kn1 above the sheet (x3 > 0),

−1
2µ0Kn1 below the sheet (x3 < 0).

(73)

This example illustrates general behavior of the vector potential for all kinds of 2D

current sheets, flat or curved, with uniform or non-uniform 2D currents: The vector potential

is continuous across the current sheet, but its normal derivative has a discontinuity,

disc

(

∂A

∂xnormal

)

= −µ0K. (74)

Consequently, the magnetic field has a discontinuity

disc(B) = n× disc

(

∂A

∂xnormal

)

= +µ0K× n (75)

where n is the unit vector ⊥ to the current sheet.

⋆ A general solution of eq. (69) is A(x3) = − 1

2
µ0K × |x3| + αx3 + β for arbitrary constants α and β,

but the upside-down symmetry x3 → −x3 of the current sheet requires α = 0, while β is physically
irrelevant.
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Multipole Expansion for the Vector Potential

Suppose electric current I flows through a closed wire loop of some complicated shape,

and we want to find its magnetic field far away from the wire. Let’s work through the vector

potential according to the Coulomb-like formula

A(x) =
µ0
4π

∮

wire

I dy

|x− y|
. (76)

Far away from the wire, we may expand the denominator here into a power series in (|y|/|x|),

thus

1

|x− y|
=

∞
∑

ℓ=0

|y|ℓ

|x|ℓ+1
× Pℓ(nx · ny) (77)

where nx · ny = cos(angle between x andy). Plugging the expansion (77) into eq. (76) for

the vector potential, we obtain

A(x) =
µ0I

4π

∞
∑

ℓ=0

1

|x|ℓ+1

∮

wire

|y|ℓPℓ(nx · ny) dy (78)

— the expansion of the vector potential into magnetic multipole terms. Let me write down

more explicit formulae for the three leading terms,

A(x) =
µ0I

4π

























1

r

∮

dy 〈〈monopole 〉〉

+
1

r2

∮

(nx · y) dy 〈〈 dipole 〉〉

+
1

r3

∮

(32(nx · y)
2 − 1

2y
2) dy 〈〈 quadrupole 〉〉

+ · · · 〈〈 higher multipoles 〉〉

























. (79)

Naively, the leading term in this expansion is the monopole term for ℓ = 0 (the top line in

eq. (79)), but it vanishes for any closed current loop,
∮

dy = 0 (80)

Thus, the magnetic multipole expansion starts with the dipole term — which dominates the

magnetic field at large distances from the wire loop. (Except when the dipole moment

happens to vanish.)
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Let’s simplify the dipole term in (79) using a bit of vector calculus. Consider the dot

product of the dipole loop integral with some constant vector c:

c ·

∮

(n ·y) dy =

∮

(n ·y) c ·dy = 〈〈 by Stokes’ theorem 〉〉 =

∫∫

(

∇y×
(

(n ·y) c
)

)

·d2area

(81)

where the area integral is over some surface spanning the wire loop, while in the integrand

∇y ×
(

(n · y) c
)

=
(

∇y(n · y)
)

× c = n× c. (82)

Consequently

c ·

∮

(n · y) dy =

∫∫

(n× c) · d2area = (n× c) ·

∫∫

d2area

= (n× c) · a 〈〈where a is net the vector area inside the loop 〉〉

= (a× n) · c.

(83)

Since c here can be any constant vector, it follows that

∮

(n · y) dy = a× n. (84)

Finally, plugging this integral into the dipole term in the expansion (79), we arrive at

Adipole(x) =
µ0
4π

Ia× n

r2
=

µ0
4π

m× n

r2
(85)

where m = Ia is the magnetic dipole moment of the current loop.

I am going to skip over the higher multipoles in these notes. Instead, let me consider

replacing a single wire loop with a circuit of several connected wires. In this case, we may use

the Kirchhoff Law to express the whole circuit as several overlapping loops with independent

currents; if a wire belongs to several loops, the current in that wire is the algebraic sum of

the appropriate loop currents. By the superposition principle, the vector potential of the

whole circuit is the sum of vector potentials of the individual loops, and as long as the whole

circuit occupies small volume of size ≪ r, we may expand each loop’s A into multipoles,
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exactly as we did it for a single loop. In general, the leading contribution is the net dipole

term,

Adipole(n) =

loops
∑

i

µ0
4π

mi × n

r2
=

µ0
4π

mnet × n

r2
(86)

where

mnet =

loops
∑

i

mi =

loops
∑

i

Ii ai (87)

is the net dipole moment of the whole circuit.

