
Symmetries of Mechanics and Electromagnetism

Rotations

In Physics, a vector is more than just an array of 3 variables, it should also transform

like a vector under space rotations. Indeed, consider a rotation through some angle φ around

some axis the coordinate origin. Under such rotation, a point A with coordinates (x1, x2, x3)

moves to point A′ with coordinates (x′1, x
′
2, x
′
3), specifically

x′i = Rijxj or in matrix notations

x′1

x′2

x′3

 =

R11 R12 R13

R21 R22 R23

R31 R32 R33


x1

x2

x3

 (1)

for

Rij = cos(φ)δij + sin(φ)εijknk + (1− cos(φ))ninj (2)

where n is a unit vector in the direction of the rotation axis. For example, for a rotation

around the z axis n = (0, 0, 1) and hence

‖Rij‖ =

 cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 . (3)

A variable — or an array of variables — can be called a scalar, a vector, a tensor, etc.,

only if transforms in a right way under rotations (2):

• A scalar must be invariant under all rotations, S′ = S.

• The components of a vector must transform exactly like the coordinates of a point:

V ′i = RijVj , for the same Rij as x′i = Rijxj .

• The components of a two-index tensor must transform according to T ′ij = RikRj`Tk`

— a rotation matrix R acting on each index of T .

• Similarly, for a 3–index tensor we should have T ′ijk = Ri`RjmRknT`mn, etc., etc.
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As a matrix, any rotation matrix R(φ,n) is a special orthogonal 3 × 3 matrix, meaning

that R>R = 13×3 and det(R) = +1. Such matrices form a group called SO(3), and every

matrix in this group is a rotation matrix (2) for some axis and some angle.

Physically, orthogonality of the rotation matrices — R>R = 1, or in index notations

RijRik = δjk — makes a dot product of two vectors a scalar, ~a ·~b→ ~a′ ·~b′ = ~a ·~b. Indeed,

~a′ ·~b′ = a′ib
′
i = RijajRikbk = δjkajbk = ~a ·~b. (4)

Also, orthogonality combined with det(R) = 1 makes sure that a cross product of two vectors

transforms like a vector. Indeed, for any 3× 3 matrix

εijkRi`RjmRkn = det(R)× ε`mn , (5)

hence for an SO(3) matrix

εijkRj`Rkm = εnjkRj`Rkm ×
(
δni = RnpRip

)
= εnjkRnpRj`Rkm ×Rip

=
(
det(R) = 1

)
× εp`mRip ,

(6)

and therefore

(~a′ ×~b′)i = εijk(a′j = Rj`a`)(b
′
k = Rkmbm)

=
(
εijkRj`Rkm = εp`mRip

)
a`bm

= Rip

(
εp`ma`bm

)
= Rip(~a×~b)p .

(7)

Mechanical examples of scalars, vectors, and tensors:

• Time, energy, and power are scalars.

• Velocity, acceleration, force, and momentum are vectors. The angular velocity ~ω, the

torque ~τ , and the angular momentum L are also vectors.

• The stresses — compression, tension, and shear — form a two-index stress tensor Tij .

The strains causing these stresses also form a two-index tensor Sij = ∂δxi/∂xj .
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Electromagnetic examples:

• The electrostatic potential Φ(x) is a scalar, or rather a scalar field: under rotations, it

transforms as Φ′(x′) = Φ(x). Note same old Φ′ = Φ but at a new location, x′ instead

of x.

• The electric field E(x) and the magnetic field B(x) are vector fields, which transform

according to

E′i(x
′) = RijEj(x), B′i(x

′) = RijBj(x). (8)

The vector potential A(x) for the magnetic field is also a vector field.

• Maxwell’s stress tensor

Tij = 1
2

(
EiDj + DiEj − δij(E ·D)

)
+ 1

2

(
HiBj + BiHj − δij(H ·B)

)
(9)

is a tensor field, which transforms according to

T ′ij(x
′) = RikRj`Tk`(x). (10)

? The ∇ operator is a vector when it acts on properly transforming scalar, vector, or

tensor fields. For example, for a scalar field Φ(x), its gradient ∇Φ(x) is a vector field.

