WAVEGUIDES

Waveguides are basically metal pipes carrying electromagnetic waves, usually the mi-
crowaves. In these notes, we shall start with the idealized waveguides without any dissi-
pation of the EM energy — hence no attenuation of the waves, — and then consider the

attenuation in a later section.

To avoid the attenuation, we need two things: (1) The material inside the waveguide —
if any — should be linear and have have real permittivity e(w), real permeability u(w), and
hence real refraction index n(w). In these notes, I allow for general real € and pu, as long as
they are uniform inside the waveguide. Although in real life, most waveguides are filled with
air, thus e = 1 and p ~ 1, while the rest are filled with non-magnetic dielectrics, thus € > 1
but p = 1. (2) No dissipation of EM energy by the electric currents in the waveguide’s walls,
so we assume the walls to be perfect conductors. As a consequence of perfect conductivity,
the walls have negligibly small skin depth, hence the boundary conditions on the EM fields

at the inner sides of the walls are

Etangent = 0 and Byoma = 0. (1)

For simplicity, let’s also assume a straight-pipe geometry of the waveguide, although the

pipe’s cross-section can of any shape — round, rectangular, or whatever, — for example

Such waveguides have a translational symmetry in z direction, so they can carry EM waves



running in z direction, the general form of such EM waves being

The (z,y)-dependence of the amplitudes £ and H here obtains from the Maxwell equations
in which we replace

0
— — ik,

— —
ot
but keep the transverse derivatives 8% and 8% as they are. Such 2D residuals of Maxwell

equations are best written down in 2D vector notations separating the transverse x and y

components
o 0
E, = (E%Ey)a H;, = (Hﬂﬁva)v Vi = (%aa_y) (5)
from their longitudinal components F,, H,, and % — k. Thus
(V-E)3q = Vi-E¢ + ikE, (6)

and likewise for the magnetic fields, so the time-independent Maxwell equations

V-:E=0 and V-B=0 = V-H=0 (7)

become
Vi-E; + ikE, = 0, (Ml)
Vi-H; + ikH, = 0. (M2)

As to the curl (V x E)gq, it has longitudinal component
(VXE), = (Vs x Ep)og (8)
and transverse components
(VXE) = ikzxEy + V,E. x2 = 2 x (ikEy — V,E;) (9)

where Z is the unit vector in z direction, thus z X (a 2d vector) rotates that 2d vector 90° to



the left. Consequently, the Induction Law

0B OH

VxE = o _MMOE — +iwppo H

becomes in 2D vector notations

(Vi x E¢)aq = idwppio H,
Z X (ZkEt — VtEZ) = iwu,uo Ht.

Likewise, the Maxwell-Ampere Law

D E
VxH = %_t = 66088—75 — —iweeg E

(in the absence of conduction currents inside the waveguide) becomes

(Vt X Ht)2d = —iw6€0 EZ,
zZ X (ZkHt — VtHz) = —iw6€0 Et.

(11)

(M5)
(M6)

The general solutions of the 2D equations (M1-M6) are linear combinations of discrete

modes, each mode having its own relation between the wave number £ and the frequency w.

Specifically, for each mode#r we have

w?n?

kﬁ(w) = 2 Fz

where I'2 is an eigenvalue of a 2D differential operator, thus

> W
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(12)



Note each mode with I', # 0 has a cutoff frequency

T, (14)

&
Wmin(V) = g

below which the mode cannot propagate through the waveguide. Or rather, at frequencies

below the cutoff, instead of a propagating wave

E,H « kel (15)
the mode becomes an evanescent wave

E,H x e e ! (16)
exponentially attenuating at the rate

2k = 24/T2 — (wn/c)? = Q?n wl (V) —w?. (17)

On the other hand, at frequencies above the cutoff, the mode#v is a propagating wave with

dispersion relation (12), hence phase velocity

c c
Uphase = — X 2 > = (18)
n w? —w2. (V) n
and group velocity
c w2 —w2. (v) c
Vgroup = ﬁ X w;mn < ﬁ (19)

(assuming n(w) = const).

Multiple wave modes propagating at different group velocities would mess up any signal
transmitted by the waves. Consequently, when designing a waveguide for the microwaves

carrying signals in a particular frequency range, only one mode — say mode#1 — can



propagate through the waveguide while all the other modes quickly attenuate down. In

terms of the cutoff frequencies (14), this means

wmin(1) < desired range of w’s < wmin(v =2,3,...). (20)

We shall return to this issue later in these notes where we learn how to calculate the I'
parameters — and hence the cutoff frequencies — for the modes of rectangular and circu-
lar waveguides. But before we can get there, we need to understand how the dispersion

equation (12) arises in the first place.

As a first step in that direction, let’s try solving eqgs. (M4) and (M6) for the transverse
components E; and H; of the EM fields in terms of the longitudinal components E, and H,.
First, we move the transverse components to the LHS of the equations and the longitudinal

components to the RHS, thus

wppoHy — kz x By = 12 x Vi E, |
kz x Hy + weeglE; = —1Z2 x Vi H, .

Next, we form linear combinations of these equations of the form

weep(first) + kZz x (second) (22)
and

—kz x (first) + wppp(second) (23)
using z X (2 X Vt) = —vy for any transverse vector vy, thus

weeowppoHy — weegh2<E; + k?(—H;) + Fweegz +

= iweegz X ViE, + 1kViH,,

— koppezx Hy + i (—Ey) + wipgkzx H; + wppoweeo By

= 1kViE, — iwpppgz x ViH, ,

(24)



where
1 2,2
W X weeg = w? x (eu = nz) X <€0N0 = —2) = T 9 (25)
c

and therefore

w?n? 9 , R _
— k) H; = weegz x VIE, + 1k H, ,
(26)

w?n? 9 , _ .
— k7| Ey = ikVBE, — twppoz x ViH, .

The physical consequences of eqs. (26) depend on whether k = wn/c or k # wn/c, so let’s

work them out case by case.