Now suppose instead of a circuit of thin wires we have some current density J(y) flowing

through the volume of some thick conductor. However, the conductor’s size is much smaller

than the distance r to where we want to calculate the vector potential and the magnetic

field. In this case, we may use the multipole expansion, but the algebra is a bit different

from what we had for a thin wire:

A(y) =
µ0
4π

∫∫∫

J(y) d3y

|x− y|
=

µ0
4π

∞
∑

ℓ=0

1

|x|ℓ+1

∫∫∫

|y|ℓPℓ(nx · ny)J(y) d
3y, (88)

or in a more explicit form

A(x) =
µ0
4π

























1

r

∫∫∫

J(y) d3y 〈〈monopole 〉〉

+
1

r2

∫∫∫

(n · y)J(y) d3y 〈〈 dipole 〉〉

+
1

r3

∫∫∫

(32(n · y)2 − 1
2y

2)J(y) d3y 〈〈 quadrupole 〉〉

+ · · · 〈〈 higher multipoles 〉〉

























. (89)

The monopole term here vanishes just as it did for the wire loop, albeit in a less obvious

way. To see how this works, pick a constant vector c and take the divergence

∇y ·
(

(c · y)J(y)
)

= c · J + (c · y) (∇ · J). (90)

For a steady — and hence divergence-less — current, the second term on the RHS here
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vanishes, thus

c · J(y) = ∇y ·
(

(c · y)J(y)
)

. (91)

Consequently, we have

c ·

∫∫∫

V

J(y) d3y =

∫∫∫

V

(c · J(y)) d3y =

∫∫∫

V

∇y ·
(

(c · y)J(y)
)

d3y

〈〈 by Gauss theorem 〉〉 =

∫∫

S

(

(c · y)J(y)
)

· d2area(y)

(92)

where S is the surface of the volume V. That volume must include the whole conductor,

but we may also make it a bit bigger, which would put the surface S outside the conductor.

But then there would be no current along or across S, so the integral on the bottom line

of (92) must vanish. Consequently, the top line of eq. (92) must vanish too, and since c is

an arbitrary constant vector, this means zero monopole moment,

∫∫∫

V=conductor+

J(y) d3y = 0. (93)

Next, consider the dipole term in (89) and try to rewrite it in the form (85) for some

dipole moment vector m. This time, the algebra is a bit more complicated. For an arbitrary

but constant vector c, we have

c ·
(

n× (J× y)
)

= (c · J) (n · y) − (c · y) (n · J), (94)

∇y ·
(

(c · y) (n · y)J(y)
)

= (c · J) (n · y) + (c · y) (n · J) + (c · y) (n · y) (∇ · J), (95)

〈〈where the last term vanishes for a steady current. 〉〉

〈〈which has ∇ · J = 0 〉〉

and hence

(c · J) (n · y) = 1
2 c ·

(

n× (J× y)
)

+ 1
2 ∇y ·

(

(c · y) (n · y)J(y)
)

. (96)
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Consequently, dotting c with the dipole integral, we obtain

c ·

∫∫∫

V

(n · y)J(y) d3y =

∫∫∫

V

(c · J) (n · y) d3y

=
1

2

∫∫∫

V

(

c ·
(

n× (J× y)
)

)

d3y

+
1

2

∫∫∫

V

(

∇y ·
(

(c · y) (n · y)J(y)
)

)

d3y

=
1

2
c ·



n×

∫∫∫

V

(J(y)× y) d3y





+
1

2

∫∫

S

(c · y) (n · y)J(y) · d2area(y)

(97)

Similar to what we did for the monopole term, let’s take the integration volume V a bit

larger that the whole conductor, so its surface S is completely outside the conductor. Then

on the last line of eq. (97) the current J vanishes everywhere on the surface, which kills the

surface integral. This leaves us with

c ·

∫∫∫

conductor+

(n · y)J(y) d3y =
1

2
c ·



n×

∫∫∫

conductor+

(J(y)× y) d3y



 , (98)

and since c is an arbitrary constant vector,

∫∫∫

conductor+

(n · y)J(y) d3y =
n

2
×

∫∫∫

conductor+

J(y)× y d3y

=





1

2

∫∫∫

conductor+

y × J(y) d3y



× n.