Indeed, under rotations it transforms as

∇iΦ(x) → ∇′jΦ′(x′) =
∂xj
∂x′i
×∇j

(
Φ′(x′) = Φ(x)

)
= Rij∇iΦ(x) (11)

because

∂x′k
∂x`

= Rk` =⇒
∂xj
∂x′i

=
(
R−1

)
ji

=
(
R>
)
ji

= Rij . (12)
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Space Reflection

Geometric symmetries of the 3D space include not only pure rotations but also mirror

reflections. For example, consider a reflection (x1, x2, x3)→ (+x1,+x2,−x3) off a mirror in

the (x1, x2) plane. If we combine this reflection with a 180◦ rotation around the x3 axis, we

would get

(x′1, x
′
2, x
′
3) = (−x1,−x2,−x3), or in vector notations x′ = −x. (13)

This combined transform is called the space reflection or parity symmetry.

Different vectors transforms differently under space reflection: the polar vectors reverse

directions while the axial vectors remain unchanged:

x′ = −x, V′polar = −Vpolar , V′axial = +Vaxial . (14)

Physically, the polar vectors have unambiguous direction (i.e., from point A to point B)

while the axial vectors define an axis, but the particular direction along that axis is a matter

of convention. For example, the angular velocity ~ω has a definite magnitude and a definite

axis — the axis of rotations — but its direction from the South pole to the North pole is a

matter of convention; we could have just as well defined as pointing in the opposite direction.

Mechanical examples:

• The velocity, the acceleration, the force, and the momentum are polar vectors.

• But the angular velocity ~ω, the torque ~τ , and the angular momentum L are axial

vectors. Their direction follows from the right hand rule; had we used the left-hand

rule instead of the right-hand rule, the ~ω, the ~τ , and the L vectors would had pointed

in the opposite directions.

Algebraically, the key to distinguishing polar vectors from axial vectors is the cross

product:

polar vector× polar vector = axial vector, (15)
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axial vector× polar vector = polar vector, (16)

polar vector× axial vector = polar vector, (17)

axial vector× axial vector = axial vector. (18)

For example, the torque ~τ = x × F is a cross product of two polar vectors, so it’s an axial

vector. Likewise, the angular momentum L = x×F is a cross product of two polar vectors,

so it’s an axial vector. As to the angular velocity vector ~ω, it governs the linear velocity of

rigid rotations as v = ~ω × x, and since x and v are both polar vectors, the ~ω must be an

axial vector.

Electromagnetic examples:

• The force on a charge q subject to electric and magnetic fields is

F = qE + qv ×B. (19)

Since the force F is a true vector, the electric field E is a true vector. Also, the

cross product of a true vector v with the magnetic field must be a true vector, so the

magnetic field B is an axial vector.

• In continuous media, the polarization P and the electric displacement field D are true

vectors, just like the electric tension field E. OOH, the magnetization M and the

magnetic tension field H are axial vectors just like the magnetic induction field B.

• The vector potential A is a true vector, so that its curl B = ∇×A is an axial vector.

• The electric current J is a polar vector.

• The Poynting vector S = E×H is a polar vector.

(Pseudo)scalars and Pseudo(tensors):

Besides distinguishing between the polar and the axial vectors, we may also classify the

scalars and the tensors according to how they transform under space reflections.

• A true scalar is invariant under both rotations and reflections of space.

• A pseudoscalar is invariant under pure rotations but changes sign under reflections.
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? Algebraically,

polar vector · polar vector = true scalar, (20)

axial vector · polar vector = pseudoscalar, (21)

polar vector · axial vector = pseudoscalar, (22)

axial vector · axial vector = true scalar. (23)

Examples:

• Time, energy, power, energy density, etc., are true scalars.

• E2, B2, scalar potential Φ, electric charge density ρ, are true scalars,

◦ but E ·B is a pseudoscalar.

◦ In quantum mechanics, the helicity (p/|p|) · Spin is a pseudoscalar.

◦ In magnetostatics, the scalar magnetic potential Ψ(x) (whose gradient is ∇Ψ = −H)

is a pseudoscalar.