Transverse Electromagnetic (TEM) Waves

For k = wn/c — exactly as for a plane wave — the LH sides of egs. (26) vanish for any
transverse fields E; and Hy, so on the RHS we should have V; E, = 0 and V;H, = 0, hence
E.(x,y) = const and H,(x,y) = const. Moreover, at the boundary wall we should have E, =
0, hence E, = 0 throughout the waveguide. Likewise, H, = 0 throughout the waveguide
because any H,(x,y) = const # 0 would lead to a magnetic flux F' = pugH, X area # 0
and hence to EMF = iwF # 0 in the walls surrounding the waveguide. Thus, the wave in
question is purely transverse, £, = 0 and H, = 0, exactly as for a plane wave, and that’s

why it’s called a transverse electromagnetic (TEM) wave.

In the absence of E, and H,, egs. (M4) and (M6) relate the transverse electric and

magnetic fields of a TEM wave to each other exactly as in a plane wave,

Z
Ht(l',y) = E X Et(l‘ay)a (27)
where
WO o
7 = = —_ 28
k €€p (28)

is the wave impedance of the medium filling up the waveguide. Also, in the absence of F,



and H,, Maxwell egs. (M1) and (M3) become
(Vi Et)og = 0 and (Vi x Ep)gg = 0, (29)
hence
Ei(z,y) = —Vi®(z,y) (30)
for some scalar potential ®(x,y) obeying the 2D Laplace equation

0? 0?
Vog® = (W + 8—3/2) O(z,y) = 0. (31)
The boundary condition for this Laplace equation follows from E| = 0 at the waveguide’s
wall. In 2D terms, this means that at the boundary of the wavequide’s cross-section in the
(x,y) plane, both E, and the tangential component of Ey must vanish. For the TEM wave,
E., = 0 anyway, while zero tangential component of E; = —V,;® means ® = const along the

boundary of the cross-section.

The solutions to the Laplace equation (31) subject to this Dirichlet-like boundary condi-
tion depend on the cross-section’s topology. Most commonly, the waveguide is topologically
a cylinder — it has an outer conducting wall of some shape but no inner conductors dis-
connected from the outer wall, — so its cross-section completely fills its outer boundary —
which can be a circle, or a rectangle, or whatever, — but has no inner boundaries. In this
case, the Laplace equation has no solutions besides the trivial ®(z,y) = const, E(z,y) = 0,

and there are no TEM waves.

On the other hand, the waveguides with both outer and inner conducting walls (discon-
nected from each other so that we may have ®(inner wall) # ®(outer wall)) do allow for the

TEM waves. For example, in a coaxial waveguide we may have
(p,¢) = —Vologp + const,  Eup,¢) = —p, (32)
and hence a non-trivial TEM wave

Voo oo Voo o
E(p, (b,Z,t) _ Yo ezk‘zfzwt 5, H(p, (b’ Z,t) _ Z_O ezszzwt (b (33)
P P



Transverse Electric (TE) and Transverse Magnetic (TM) Waves

Now consider the wave modes with k # wn/c and hence

w?n?

r? =
c2

— k2 #£0. (34)

For waves like these, eqs. (26) determine the transverse field components in terms of the

longitudinal components,

H, — %(weeoi X V,E, + thz),
i
2

(35)

E, — (k:VtEZ — Wi g X thZ).

Plugging these transverse components into Maxwell equations (M1) or (M5) leads to the

eigenvalue equation

(V2 +T2)E.(2,y) = 0. (36)
Indeed,
V:-ViE, = VPE, (37)
while
Vi (2x ViH,) = €3;ViVjH, = 0  ((by antisymmetry i <> j)), (38)
which leads to
(Vi - By)og = F%(kVEEZ +0). (39)

Consequently, eq. (M1) becomes

ik vk

0 = (V-E)3q = (Vi -Ey)og + ikE, = ﬁVEEZ + ikE, = ﬁ(vt2+r2)Ez (40)
and hence eq. (36). At the same time, we have
(Vt X (VtHz))Z =0 (41)



while
(Vi x (2 x iE.)), = e€3i;ViejaeViE: = (6 — 0is0p3)ViViE: = VPE., (42)

which leads to

(Vi x Hy), = F%(weeo V2E, + 0). (43)
Consequently, equation
(Vt X Ht)z = —iweegl, (M5)
becomes
i“"FE;O V2E, — —iweeyF, (44)
and hence
(V2 +T?)E.(2,y) = 0. (36)

In a similar way, Maxwell equations (M2) or (M3) become eigenstate equations for the

longitudinal magnetic field,

(V2 + T H,(z,y) = 0. (45)

However, while the longitudinal electric and magnetic fields obey similar-looking equations
(36) and (45), they are subject to different boundary conditions (which we shall see in a
moment), so in general they have different eigenvalues I'?. Thus, for any particular mode v
with eigenvalue I'2, we generally have a solution of eq. (36) or a solution of eq. (45), but not
both of them. Consequently, the wave running down the waveguide is either a transverse
magnetic (TM) wave with E, # 0 but H, = 0, or a transverse electric (TE) wave with
H,#0but £, =0.



TRANSVERSE MAGNETIC (TM) WAVES

In a TM wave H, = 0, the E, obeys the eigenstate equation
(V2 +T?)E.(z,y) = 0, (36)

while the transverse electric and magnetic fields follow from the E,(z,y) as

WEeQy .
2 0 Z X VtEZ(xa y)7 (46)

ik
Et(.ﬁlf’y) = ﬁvtEZ('ray)v Ht(.ﬁlf’y) =
cf. egs. (35) for H, = 0. In particular, these transverse fields are related to each other as

x Ei(z,y), (47)

NI &

Hy(z,y) =

similar to the transverse fields in a plane wave, but for a different wave impedance

Lk / ck wn/c)? — 12
ZT™M = = %MOO X — = Zplane X L < Zplane- (48)

wn (wn/c)?

Now consider the boundary conditions for the eigenvalue equation (36). Let n be a unit
vector L to the waveguide’s wall while t is a unit vector along the wall, both n and t lying

in the (z,y) plane. In term of these vectors, the boundary conditions
E =0, H =0 (49)
at a perfectly conducting wall become
E, =0, tE =0 n-H =0 (50)

Fortunately, the last two conditions automatically follow from the Dirichlet condition £, = 0

and eqs. (46). Indeed, if E, = 0 all along the boundary, then E, has zero gradient along the

10



boundary,
(51)

E'Vth - 0
and hence
- ik -
t-E, = ﬁtVtEZ = 0,
LWEE . TWEE R 2
n-H, = FQOH'(ZXVth): PQOVtEZ.(nXZ::l:t) = 0.