(99)

Plugging this formula into the dipole term in the vector potential (89), we arrive at

Adipole(n) =
µ0
4πr2

∫∫∫

conductor+

(n · y)J(y) d3y =
µ0
4π

m× n

r2
(100)
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— exactly as in eq. (85) for the current loop — for the magnetic dipole moment

m =
1

2

∫∫∫

conductor+

y× J(y) d3y. (101)

As a useful cross-check of this formula, suppose the conductor in question is a thin wire

loop. Then the current element J(y) d3y reduces to I dy and the volume integral becomes a

line integral along the wire, thus

m =
1

2

∮

wire

y × I dy = I a (102)

where

a =
1

2

∮

y × dy (103)

is the vector area of any surface spanned by the wire loop. Thus, when the current happens

to flow around a loop of thin wire, eq. (101) for its magnetic dipole moment agrees with the

simper formula m = I a.

Example:

Consider a rotating body made of material with a uniform electric charge density to

mass density ratio,

dQ/dvolume

dM/dvolume
= const =

Q

M
. (104)

Regardless of the body’s shape or size or of its angular velocity, the magnetic moment of the

rotating body and its angular momentum L point in the same directions (modulo sign of Q)

and their ratio is fixed at Q/2M ,

m =
Q

2M
L. (105)

Proof: consider an infinitesimal part of the body of charge dQ located at x and moving at
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velocity v. Then this part carries current

J dvolume = dQv, (106)

so its contribution to the magnetic dipole moment (101) is

dm = 1
2 x× (dQv), (107)

and hence the net magnetic moment of the body is

m =
1

2

∫

(x× v) dQ (108)

At the same time, the net angular momentum of the body is

L =

∫

(x× v) dM, (109)

so for the fixed dQ/dM ratio,

m =
Q

2M
L. (110)

Quod erat demonstrandum.

Note that this argument does not care if the rotating body keeps a rigid shape or if

its different parts rotate at different rates, or even move along non-circular paths. We may

even replace a single rotating body with a system of particles moving independently from

each other, but as long as each moving particle has the same charge-to-mass ratio, the net

magnetic moment and the net angular momentum of the system are related according to the

gyromagnetic relation (105).

For example, classically the net magnetic moment and the net angular momentum of an

atom are related as

m =
−e

2me
L. (111)

In quantum mechanics, we would have a similar relation for charged particles without spin,

but the electrons have spin, which complicates the situation. The spin — the intrinsic
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angular momentum of an electron, independent on its orbital motion — also comes with a

magnetic moment, but in a different ratio,

m =
−e

2me
ge S (112)

where ge ≈ 2 is the gyromagnetic factor of the electron. According to the Dirac equation, ge

should be exactly 2, but in quantum field theory there are small corrections to this value due

to interactions between the electrons and the virtual photons. In fact, ge has been calculated

theoretically to an incredible precision of 13 significant figures, and it has also been measured

experimentally to a similar precision,

ge = 2.002 319 304 361 8 (5) (113)

The net magnetic moment of an atom is the sum of individual electron’s magnetic mo-

ments due to both spin and orbital angular momentum, thus

mnet =
−e

2me

∑

i

(Li + geSi) =
−e

2me

(

Lnet + geSnet

)

. (114)

Dipole Fields

Given the vector potential

Adipole(x) =
µ0
4π

m× n

r2
(85)

of a magnetic dipole, let’s calculate its magnetic field B(x). For comparison, let me also

calculate the electric field E(x) of an electric dipole p.

Let me start with a bit of vector calculus. Naively, the second derivative tensor of 1/r is

∇i∇j

(

1

r

)

= ∇i

(

−nj
r2

=
−xj
r3

)

=
−δij
r3

+
3xjxi
r5

=
3ninj − δij

r3
, (115)

but then the trace of this tensor would give us ∇2(1/r) = 0, which is right for x 6= 0

but misses the delta-function at x = 0. So we need to add this delta-function to the
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second derivative tensor, and to make sure the extra term is spherically symmetric, its index

dependence should be δij , thus

∇i∇j

(

1

r

)

=
3ninj − δij

r3
−

4π

3
δijδ

(3)(x). (116)

