
MATH OF MULTIPOLE EXPANSION

While explaining the electrical multipole expansion in class, I have used two mathemat-

ical theorems:

• Theorem 1: for any 2 unit vectors nx and ny,

+∑̀
m=−`

Y`,m(nx)Y ∗`,m(ny) =
2`+ 1

4π
P`(nx · ny) (1)

where P` is the Legendre polynomial of degree `.

• Theorem 2: for any vectors x and y such that |x| > |y|,

1

|x− y|
=

∞∑
`=0

|y|`

|x|`+1
P`(nx · ny) (2)

where nx = x/|nx| and ny = y/|y| are unit vectors in the directions of x and y.

In this note I shall prove these two theorems.

Proving Theorem 1.

I am going to prove the Theorem 1 in two stages. First, let me prove the Lemma: the

sum on the LHS of eq. (1) depends only on the angle Θ = arccos(nc · ny) between the unit

vectors x and y. And then I shall evaluate the sum (1)using this Lemma.

The simplest proof of the Lemma uses quantum-mechanical language in the Hilbert space

of wave-functions for a particle living on a sphere. In this Hilbert space, the states of definite

location |θ, φ〉 are labeled by the 2 coordinate on the sphere — or equivalently by the unit

vectors |n〉, — while the spherical harmonics Y`,m(n) ≡ Y`,m(θ, φ) are the wave-functions of

the angular momentum eigenstates |`,m〉. In Dirac’s bracket notations,

Y`,m(n) = 〈n|`,m〉 . (3)

Consequently, the sum on the LHS of eq. (1) amounts to

S`(n,y)
def
=

+∑̀
m=−`

Y`,m(nx)Y ∗`,m(ny) =
∑
m

〈nx|`,m〉 〈`,m|ny〉 , (4)

1



which we may further identify as a matrix element

S`(n,y) = 〈nx| Π̂` |ny〉 (5)

of the hermitian operator

Π̂` =
+∑̀

m=−`
|`,m〉 〈`,m| . (6)

By construction, this operators is a function of the L̂2 operator. Indeed, knowing the

spectrum and all the eigenstates of the L̂2 operator, we may construct functions of that

operator as

F (L̂2) =
∑
`

F (h̄2`(`+ 1))
∑
m

|`,m〉 〈`,m| . (7)

Moreover, the function F (x) does not have to be well-defined for all x but only for x belonging

to the spectrum of the L̂2. In particular, for

F˜̀(x) =

{
1 for x = h̄2 ˜̀(˜̀+ 1),

0 otherwise,
(8)

we get

F˜̀(L̂
2) =

∑
`

δ`,˜̀
∑
m

|`,m〉 〈`,m| =
∑
m

∣∣∣˜̀,m〉〈˜̀,m
∣∣∣ = Π̂˜̀ . (9)

The point of this exercise is that L̂2 is a scalar operator, so all functions of it — like the

Π̂` operators — are also scalar operators. That is, for any 3D rotation R of the sphere in

question, the L̂2 and all the Π̂` operators commute with the unitary operator R̂ representing

this rotation in the Hilbert space, thus

R̂−1Π̂`R̂ = R̂−1R̂Π̂` = Π̂` . (10)

Now consider the matrix elements of these scalar operators. Let’s simultaneously rotate

R : nx ton
′
x , R : ny → n′y for the same 3D rotation R, (11)
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then in the Hilbert space

∣∣n′x〉 = R̂ |nx〉 ,
∣∣n′y〉 = R̂ |ny〉 , (12)

hence 〈
n′x
∣∣ = 〈nx| R̂† = 〈nx| R̂−1, (13)

and therefore 〈
n′x
∣∣ Π̂`

∣∣n′y〉 = 〈nx| R̂−1Π̂`R̂ |ny〉 = 〈nx| Π̂` |ny〉 , (14)

where the second equality follows from eq. (10).