Thus, all of the boundary conditions at a perfectly conducting wall reduce to Dirichlet

condition E, = 0.
Consequently, the I'? parameters of the TM waves are eigenvalues of the 2D Laplace

operator (or rather —V?) subject to the Dirichlet boundary condition,

—V2E.(z,y) = T?E.(x,y), E.(@boundary) = 0. (52)
TRANSVERSE ELECTRIC (TE) WAVES
In a TE wave the FE, = 0, the H, obeys the eigenstate equation
(V2 +T?)H.(z,y) = 0, (36)
while the transverse electric and magnetic fields follow from the H,(x,y) as
H,(z,y) — ;—’Z ViH.(r.y),  Eilry) = "“;5“0 5 X Vi H.(2,1), (53)

cf. eqs. (35) for £, = 0. In particular, these transverse fields are related to each other as

A

V4

- Ht(ﬂ?,y) = E X Et('rvy)? (54)

Et<xay) = —ZZX H(.T,y)

similar to the transverse fields in a plane wave or a TM wave, but for a different wave

11



impedance

Witk [1pg  wn (wn/c)?
Z = —— = — X — = Zylan ————5"— > Zplane - 55
TE L €€ X ok plane X (wn/c>2 _12 plane ( )

As to the boundary conditions at a perfectly conducting wall,
E, =0, t-E;, = 0, n-H; = 0, (50)

the first condition is trivial for a TE wave while the other two conditions follow from eqgs. (53)

and the Neumann boundary condition
n-V:H, =0 (56)

for the longitudinal magnetic field. Indeed, eqs. (56) and (53) immediately imply

K
n-H, = —n-VH =0

2 (57)
~ —w ~ —1Ww ~
i E = F§MOt<ZXVtHZ) — PgMOVtHZ-(tXZ:ﬂ:H) = 0.

Consequently, the I'2 parameters of the TM waves are eigenvalues of the 2D Laplace

operator (or rather —V?) subject to the Neumann boundary condition,

—V?H.(z,y) = T?H.(x,y), n - V;H,(@boundary) = 0. (58)

12



Wave Energy and Power

Consider the power carried by the EM waves down the waveguide. Locally, the (time-

averaged) power density is given by the Poynting vector

(S) = L1Re(E*xH) = 1Re(E x H"). (59)

Let’s calculate this Poynting vector for the TM and TE waves. For a TM wave

ik iweey ..

E = B2+ Vi, H= " axViE, (60)
hence
E*xH = i“go E'a x (2 x VE.) + % ViEF % (2 % V,Es) (61)
where
2x (2xViE,) = —V,E, (62)
and
ViES x (2 x ViE,) = (ViE} - ViE.)zZ. (63)
Altogether,
E*xH = —z'% (E:VE,) + k”;ff” V,E.|* 2 (64)

where the first term on RHS is imaginary and points in a transverse direction while the
second term is real and points along the waveguide. The imaginary term here describes
oscillations of the EM energy across the waveguide, but they do not contribute to the time-

averaged power flow. Instead, the time-averaged Poynting vector stems from the second

13



term only, thus

kweeO

(S) = VAE.| 2, (65)

so the net EM power flowing down the waveguide is

kwee
Poet = // dady (S,) = 2r40 dx dy |V E.|?. (66)
Likewise, for a TE wave
. 1k W 5
H = Hi + 5 Vill:, E = - gg‘o x V,H., (67)
hence
. WU . . kwppo
E*xH =i T (zx ViHY) x (H,z) — T (zx ViH}) x V;H, (68)
where
(Z X th ) = —|—Vt s (69)
(Z X VtH ) X VtH = —(VtH VtH ) (70)
and therefore
. W/t o, kwppg 2 .
E-"xH =14 F4 HthHz + F4 |VtHZ‘ Z. (71)

Similar to the TM case, the first term in this formula is imaginary and transverse while the
second term is real and longitudinal, so only the second term contributes to the time-averaged

Poynting vector. Thus,

kw .
8) = L\ H, 7?5 (72)

and therefore the net EM power flowing down the waveguide

Pt = // drdy (S.) = k‘;’r‘fo // dx dy |V, H. |, (73)

Cross Cross
section section

14



Note similar form of eqgs. (66) and (73) for the two kinds of waves,

kw

Pt = —
et 2F4

/dxdy<€€O|Vth|2 or N,u0|thz|2)- (74)

cross
section

Moreover, in both cases we have an integral of the form

JJdz vVt )P (75)

where 1 (z,y) — being either F,(x,y) or H,(z,y), depending on the wave type — obeys the
eigenstate equation (V2 + I'?)y(z,y) = 0. Consequently, we may simplify the integral (75)
by integrating by parts:

JJaz vVt = [fas g v v

_ /dw*vtw.n —//dxdyw*vt%. (76)

boundary

Moreover, the boundary integral here vanishes by the boundary conditions for the E, or
H,: Dirichlet for the E, and hence v* = E} = 0, or Neumann for the H, and hence

z

Vi -n =V H,-n=0. Thus, we are left with

//da:dy|Vtz/1(:c,y)|2 = —//dxdyz/}*vtzw = +F2//dxdyz/z*z/z, (77)

where the second equality follows from eigenstate equation VEQ/} = —T2%¢. And thanks to

this formula, we may simplify the integral (74) for the net EM power as

kw
Poet = T2 // dmdy(eeo|Ez\2 or MMO‘HzF)- (78)

section

15



This EM power flows along the waveguide at the group velocity

2 2
c w? —w. (V) c
Ugroup = \/a X w;mn < g (19)

To see that, let’s calculate the net energy of the waves per unit length of the waveguide. The

volume density of (time-averaged) EM energy us

660

14
(w) = <LBP + SO P, (79)

hence for a TM wave
€€o Ko
(w = LEP + EP) + 22

2
€€ wee R
_ €€g (|E ‘2 + 4 |Vth‘2) + Ko > ( 0) (‘Z % Vth|2 — ‘Vth|2) (80)