Finally, a tensor can transform under space reflection x → −x as T ′ij...n = ±Tij...n
where the sign ± is the tensor’s parity. For a true tensor parity = (−1)#indices while for a

pseudotensor parity = −(−1)#indices. For example, the stress tensor Tij — mechanical or

electromagnetic — has two indices and positive parity, so it is a true tensor.

The space reflection symmetry is important in electromagnetism because it’s an exact

symmetry of the microscopic Maxwell equations as well as related equations for the forces,

energies, etc. Macroscopically, the electromagnetic equation are invariant under space reflec-

tion in media which are left-right symmetric — which includes most inorganic and synthetic

materials. But many organic molecules of biological origin — proteins, sugars, DNA, etc. —

are chiral, which means distinct from their mirror reflections. Consequently, crystals or wa-

ter solutions of such molecules “know left from right” — they are distinct from their mirror

images, which breaks the space reflection symmetry.

Electromagnetically, broken space reflection symmetry means that the EM wave velocity

could be different for the left and right circular polarization. For a linearly polarized EM
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waves, this means that the polarization plane rotates as the wave propagates through a chiral

medium. This is called optical activity of the medium, and I shall explain it later in these

notes.

Time Reversal

Microscopically, classical mechanics is invariant under yet another symmetry, the time

reversal T or rather the motion reversal,

x(t) → x′(t) = x(−t). (24)

Variables which flip sign under motion reversal are called T-odd while the variables which

remain invariant are called T-even. Here are some mechanical examples:

• The velocity v is T-odd.

• The acceleration a is T-even.

• The force F is T-even.

• The momentum p = mv is T-odd.

• The energy is T-even while the power is T-odd.

• The torque ~τ = x× F is T-even.

• The angular momentum L = x×mv is T-odd.

The microscopic electromagnetic equations also have the time-reversal symmetry, and

even the macroscopic equation have this symmetry in many kinds of media. To find which

EM variables are T-even and which are T-odd, we again start with the force on a moving

charge,

F = qE + qv ×B. (25)

Since the force F is T-even, the electric field is T-even. Also, the product v×B is T-even, but

since the velocity v is T-odd, the magnetic field B is T-odd. As to the other EM variables,

• The electric charge density ρ is T-even while the electric current density J is T-odd.
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• The EM energy density U is T-even while the Poynting vector S = E×H is T-odd.

• Maxwell’s stress tensor Tij is T-even.

Macroscopically, time reversal is a symmetry only in non-dissipative media. That is,

media without electric conductivity, magnetic hysteresis, or imaginary parts of ε(ω) and

µ(ω). In dissipative media, the loss of EM energy to heat is irreversible, so there is no

time-reversal symmetry — just like the macroscopic mechanics involving friction forces does

not have time-reversal symmetry.

In non-dissipative media, the polarization P and the electric displacement field D are

T-even — just like the E field, — while the magnetization M and the magnetic tension

field H are T-odd — just like the B field. Likewise, the macroscopic ‘free’ charge density

ρ is T-even, the conduction current is T-odd, the energy density U is T-even, the Poynting

vector is T-odd, etc., etc.

Optical Activity and Faraday Effect

In some materials, the refraction index n depends on the EM wave’s polarization. This is

called birefringence because light rays of two polarizations refract differently on the material’s

boundary and consequently follow different paths. Thus, when we look at some object in

un-polarized light through a birefringent crystal like calcite, the image looks double:

For more information on the subject, please see this wikipedia article and also homework

set#9, problems#1–2.
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Optical activity is a special type of birefringence in which the eigenstates of the refrac-

tion index are circular rather than linear polarizations: The left circular polarization has

refraction index nL which is different from the refractions index nR of the right circular

polarization. Optical activity breaks the parity symmetry, so it happens only in materials

which ‘know left from right’, for example crystals or solutions of biological materials such

as proteins, sugars, or DNA. In general, one needs molecules which are distinct from their

mirror images, just like the right hand is distinct from the left hand, for example organic

molecules containing a carbon atom connected to 4 different radicals. In a synthetic organic

material, one often has equal numbers of left-handed and right-handed molecules but biology

often prefers one chirality over another; that’s why synthetic materials often have no optical

activity while organic materials of biological origin are optically active.