Going back to eq. (5), eq. (14) for the matrix elements means

S`(n
′
x,n

′
y) = S`(nx,ny) (15)

for any simultaneous rotation (11). But the only independent combination of the two unit

vector that is invariant under their simultaneous rotations is the angle Θ between the two

vectors, or equivalently cos Θ = nx · ny. Consequently, any other rotationally-invariant

function of the two unit vectors must be a function of this angle Θ, thus

S`(nx,ny) = f`(Θ) for some function f` . (16)

And since the S`(nx,ny) in this formula was defined in eq. (4) as the
∑

m over spherical

harmonic products on the LHS of eq. (1), we have proved that that sum must be a function

of the angle Θ between the two unit vectors,

+∑̀
m=−`

Y`,m(nx)Y ∗`,m(ny) = f`(Θ) for some function f` . (17)

This completes the proof of the Lemma.
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Given the Lemma, to complete the proof of the Theorem 1 we must evaluate the functions

f`(Θ) in eq. (17). So let’s pick a very special direction of the unit vector y, namely the North

pole at θy = 0. Consequently for the nx pointing in some general direction with latitude θx

and longitude φx, the angle between nx and ny is simply the latitude of the latter, Θ = θx.

In terms of eq. (17), this means

f`(Θ) =
∑
m

Y`,m(θx = Θ, any φ)× Y ∗`,m(θy = 0). (18)

To evaluate the sum here, we use the general form of the spherical harmonics as functions

of θ and φ:

Y`,m(θ, φ) = coefficient× polynomial(cos θ)× (sin θ)|m| × eimφ. (19)

In particular, all spherical harmonics with m 6= 0 vanish for θ = 0, so the Y ∗`,m(θy = 0) factor

in the sum (18) kills all the terms with m 6= 0. The only non-vanishing term is the m = 0

term, thus

f`(Θ) = Y`,0(θx = Θ)× Y ∗`,0(θy = 0). (20)

Next, for m = 0 the spherical harmonics are independent on the longitude φ while their

dependence on the latitude θ is proportional to the Legendre polynomial (with same `) of

cos θ; specifically,

Y`,m(θ, φ) =

√
2`+ 1

4π
P`(cos θ). (21)

Plugging this formula into eq. (20), we arrive at

f`(Θ) =
2`+ 1

4π
× P`(cos Θ)× P`(cos 0). (22)

Finally, the Legendre polynomials are normalized to P`(1) = 1, thus P`(cos 0) = 1, so eq. (22)

simplifies to

f`(Θ) =
2`+ 1

4π
× P`(cos Θ) (23)

Now that we have calculated the functions f`(Θ) using the special direction of the ny

vector, we may use the Lemma to apply it to all directions of the ny and the nx. For
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such general directions, the Θ in eq. (17) is the angle between the nx and the ny, hence

cos Θ = nx · ny and therefore

+∑̀
m=−`

Y`,m(nx)Y ∗`,m(ny) =
2`+ 1

4π
× P`(nx · ny). (24)

And this completes the proof of the Theorem 1.

Proving Theorem 2.

To prove Theorem 2 I am going to use integrals over contours in the complex plane and

the residue methods for calculating such integrals. If you are not familiar with this kind

of complex analysis, I suggest you learn it ASAP as its used in pretty much any kind of

Physics. I know the Math department has an undergraduate class on functions of complex

variables, and there are plenty of textbooks on the subject. For a quick-and-dirty overview

(few proofs but many examples and useful formulae), I suggest Complex Variables in the

Schaum Outlines series by Spiegel, Lipschutz, Schiller, and Spellman; the PMA library has

a few copies.

Let me start the proof with the Rodriguez formula for the Legendre polynomials:

P`(c) =
1

2` `!

d`

dc`
(
(c2 − 1)`

)`
. (25)

The `th derivative here can be identified as the residue

Residue

[
(z2 − 1)`

(z − c)` + 1

]
@z=c

=
1

`!

d`

dc`
(
(c2 − 1)`

)`
(26)

and hence as a contour integral in the complex plane

∮
Γ

dz

2πi

(z2 − 1)`

(z − c)` + 1
= Residue

[
(z2 − 1)`

(z − c)` + 1

]
@z=c

=
1

`!

d`

dc`
(
(c2 − 1)`

)`
, (27)

provided the contour Γ circles in the complex plane around the point c. For our purposes,

we are interested in P`(c) for c = cos Θ hence −1 ≤ c ≤ +1, so to circle all such points
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(but not much more than that) let Γ be the circle of radius just a tiny bit larger than 1 and

centered at 0. For this choice of a contour, we have

P`(c) =
1

2`

∮
Γ

dz

2πi

(z2 − 1)`

(z − c)` + 1
∀c with |c| ≤ 1. (28)

Given this integral formula for the Legendre polynomials, let’s sum the series

I =
∞∑
`=0

t` × P`(c). (29)