4 r4

66() €€ V. E., |2
= |E., ‘2 T | }4Z| X (/%2 + w2€60uﬂ0>
where
2,2
wn
k2 + w2€60ﬂu0 = K + 2
2,2 2,2
wn wn
=5 -+ (81)
2,2
wn 9
= 2 2 <,
therefore
€€ 9 1 w?n? 9 9
(u) = e || +ﬁ 2 2 T IVLE|" ). (82)
Likewise, for a TE wave
€€
() = B (1P + [ P) + SR
2
€ w .
:”WOHP 4Wwﬁ)+z$ﬁqf)wxwmﬁzwmﬁ)
(83)

Vi H.,|?
w|HZ|2 + %' tF4Z| X <k2 - wzuugeq))

1 w?n?
:“WOHP F@C2—ﬁwwm@.
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Thus, for both kinds of waves, the time-averaged EM energy density has form

w = 1 (107 + & (2555 - 1?) ) (54)

where ¢ = \/eegE, for a TM wave or ¢y = /uugH, for a TE wave.

Integrating this volume energy density over the waveguide’s cross-section, we get the line

energy density

U
= dx d
length // {u) d dy
B 9 w?n?
= 1 ffwrasdy 4 g (2250 -2 x [f1vwiacay
((using eq. (77) for the second integral )) (85)
_ 2 wn’? 2 2 2
_ Z//M dvdy + W( S —r)xr //\zm d dy
1
— (1/ |¢|2dxdy) x F
where
1 w?n? 9 9 2 wn? 2w?n?
F:1+ﬁ(262 —P)xl“—1+ﬁ>< . - S (86)
Thus altogether,
U 2
= dx d
length 02F2 / 1" de dy
section (87)