Now consider the electric dipole potential

Φdipole(x) =
1

4πǫ0

p · n

r2
=

p

4πǫ0
· ∇

(

−1

r

)

. (117)

Consequently, the electric field of this dipole is

Ei(x) = −∇iΦ(x) =
pj

4πǫ0
∇i∇j

(

−1

r

)

=
pj

4πǫ0

(

3ninj − δij
r3

−
4π

3
δijδ

(3)(x)

)

, (118)

or in vector notations,

Edipole(x) =
1

4πǫ0

(

3n(n · p) − p

r3
−

4π

3
p δ(3)(x)

)

. (119)

By comparison, the magnetic monopole field obtains as a curl of the vector potential (85),

which we may rewire as

A(x) =
µ0m

4π
×

(

n

r2
= ∇

(

−1

r

))

= +∇×
(µ0m

4π r

)

.

Consequently,

B(x) = ∇×A(x) = ∇×∇×
(µ0m

4π r

)

= ∇
(

∇ ·
(µ0m

4π r

))

− ∇2
(µ0m

4π r

)

, (120)

where by analogy with the electric dipole calculation above

∇
(

∇ ·
(m

r

))

=
3n(n ·m) − m

r3
−

4π

3
m δ(3)(x), (121)

while

∇2
(m

r

)

= −4πm δ(3)(x). (122)

Altogether, we have

Bdipole(x) =
µ0
4π

(

3n(n ·m) − m

r3
+

8π

3
m δ(3)(x)

)

. (123)

Remarkably, the electric and the magnetic dipole fields have exactly similar forms at
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x 6= 0, although the delta-function terms at x = 0 are different. These delta-function terms

are often ignored, but sometimes they become important. For example, in the hyperfine

structure of atomic energy levels — which arises from electrons interacting with the nuclear

magnetic moments — the delta-function term is important for the s–wave electrons.

Force and Torque on a Magnetic Dipole

Besides producing similar-looking fields, the electric and the magnetic dipoles also feel

similar forces and torques in external fields:

Electric: F = ∇(p ·E), ττττττττττ = p× E; (124)

Magnetic: F = ∇(m ·B), ττττττττττ = m×B. (125)

You should have derived the electric force and torque equations (124) in your homework

(set#2, problem 3, part (b)), so let’s derive their magnetic analogies (125).

Let’s start by showing that any closed current-carrying wire loop — whatever its shape

or size — placed in a uniform external magnetic field B = const feels zero net force but a

non-zero net torque,

for B = const, Fnet = 0, ττττττττττ net = m×B. (126)

For the net force, this is trivial,

Fnet =

∮

Id~ℓ×B = I

(
∮

d~ℓ = 0

)

×B = 0, (127)

but to calculate the net torque

ττττττττττ net =

∮

x× dF(x) =

∮

x× (I dx×B), (128)

we need to use some algebraic tricks. Note that for a uniform magnetic field B,

d
(

x× (x×B)
)

= dx× (x×B) + x× (dx×B), (129)
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B× (dx× x) = −dx× (x×B) − x× (B× dx) 〈〈 by the Jacobi identity 〉〉

= −dx× (x×B) + x× (dx×B), (130)

hence x× (dx×B) = 1
2 d

(

x× (x×B)
)

+ 1
2 B× (dx× x). (131)

Consequently,

ττττττττττ net =

∮

x× (I dx×B)

=
I

2

∮

d
(

x× (x×B)
)

+
I

2

∮

B× (dx× x)

〈〈where the first
∮

of a total differential is zero 〉〉

= 0 + B×
I

2

∮

dx× x

=

(

I

2

∮

x× dx

)

×B.

(132)

But for any closed loop, the vector area of any surface spanning that loop may be calculated

as

a =
1

2

∮

x× dx, (133)

hence on the bottom line of eq. (132),

I

2

∮

x× dx = Ia = m (134)

is the magnetic moment of the loop. Therefore, the net torque is indeed

ττττττττττ net = m×B. (135)

When the external magnetic field is not uniform but varies on the distance scales much

larger than the loop’s size, we may expand B(x) = B(x0) + ((x− x0) · ∇)B(x0) + · · ·, and

then calculate the force and the torque on the loop for each term. For the torque, the leading
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term comes from the B(x0) itself, and it evaluates to ττττττττττ = m×B(x0). The first subleading

term ((x− x0) · ∇)B(x0) produces a small correction to the net torque,

∆ττττττττττ =

∮

x×
(

I dx×
(

((x− x0) · ∇)B
)

(x0)
)

, (136)

which can be related to the magnetic quadrupole moment of the loop, but let me skip those

details. Altogether, in a non-uniform but slowly varying magnetic field, the net torque on

the loop is

ττττττττττ net = m×B(x0) + corrections due to higher multipoles. (137)

For an ideal magnetic dipole, this formula reduces to the first term, ττττττττττ = m×B.