When a linearly polarized light travels through an optically active material, the polar-

ization plane is rotated through angle Θ proportional to the distance traveled L. To see

how this works, consider an EM wave traveling in z direction, with a linear polarization in

x direction at the starting point z = 0. Thus,

@z = 0, E(t) = (E , 0, 0)e−iωt, (26)

which we may re-express as a superposition of two circularly polarized waves,

@z = 0, E(t) =
E
2

(1,+i, 0) e−iωt +
E
2

(1,−i, 0) e−iωt . (27)

Due to optical activity, the two polarizations travel at different velocities, hence different

wave vectors

kL = nL
ω

c
and kR = nR

ω

c
. (28)

Consequently, as the wave travels inside the material, it becomes

E(t, z) =
E
2

(1,+i, 0) exp(ikLz − iωt) +
E
2

(1,−i, 0) exp(ikRz − iωt). (29)

Let’s denote

kav =
kL + kR

2
, ∆k = kL − kR =⇒ kL = kav + 1

2∆k, kR = kav − 1
2∆k, (30)
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so we may rewrite the EM wave (29) as

E(t, z) = E exp(ikavz − iωt)
(

1
2(1,+i, 0) exp(+i∆kz/2) + 1

2(1,−i, 0) exp(−i∆kz/2)
)
.

(31)

At point z = L, the polarization vector in (· · ·) here has components

(· · ·)x = 1
2 exp(+i∆kL/2) + 1

2 exp(−i∆kL/2) = cos(∆kL/2),

(· · ·)y = i
2 exp(+i∆kL/2) − i

2 exp(−i∆kL/2) = − sin(∆kL/2),
(32)

thus

E(t, L) = E exp(ikavL − iωt) (cos Θ,− sin Θ, 0) for Θ = 1
2∆kL, (33)

— the wave at z = L has its polarization plane rotated through angle

Θ = 1
2∆kL = (nL − nR)× ωL

2c
. (34)

• For nL > nR, the polarization plane is rotated to the right (clockwise); such optical

activity is called D–activity, where D stands for ‘dextro’ — Latin for ‘right’.

• For nL < nR, the polarization plane is rotated to the left (counterclockwise); such

optical activity is called L–activity, where L stands for ‘levo’ — Latin for ‘left’.

? In water solutions of organic molecules, the optical activity is proportional to the

concentration of the solution. In organic chemistry, the rotation angle Θ (in degrees)

for light passing through L = 10 cm of 1g/mL solution is called the specific rotation.

For other length and concentrations, the polarization plane rotates through angle

Θ = Θspecific ×
L

10 cm
× concentration

1 g/mL
. (35)

For example sucrose (the table sugar) has Θspecific = +66.5◦, where + sign denotes the

D-activity.
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Faraday Effect

In some materials, optical activity can be induced by the magnetic field; this is called

the Faraday effect. To see how this works from the parity symmetry point of view, note that

the magnetic field B is an axial vector while the wave vector k is a polar vector, so their dot

product B · k is a pseudoscalar. Consequently, when a wave propagates along the magnetic

field, or at some angle to it — but not perpendicularly — we have a pseudoscalar B · k
whose non-zero value breaks the parity symmetry. It is this parity breaking which allows for

optical activity nL 6= nR.

Phenomenologically, the Faraday effect is parametrized as

Θ = VLB‖ (36)

where Θ is the angle through which the EM wave’s polarization is rotated after moving

through distance L, B‖ is the component of magnetic field in the direction of the wave

vector, B‖ = (B · k)/|k|, and V is the Verdet constant named after Emile Verdet. The

constant depends on the material and its condition (temperature, pressure, etc.) and also on

the light’s frequency.

• For example, a crystal of terbium gallium garnet (TGG) has very large Verdet constant

V = −134 rad/(T · m) for red light of λ = 633 nm, but for the near-IR light of

λ = 1064 nm, the Verdet constant drops to V = −40 rad/(T ·m).