wn?
= 202F2 // (€€0|EZ‘2 or MMO‘HZ|2> d‘,L dy

~~~~~
scctlon

When this EM energy flows down the waveguide with velocity venergy, it transmits the

17



net power

U
Phet = Venergy X m . (88)
Indeed, the formula for the net power
kw 9 9
Poet = ) dx dy <660|EZ\ or pupo|H| ), (78)

cross
section

we have derived earlier in this section involves exactly the same integral as eq. (87) for the
line energy density, the only difference being the pre-integral factors. Consequently, we may

obtain the velocity of the energy flow from the ratio of those factors:

net power kw w?n? kc? (89)
U — = = .
enersy energy /length 212 | 2¢2I? wn?
Hence, for
2,2 2
2 wn 2 n-o9 2
k - — = C—(w Winin) (90)
we have
k n w2
— = —4/1] — —n 91
w c w2 (91)
and therefore
kc? c w2
Venergy = W = E I - ;1121n = Vgroup - (92)

Thus, the EM energy in the waveguide flows with the same velocity as the information carried

by the EM waves.
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Rectangular and Circular Waveguides

RECTANGULAR WAVEGUIDES

Many waveguides have rectangular a x b cross-sections

(93)

Y
8

For this geometry, the eigenstates of the (minus) Laplacian operators obtain via the separa-

tion of variables method: We look for

Ey(z,y) = f(z) xgly) or Hi(z,y) = f(z) xg(y), (94)
hence
(VP +TE.  (V+THHz  f"(x)  ¢"(y) 2 _
t 5 or -t i = 4+ e + I'“ =0, (95)
and therefore
f"(z) = —af(z) for a constant a,
d"(y) = —Bg(y) for a constant 3, (96)
a + f =TI%

For the TM waves, the Dirichlet boundary conditions £, = 0 on all 4 sides of the rectangle

translate to

19



so the solutions are

f(z) = sin T for an integer m =1,2,3,...,
a
g(y) = sin n_7bry for an integer n =1,2,3, ..., (98)
mm 2 nm\ 2
N = () + ()

Similarly, for the TE waves, the Neumann boundary conditions n - V;H, on all 4 sides

translate to

flx=0) = fllz=a) =0, 4¢y=0 = 4y=0) =0, (99)

so the solutions are

f(x) = cos M2 for an integer m =0,1,2,3,...,
a
g(y) = cos T%y for an integer n =0,1,2,3,..., (100)
mm 2 nm\ 2
T = () + (F)

Note that for similar m > 1 and n > 1, the TM,, ,, and the TE,, ;,, wave modes have exactly
the same I';, ,. However, only the TE waves — but not the TM waves — may have m = 0

or n = 0. Also, for m =n = 0, even the TE wave does not exist: Although

0 0
H.(z,y) = chosg XCOS% = Hp = const (101)

is an eigenstate of the —V? operator with Neumann boundary conditions for the eigenvalue
F%,O = 0, it violates other Maxwell equations and boundary conditions. Specifically, such
H.(x,y) = const # 0 would lead to magnetic flux F' = puuoH, x ab # 0 and hence EMF =

1wk in the walls surrounding the waveguide, in disagreement with the boundary condition

Etangent = 0.

20



Altogether, the rectangular waveguide has wave modes with cutoff frequencies

min ¢ T m2+n2
w, = — = @ — - -
mneJens "t e a?z b2
102
= T\ Jm? + n2(a/b)? (102)
Jepa
for integer m,n = 0,1,2,3,..., (m,n) # (0,0).

For b < a, the lowest cutoff frequency belongs to the TE; g mode, the next lowest to the
TE2 or TEg; mode, depending on the aspect ratio a/b, and then we start getting both TE
and TM modes. For a typical aspect ratio a : b = 2 : 1, the first dozen modes in the order

of their cutoff frequencies are

c
d toff f in units of ) =
modae cuto requency i units o 1 5 ea
TE1 1.000

TE270 and TEOJ 2.000

TE d T™M 2.236
1,1 al 1,1 (103)

TE271 and TM271 2.828

TEs 3.000

TE371 and TM371 3.606

TE470 and TEOQ 4.000

Consequently:

e For w < (g, all the wave modes in the waveguide are attenuating rather than propa-

gating, so it cannot carry the waves of that frequency.

For w > €1 but w < 2(2y, the wave guide has a single propagating mode, namely TEq g,

which is good for carrying signals down the waveguide.

e For w > 2(); the waveguide has 2 or more propagating modes with different group
velocities. This is bad for carrying signals, but OK for sending a steady MW power

down the waveguide.
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To conclude this section, let me write down all the EM field components for the lowest

wave mode TEq o:

Tr g
Hz(ffa?/,z,t) = Hpy X cos— X elkZ—zwt’
a
ika T . .
Hy(z,y,2,t) = ——— Hy x sin — x eikziwt
- ¢ (104)
Witpoa T .
Ey(l’,y,z,t) = 4 FHo HO X sin — % elkz—zwt’
n a
CIRCULAR WAVEGUIDES
Now consider a waveguide with a circular cross-section
(105)

To find the eigenvalues of the (minus) Laplacian operator for this geometry, we separate the

variables in the 2d polar coordinates (p, ¢), thus

E.(p,0) = f(p) xg(¢) or H.(p,¢) = f(p)*x g(9), (106)
hence
_ ﬁ 2 | 12 22" () +of'(p) 212 9"(¢) _
0 = 7 x (Vi +T1%)(fg) = 0) + pT° + FORE 0 (107)
and therefore
g"(¢) + m?g(¢) = 0,
" L, m? 2 2 (108)
f(p) + ;f (p) — Ff(p) + I"f(p) = 0 for the same m”.
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Solving the g equation gives us
g(¢) = eF™?  for an integer m = 0,1,2,3, ..., (109)

and then the solution of the f equation which does not blow up at the center p = 0 is the

Bessel function of order m,
f(p) = Jn(Tp) (110)

a special function defined via the integral

™

1
Im(z) = ;/COS(mT — zcosT)dr, (111)
0

see fhese notes from an applied math class at the Brown University] for more detail.

The value of the I' in eq. (110) follows from the boundary condition at the waveguide’s
wall at p = R: For the TM waves we want £, = 0 and hence f(p = R) = 0, while for the
TE waves we want OH,/9p = 0 and hence f'(p = R) = 0. Let j,n, be the n'® positive root
of the Bessel function J,(z) while j;, , is the n'" positive root of its derivative d.Jp,(z)/da.

Then the TM waves have

Jm,
Conn = ”;%” , (112)
while the TE modes have
P — 2 mn (113)
m,n R
with the corresponding cutoff frequencies
C i c ./
Wmin(TMin,n) = X Jmns Wmin(TEmn) = X Jmp - (114)

JReR VAR

Unfortunately, there are no closed formulae for the Bessel roots j, , and j{nm, but you can

find them numerically using Mathematica; here are the tables for m < 5 and n < 5 taken
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from the Wolfram MathWorld:

m

" 0 1 2 3 4 5
1 24048 | 3.8317 | 5.1356 | 6.3802 | 7.5883 | 8.7715
| 2 55201 | 7.0156 | 8.4172 | 9.7610 | 11.0647 | 12.3386
S = 56537 | 10,1735 | 116198 | 13,0152 | 143725 | 157002 ] )
4 11.7915 | 13.3237 | 14.7960 | 16.2235 | 17.6160 | 18.9801
5 14.9309 | 16.4706 | 17.9598 | 19.4094 | 20.8269 | 22.2178
n o 1 2 3 4 5