As to the net force on the loop, the leading contribution comes from the first derivative

of the magnetic field, thus

Fnet =

∮

I dx×
(

((x− x0) · ∇)B
)

(x0) + higher order terms, (138)

or in index notations,

F leading
i =

∮

ǫijk(I dxi) (x− x0)ℓ∇ℓBk(x0) = I × ǫijk∇ℓBk(x0)×

∮

dxj (x− x0)ℓ. (139)

To evaluate the integral here, we use

dxj xℓ + dxℓ xj = d(xjxℓ), (140)

dxj xℓ − dxℓ xj = ǫjℓp(dx× x)p , (141)

hence dxj xℓ = 1
2d(xixℓ) + 1

2ǫjℓp(dx× x)p , (142)

and dxj (x− x0)ℓ = d
(

1
2xjxl − xjx0ℓ

)

+ 1
2ǫjℓp(dx× x)p . (143)

Consequently,

∮

dxj (x− x0)ℓ =

∮

d
(

1
2xjxl − xjx0ℓ

)

+
1

2
ǫjℓp ×

∮

(dx× x)p

= 0 +
1

2
ǫjℓp × (−2a)p = ǫℓjp(a)p

(144)

where a is the vector area of the loop. Plugging this integral into eq. (139) for the force on
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the loop, we obtain

F leading
i = I × ǫijk∇ℓBk(x0)× ǫℓjp(a)p = (Iap)× ǫijkǫℓjp∇ℓBk(x0). (145)

In this formula,

ǫijkǫℓjp = ǫkijǫjpℓ = δkpδiℓ − δkℓδip (146)

and hence

ǫijkǫℓjp∇ℓBk(x0) = (δkpδiℓ − δkℓδip)∇ℓBk(x0) = ∇iBp(x0) − δip∇ℓBℓ(x0), (147)

where in the second term ∇ℓBℓ = ∇ ·B = 0. This leaves us with

F leading
i = (Iap = mp)×∇iBp(x0) = ∇i(m ·B)(x0) (148)

where the derivative ∇i acts on the magnetic field but not on the dipole moment m (which

we treat as fixed).

Altogether, we have the net force on the loop as

Fnet = ∇(m ·B) + corrections due to higher multipoles. (149)

For a pure magnetic dipole, this formula reduces to its first term F = ∇(m ·B).

For atoms and molecules, the magnetic dipole moment is fixed by the quantum effects.

Consequently, the magnetic force (9) on an atom or a molecules acts as a potential force,

with a potential energy

U(x) = −m ·B(x). (150)

In quantum mechanics, this potential energy becomes the Hamiltonian term for particles in

an external magnetic field. As we saw earlier, the net magnetic moment of an atom is

mnet =
−e

2me

(

Lnet + geSnet

)

(151)

where ge ≈ 2, so interaction of the atom with an external magnetic field is governed by the
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Hamiltonian term

∆Ĥ = +
e

2me
B ·

(

L̂net + geŜnet

)

. (152)

It is this term in the net Hamiltonian of the atom which is responsible for the Zeemann effect

— the splitting of an otherwise-degenerate energy level by an external magnetic field.

The hyperfine structure is a similar effect due to magnetic field of the atomic nucleus,

in case it happens to have a non-zero magnetic moment mN . Since the nucleus has very

small size compared to the electron’s orbits, we may approximate its magnetic field as pure

dipole (123), thus

∆ĤHF =
µ0e

8πme









8πge
3

(m̂N · Ŝ) δ(3)(x̂)

−
(m̂N · L̂)

r̂3
+ ge

3(m̂N · n̂)(Ŝ · n̂) − (m̂N · Ŝ)

r̂3









. (153)

The delta-function term on the first line inside [· · ·] affects the s–wave electrons, while the

terms on the second line affect the electrons with ℓ 6= 0.
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