• Everyday materials like table salt, quartz, or water also show Faraday effect, but with

a much smaller Verdet constants. For example, water has V ≈ 1.2 · 10−6 rad/(T ·m).

Faraday effect in plasma.

Understanding Faraday effect in condensed matter is rather complicated, so let’s consider

a much simple medium — the plasma with free electron density ne. For simplicity, let me

assume the magnetic field points in the same direction as the wave, which I take to be z

direction. Thus, B = (0, 0, B) while the circularly polarized wave has

E(x, y, z, t) = E(1,±i, 0) exp(ikz − iωt). (37)
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A free electron subject to this electric field moves according to

meẍ + e ẋ×B = −eEwave ; (38)

for a harmonic circularly polarized wave like (37), this motion is with frequency ω,

x(t) = r(1,±i, 0) exp(ikz − iωt), (39)

whose radius obtains from eq. (38) as

me(−ω2r)(1,±i, 0) + e(−iωr)(1,±i, 0)×B = −eE(1,±i, 0). (40)

For B in z direction,

(1,±i, 0)×B = (±i,−1, 0)B = ±i(1,±i, 0)B, (41)

hence

(−meω
2 ∓ eBω) r(1,±i, 0) = −eE(1,±i, 0) (42)

and therefore

r =
eE

meω2 ± eBω
. (43)

The dipole moment p = −ex induced by this rotating electron is

p = αEwave for α =
−e2

meω2 ± eBω
. (44)

Note different polarizabilities for the two circular polarizations of the wave.
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The polarizability (44) of an individual free electrons translates into polarization P =

nep = neαE of the plasma, and hence effective dielectric constant

ε(ω) = 1 − e2ne
ε0
× 1

meω2 ± eBω
. (45)

It’s convenient to rewrite this dielectric constant — and hence the square of the refraction

index — as

n2(ω) = ε(ω) = 1 −
ω2
p

ω(ω ± ΩL)
(46)

where

ω2
p =

nee
2

ε0me
(47)

is the plasma frequency, and

ΩL =
eB

me
(48)

is the Larmor frequency of a free electron circling the magnetic field in the absence of any

EM waves.

At high wave frequencies, ω � ωp,ΩL, we may approximate

n2 ≈ 1 −
ω2
p

ω2
±

ω2
pΩL

ω3
, (49)

hence optical activity

nL − nR ≈
ω2
pΩL

ω3
. (50)

In terms of the rotation of a linear polarization this means

Θ =
ωL

2c
×∆n =

LΩL

2c
×
ω2
p

ω2
. (51).

For example, Earth ionosphere at 500 miles above the ground has electron density

ne ≈ 1012 electrons/m3 (at night), hence plasma frequency ωp ≈ 2π×10 MHz. The geomag-

netic field at that height is about 0.4 Gauss, hence Larmor frequency Ωl ≈ 2π × 1.2 MHz.
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Therefore, we may use eq. (51) for waves of frequency� 10 MHz. For example, take a beam

of 100 MHz radio waves (wavelength λ = 3 meters): its polarization would be optically

rotated at the rate

Θ

L
= 9◦/km (52)

— after traveling just 10 km through the plasma, the wave’s polarization would be rotated

by 90◦. At higher frequencies, the optical rotation would be weaker. For example for a

microwave wave of frequency 1500 MHz used by satellite phones, the rotation rate is only

θ

L
= 0.04◦/km, (53)

so after traveling through the 500 km effective depth of the ionosphere, the wave’s polariza-

tion would be rotated through only 20◦.

For another example, consider the interstellar plasma between us and some distant star

we are looking at through a telescope. Along the line of site, the plasma density and the

magnetic field vary from place to place, so the net polarization rotation obtains as the integral

Θ =
ω

2c

∫
(nL − nR)dz. (54)

In terms of the electron density and the magnetic field (or rather its z component),

nL − nR =
ω2
p(~ΩL)z

ω3
=

e3neBz

ε0m2
e
× 1

ω3
(55)

hence

Θ =
e3

2ε0cm2
e
× 1

ω2
×

∫
line of sight

neBz dz . (56)
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