1 38317 | 1.8412 | 3.0542 | 4.2012 | 5.3175 | 6.4156
b2 TONS6 | 53314 | 67061 | 80152 | 99824 | 105199 |
| 3 10.1735 | 8.5363 | 9.9695 | 11.3459 | 12.6819 | 13.9872
4 13.3237 | 11.7060 | 13.1704 | 14.5858 | 15.9641 | 17.3128
5 16.4706 | 14.8636 | 16.3475 | 17.7837 | 19.1960 | 20.5755

We see that the mode with the lowest cutoff frequency is TEq 1, the next lowest being TMo ;.

Consequently;,

e Forw < 1.84 x ﬁ, all the wave modes in the waveguide are attenuating rather than

propagating, so it cannot carry the waves of that frequency.

For w > 1.84 x ﬁ but w < 2.40 x ﬁ, the wave guide has a single propagating

mode, namely TEq 1, which is good for carrying signals down the waveguide.

e For w > 2.40 x ﬁ, the waveguide has 2 or more propagating modes with different

group velocities. This is bad for carrying signals, but OK for sending a steady MW

power down the waveguide.

Note that for a circular waveguide, the range of frequencies for which only one mode
can propagate is relatively narrow, from Qi to about 1.36 X Quin. By comparison, the

rectangular waveguides with aspect ratios § > 2 have relatively wider ranges, from Qp;, to

2 X Qmin-
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Walls of Finite Conductivity

Thus far, we have assumed that the waveguide’s walls have perfect conductivity. Now

suppose the conductivity o is finite but high enough that the skin depth

2
P (R — (117)
Hmetal LOWOT

of the wall’s material is much smaller that the waveguide’s diameter or the wavelength A\ =
27 /k. This assumption holds true for most waveguides: for example, a WR42 rectangular
waveguide of size 10.7 x 4.32 mm carrying a wave of frequency w = 27 x 25 GHz has
A = 14.5 mm, while the skin depth in copper at that frequency is only 0.4 pm.

BOUNDARY CONDITIONS.

At the edge of a perfectly conducting wall, the EM fields inside the waveguide obey

boundary conditions

E =0  H =0 (118)

For the imperfectly conducting walls, these conditions are no longer exact, but for the walls
of good conductivity they remain approximately true. Specifically, the boundary conditions

become

H, = O(k‘5) XHH < H” (119)

and

EH = O(Zk‘é)XHH < ZHH ~ FE. (120)

Fortunately, for the purpose of solving the eigenvalue equations for the I'? of various wave
modes, these boundary conditions may be approximated by the idealized conditions (118),

so we do not have to redo the analysis of the previous sections.

To derive the boundary conditions (119) and (120), we start by noting that in a good

conductor, the conductance current J. = ¢E is much stronger than the displacement current
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J g = —iweegE, hence
VxH = J. + J; = (0 —iweep)E = oE (121)

and therefore

-2

VZH = V(V-H) — Vx(VxH) = 0 — 6VXE = —¢(iwpp)H = -

H. (122)

In the coordinates (£, 7, () where € is L to the wall (and £ = 0 at the inner surface) while 7
and ¢ = z are tangent to the wall, the magnetic field changes with the tangent coordinates

(n,¢) on the scale O(\) > 4, so eq. (122) implies

H(¢,n,¢) =~ Ho(n) exp(ikC) exp((i — 1)§/6). (123)
The space derivatives applied to this magnetic field act as

= while — = ik and — = O(k), (124)

so the magnetic Gauss law

OH,
\Y 9 + n + ac 0 (125)

requires He to be much smaller that H;, or H. Specifically,

H

— = O(ko 1. 126
T~ Oh) < (126)

As written, this relation applies inside the metal wall of the waveguide, but it can be extended

inside the wave channel itself as a boundary condition at the metal’s edge. Indeed, the
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magnetic field continues across the metal’s edge as

H(channel) = Hj(metal) but H, (channel) = Mhﬁ(metal), (127)
Hchannel

hence at the boundary of the wave channel

HL Hmetal
—— = /= x 0(kd). 128
HH Mchannel ( ) ( )

The waveguides are usually made from good electric conductors such as copper, brass, alu-

minum, or silver, and all these metals have y ~ 1, hence

H
at the boundary of the wave channel FL = 0O(k)) < 1, (129)

as promised in eq. (119). In principle, one can break this boundary condition by making the
waveguide wall out of steel or other high-u alloy, but nobody in his/her right mind ever does
it, so let’s not consider this possibility any further. Instead, we take eq. (129) as generally

true, which justifies the idealized approximation H, ~ 0 (in comparison to the H ”).

Next, consider the electric field inside the metal wall. Inverting eq. (121), we have
1
E ~ -V xH, (130)
o

hence for the magnetic field as in eq. (124),

OE& = O(k‘)HC - ik?Hn,

oE, = ikHe —

5 Heo (131)
oEc = H, — O(k)H;.

In magnitude, the tangent £, E- components of this electric field are

0B = O (%) + O(kx H) = O (@) , (132)
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hence

L 1
2N skZ <« Z 133
HH oo < ( )

where Z is the wave impedance of the waveguide, and the second relation stems from

oo 2 a

1 1 W lmetal OO 1 Whmetal O Hmetal
— okZ = | == X = = ~ 1. 134
(52 okZ 2kZ 2fichannel (134)

The relation (133) holds inside the metal wall, but since the tangent components Fj and H)
of both electric and magnetic fields are continuous across the metal’s surface, we see that

the boundary values of the tangent fields inside the wave channels also obey
il
~ k7 < Z, (135)
Hy
exactly as promised in eq. (120).
Finally, the normal component F| of electric field is discontinuous across the metal’s
boundary, so it is not subject to any boundary conditions stemming from the skin effect.
However, everywhere inside the waveguide E ~ ZH, so the dominant components of the

electric and the magnetic fields at the boundary should also have a similar relation £ | ~

ZH). Comparing this relation to eq. (135) for the £, we immediately see that

E 0kZH,

= ok 1 136
B 71, < 1, (136)
which justifies the Ej ~ 0 approximation.

ATTENUATION

Another consequence of the imperfectly conducting waveguide walls is the wave energy

loss to the Ohmic resistance and hence slow attenuation of the wave power,
power o< e “* (137)

for

(power loss)/length

(138)

(net power)

The industry-standard copper waveguides for centimeter-range microwaves) have attenuation
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rates ranging from 0.11 dB/m (1/40 m) for WR-90 at 10 GHz to 2.7 dB/m (1/60 cm) for