Note that for real c between−1 and +1 — which assures |P`(c)| ≤ 1 — and t with |t| < 1, this

series converges absolutely. Also, the countour integrals (28) for the Legendre polynomials

converge absolutely, so once we plug them into the series (29), we are allowed to change the

order of summation and integration. Thus,

I =
∞∑
`=0

t`

2`
×
∮
Γ

dz

2πi

(z2 − 1)`

(z − c)` + 1

=

∮
Γ

dz

2πi

∞∑
`=0

t`

2`
× (z2 − 1)`

(z − c)` + 1

(30)

where

∞∑
`=0

t`

2`
× (z2 − 1)`

(z − c)` + 1
=

1

z − c

∞∑
`=0

(
t(z2 − 1)

2(z − c)

)`

=
1

z − c
×
[
1 − t(z2 − 1)

2(z − c)

]−1

=
2

2(z − c) − t(z2 − 1)
,

(31)

hence

I =

∮
Γ

dz

2πi

2

2(z − c) − t(z2 − 1)
. (32)
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Now let’s rewrite the quadratic polynomial in the denominator here as

2(z − c) − t(z2 − 1) =
−1

t

(
z2 − 2

t
z +

2c

t
− 1

)
=
−1

t
(z − z1)(z − z2) (33)

where z1 and z2 are the roots of this polynomial,

z1,2 =
1

t
±
√

1

t2
− 2c

t
+ 1 =

1±
√

1− 2tc+ t2

t
(34)

Consequently,

I =
−2

t

∮
Γ

dz

2πi

1

(z − z1)(z − z2)
, (35)

and we may easily evaluate this integral by the residue method. The integrand here has two

simple poles at z1 and at z2 and there are no other singularities, so all we need to know is

whether each pole lies inside our outside the integration contour Γ.

Let’s focus on real c between −1 and +1 and real t strictly between 0 and 1. In this

case, (1− 2tc+ t2) > 0, so both roots z1 and z2 are real; moreover

|z2| ≤ 1 while z1 > 1. (36)

Indeed, for −1 ≤ c ≤ +1 we have

(1− t)2 ≤ 1 − 2ct + t2 ≤ (1 + t)2 =⇒ 1 − t ≤
√

1− 2ct+ t2 ≤ 1 + t, (37)

hence

z1 =
1 +
√

1− 2ct+ t2

t
≥ 1 + 1− t

t
> 1 for t < 1 (38)

while

−1 =
1− (1 + t)

t
≤ z2 =

1−
√

1− 2ct+ t2

t
≤ 1− (1− t)

t
= +1. (39)

Consequently, for the contour Γ being the unit circle (or just a tiny bit larger than that) we

have z2 lying inside Γ while z1 lies outside Γ.
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Therefore, the integral in eq. (35) obtains from the residue of the integrand at the z2

pole inside the integration contour, while the residue at the other pole z1 does not contribute

since it lies outside the contour. Thus,

∮
Γ

dz

2πi

1

(z − z1)(z − z2)
= Residue

[
1

(z − z1)(z − z2)

]
@z=z2

=

[
1

z − z1

]
@z=z2

=
1

z2 − z1

=
−t

2
√

1− 2ct+ t2

(40)

and consequently

I =
1√

1− 2ct+ t2
. (41)

This completes our summing up the series (29). To summarize,

∞∑
`=0

t` × P`(c) =
1√

1− 2ct+ t2
. (42)

Finally, let’s relate the abstract variables t and c in eq. (42) to the two radius-vectors x

and y:

c = nx · ny = cos(angle between x and y), (43)

t =
ry = |y|
rx = |x|

, (44)

where we assume ry < rx and hence t < 1. In terms of x and y,

1 − 2ct + t2 =
r2
x − 2crxry + r2

y

r2
x

=
|x− y|2

r2
x

, (45)

so the RHS of eq. (42) is

1√
1− 2ct+ t2

=
rx

|x− y|
, (46)
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while the LHS amounts to

∞∑
`=0

t` × P`(c) =
∞∑
`=0

r`y
r`x
× P`(nx · ny). (47)

Hence, dividing both sides of eq. (42) by the rx and swapping the two sides gives us

1

|x− y|
=

∞∑
`=0

r`y

r`+1
x

× P`(nx · ny). (48)

And this completes the proof of the Theorem 2.
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