WR-10 at 90 GHz.

So let’s calculate the power loss due to Ohmic resistance in the walls and hence the

attenuation rate (138). In ny notes on the skin effect], I have calculated the power loss in

terms of the tangent electric field E; on the metal’s surface, but that is not very useful for
the current purposes since in the previous sections of the current notes we have solved the
wave equations using the E; ~ 0 approximation. Instead, let’s calculate the power loss in
terms of the tangent magnetic field H which does not even approximately vanish at the

metal’s surface.

Given the tangent magnetic field just outside the metal’s surface, — and hence also just
inside the surface, — we can find the conduction current inside the metal as
i—1; i—1 (i—1)¢/6 £ surface

hence density of the dissipated power

power |J|2 1 —2¢/6 ) surface 2
= = — H 14
volume 20 702 € I (140)
Integrating this power density over the metal’s depth ¢ yields
largexd 00
/ e %0 e ~ /6—25/5 d¢ = g, (141)
0 0
hence
power loss 1 ’ surface |2
= H 142
wall area 206 || (142)
and therefore
power loss 1 9 9
= dn (|H, H 143
waveguide length 25074 L (| al” + H] )’ (143)

C

where the integral is over the boundary C of the waveguide’s cross-section and 7 is the

coordinate along that boundary.
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In the Appendix to these notes, I calculate the integral (143) for all the TMy, , and TE, ,
waves in a rectangular waveguide. But for the moment, let’s not assume any particular cross-
sectional geometry or a particular TM or TE mode, so instead of calculating the integral (143)
let’s simply estimate its value up to unknown O(1) numeric constants which do not depend

on the wave’s amplitude or frequency. For a TM wave of amplitude Ey — that is,

E.(x,y) ~ Ey, H.(x,y) = 0, (144)
we generally have
ViE,(x,y) ~ TEy, (145)
WEeQy ..
Ht<x7t) = = FQOZXVtEZ(xay)
weeg
~ T2 x I'Ey, (146)

hence at the boundary

Eo. (147)

and therefore

2
fdn (1H, > + [H)?) ~ (w;eo> X | Eg|? x perimeter. (148)
C

For a waveguide of a particular geometry and characteristic width a — such as the larger
width of a rectangular waveguide, or a diameter of a circular waveguide, — the integral (148)

becomes

weeq\ 2
Fan (1, + |HP) = Almode) x a (22) x |EoP (149)
C

where A(mode) is an O(1) dimensionless number depending on a particular TM wave mode,

and also on the waveguide’s cross-sectional shape, but independent on the wave’s frequency
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or amplitude. Consequently;,

(power loss) Aa <weeo>2 « | B[, (150)

length " 206 \ T
At the same time, the net power transmitted down the waveguide follows from the
integral

/ |E.|>dxdy ~ |Fo|* x area, (151)

cross
section

so we may parametrize this integral as

|E.|?>dxdy = B(mode) x a?|Epl? (152)

cross
section

where B(mode) is another O(1) dimensionless number depending on a specific TM mode and
a specific waveguide geometry. In terms of this number, the net power transmitted down

the waveguide is

k
Pnet _ WEeeQ x // |Ez|2dl‘dy

202
o (153)
kweeg

Comparing this net power to the power loss (150) per unit length, we find the attenuation

rate
(powerloss) /length

(netpower)
_ (Aa/206) (weep/T)? x | Ep|?
~ (Ba?/2) (kweey/T?) x |Eg|?
_ A/B | wea
acd k-

(154)

Nest consider a TE wave of amplitude Hy, that is

Ez(%y) = 07 Hz(l‘,y) ~ H07 (155)
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hence

ViH(z,y) ~ TH, (156)
and therefore
ik k
Ht(:c,y) = ﬁVtHz(ﬂfay) ~ fHO- (157)
In particular, at the boundary
k
H, = H, ~ Hy, H, ~ fHO, (158)

and therefore
dn |H¢|? i Hyl? dn |H,|? i L Hyl?, (159
n| <| ~ (perimeter) x |Hg|", n| 77| ~ (perimeter) x 2 X |Hol%, (159)
C C

which we may parametrize as

%dn |HC|2 = C(mode) x a x |Hyl?,

¢ 2 (160)
7{d?7|Hn|2 = D(mode) x a x 2 X | Hol?,
C

for some mode-dependent — but frequency-independent and amplitude-independent — O(1)
numbers C(mode) and D(mode). In terms of these parameters, the EM power loss per unit

length becomes

i) _ L i+
C (161)
- 2%5 (C(mode) + llf—z X D(mode)) % |Ho)?.
At the same time,
/ |H.|>dedy = E(mode) x a® x |Hyl|* (162)

Cross
section

for a yet another mode-dependent dimensionless O(1) number E, hence the net power of the
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wave is related to its amplitude as

k
Poet = (;J?go x F(mode) x a? x |Hy|*. (163)

Consequently, comparing the power loss rate (161) to this net power, we get the attenuation

rate
(power loss)/length

(net power)
_ (a/206) x (C + D(k/T)?) x |Ho|? (164)
= T (Ba22) (koprio/T9) x [HoP
1 _ CT? + Dk?

acd . Ekwppo

Now let’s bring eq. (164) and (154) for the attenuation rate to a common form

2 2
0 - F(mode) LY + G(mode)<2 (165)
Ly 00 wvVw2 — 02

where ©Q = wpin = (¢/n)T is the cutoff frequency for the mode in question, while

HEO
Tpw = 4] — 166
- (166)
is the wave impedance of a plane wave in the material filling the waveguide’s channel; for
the evacuated or air-filled waveguides, Z,,, ~ 377 2. To bring eq. (164) for the TE waves to
the form (165), we use

2
k= (ﬂ) 2 = D202, (167)
c c
hence
2 2 n 2 2 2 n? [ 2
Cr* + Dk _C—2(CQ + D(w* — Q%)) 0—2(w +(——1)Q) (168)
while
E
Fkwupy = ng,uo X wyw? — Q2 (169)
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and therefore

_ D/E_ (nje)* WP+ (5-1)
a = ——= X (/0 X Tz (170)

The second factor here amounts to

(n/c)? _on=\e 1 (a71)

(n/c) Ko CHHO pr ’

so eq. (170) for the attenuation rate indeed takes form

2 2
0 - F(mode) LY + G(mode)S2 (165)
CLpr05 wVw? — Q2

where we identify

D(mode) C'(mode)

F(TE mode) = F(modo) G(TE mode) = D(mode) L. (172)
Similarly, for the TM waves we have
e
where
wzeo _ ;E/OCX w;u_ - _ Ziw » . w:;r_OQ ’ (173)
hence
. _ AB w?+0 | (174)

aprO'(S wyVw? — Q2

which also has form

0 - F(mode) " w? + G(mode)? (165)
apr05 wvw? — 02

where we identify

F(TM mode) = %, G(TM mode) = 0. (175)

Now consider the frequency dependence of the attenuation rate. Beside the explicitly

w—dependent second factor in eq. (165), the skin depth § (in the denominator of the first
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factor) depends on frequency as 0 w12 thus

ow) = o() x4/ — (176)

and hence

F(mode) y w? 4+ G(mode)?
Zyod(Q) S =)

alw) = (177)
In this form, the first factor depends on the waveguide’s design and on the specific mode but
does not depend on the wave’s frequency, while the second factor depends on the frequency
or rather on the ratio w/Q of the wave’s frequency to the cutoff frequency for the mode in

question. Graphically, « as a function of w/{ behaves as

7

’ TM mode, G =0
TE mode, G =0.5
N ~J = TE mode, G = 1.5

——
AT

L]

0 1 2 3 4 5 (178)
Note that for all the modes, we have strong attenuation for frequencies just above the
cutoff frequency €. Physically, this is caused by the slow velocity of the energy flow
Venergy = (¢/1) W, so the energy does not move very far while it’s dissipated
by the conduction currents. At higher frequencies, the attenuation becomes weaker, reaches
a minimum, and then starts slowly growing with the frequency due to shrinking skin depth.

The optimal frequency which minimizes the attenuation rate depends on the G parameter
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of the mode in question, specifically

( Woptimal

2
q ) — larger root of 2% — 3(G+ 1)z + G = 0. (179)

For all the TM modes — which all have G' = 0 — the optimal frequency is wopt = V3 x Q,
while the TE modes have higher wqp; /€2 ratios; for example, the dominant TE; g mode of a

rectangular waveguide with a : b =2 : 1 has wopt ~ 2.1 x (2.

As to the first factor in the equation

F(mode) " w? 4+ G(mode)?
Do) (T =2

alw) = ) (177)
it does not depend on the frequency of the actual wave, but it does depend on the frequency
band for which the waveguide is designed. If one wants only one mode — such as TE; —

to propagate down the waveguide, then one uses a waveguide with

Wdesign
1l < ———— < 2 180
Q(TELO) (180)
and hence
1to2
e/ (Lwo2)n(e/n) s

Q<TE1,O) Wdesign

Thus (1/a) &< Wyesign, and also (1/6(€2)) o Q12 w(ll/z and consequently

esign’
3/2
a [Wdesign} /2, (182)

And that’s why the WR~10 waveguide used for the 90 GHz microwaves has 27 times larger
attenuation rate than the WR-90 waveguide used for the 10 GHz microwaves, 2.7 dB/m
versus 0.1 dB/m.

PS: Eq. (177) gives the attenuation rate due to electric resistivity of the waveguide walls,

but there could be additional attenuation due to other causes. For example, for a waveguide
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filled with a dielectric, the dielectric constant €(w) may develop an imaginary part at high fre-
quencies, which would make the dielectric absorb some of the microwave power and dissipate
it as heat. Similarly, a poor dielectric which has a small but non-zero conductivity would
absorb some of the microwave power and dissipate it as heat. The air-filled waveguides do
not have these kinds of attenuation, but they are vulnerable to corrosion — especially when
the air inside them gets dirty and humid — which would drastically decrease the surface

resistivity of the metal walls and hence drastically increase the attenuation rate.

Finally, a real-life waveguide may have extra attenuation of the wave power due to
scattering by any extraneous objects of size & 0.1\ inside the waveguide, or any wall defor-
mations of size & 0.1\. Also, a waveguide which bends too sharply may case wave scattering

and hence extra attenuation.

APPENDIX: I’ AND G PARAMETERS FOR A RECTANGULAR WAVEGUIDE

In this Appendix, I calculate the A, B, C, D, E parameters — and hence F' and G — for
all the TE and TM modes in a rectangular waveguide. Let’s start with a TM,, , mode for

some integer m and n:

E, = Ejsin mre sinn—zy,
INTWEEQ . mTx nmwy
H, = —rz o sin COST,
I IMTWEEQ 5 mnr . nwyY (183)
= —— CoS sin ——
Y al? 0 a b’
9 2m? 2n?
= a? b2
For this mode
a b b
def a
B x B Y [do [ay|E-Ceg) = T |Eol (184)
0 0
hence
ab/4 b

37



At the same time, along the cross-section’s perimeter we have

TWEEQ
P = (550 1Bl
hence
f o - (e
perimeter

Interpreting this integral as

we find

Amn -

)

2

TWee an
( 2 )|E0|2X (b_2

2

al?

an®  bm?
b2 + a? -

Altogether, for the TM waves we have

(n/b)?sin®(mmx/a) at the long sides,
X
(m/a)?sin®(nmy/b) at the short sides,

) | Eo|? x (2 X g x (n/b)? + 2 x g x (m/a)Q)

o
a2 |’

(b/a)m? + (a/b)*n?

m2 + (a/b)?n?

m? + (a/b)3n?

A
F(TMmm) — Bmyn = 4

which varies in the range

Now consider a TE,, ,, mode

m,n

m2 + (a/b)?n?’

4 < F(TM) < 4(a/b).
= Hy cos @,
b
immk . mmnx nmy
= — in —
2 Hos cos —=,
inmk mnrr . nmy
= —W 0 COS a SII'IT7
m2m? 72n?
a? b2

(186)

(187)

(188)

(189)

(190)

(191)



Similarly to what we had earlier for the TM modes, for this TE mode we have

a

b

def ab

B x AHo [ [ayl (o) = 0P (192)
0 0

provided both m > 0 and n? so that both cos?(mmz/a) and cos?(nry/b) average to &; other

wise, for m = 0 or n = 0 we have one of the cos? factors being 1 for all  or all i, hence

a b
b
B x a2 Ho2 & /dx/dy|Hz(x,y)\2 - %\HOF. (193)
0 0
Thus,
1
b/(4or2 b 7 form >0 and n > 0,
B — L;r) _ by (194)
a a 5 form=0orn=0.
As to the magnetic field at the cross-section’s perimeter, we now have
along a long side
9 9 o MTT m2r2k? 9 . o MTX
[H||* = [Ho|" x cos ——— |Ho|” x sin® —,
a’T4 a (195)
along a short side
2272
nmy n*nk . 9 NTY
|H|||2 = |Ho|? x cos? 2 2T |Hp|? x sin’ 5
hence for m > 0 and n > 0
2272 2. 27.2
9 B a 5 memek 9 b 5 nimk 9
FrmPag = 2x 5 (1P + "o 1)+ 2xg (1P + T
perimeter
2 2 27.2
_ 2 (TN TR e
= (a+0b) x |Ho|* + (a + b)x T | Hol*,
(196)
but for m =0
b n?m2k?
i = 2xax ol + 2 5 (1 + S )
perimeter ( 1 97)
2 2.2
n T4k
= (20 +b) x |Ho* + - X T4 | Hol?,
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and likewise for n =0
2 2]{72
H [2dn = 2) x |Hol2 + & x =
FIEP = () x [P+ Tk T

perimeter

|Ho|?.

Interpreting these integrals as

2 ak’ 2
Cmn X ax |Hol® + Dpn X —5 % |Hol|”,

12
we find
%b for m > 0 and n > 0,
Cmpn = QGTH’ for m = 0 but n > 0,
a’;% for n =0 but m > 0,
while

D B 7T_2 m? +n_2 ~ m? + (a/b)n?
a2\ a0 b ) m?2 4 (a/b)?n?’

Consequently, the TE waves have

F(TEna) = Emn T om? (a/b)2n?2 5"

Dyn m? + (a/b)n® a {4 for m > 0 and n > 0,

2 form=0orn=0,

(a/b)ym? 4 (a/b)*n?
4 m? + (a/b)?n?

=932 for m =0 but n > 0,
2(a/b) for n =0 but m > 0,

for m > 0 and n > 0,

which varies in the range

9 < F(TE) < 4(a/b),

while
c (b/?;i zra%{z);"Q for m > 0 and n > 0,
G(TEmn) = Dm’n — 1 =4 2(a/b) for m =0 but n > 0,
m,n
2(b/a) for n =0 but m > 0,
which varies in the range
2a
— TE) < —.
- < G(TE) < ;

(198)

(199)

(200)

(201)

(202)

(203)

(204)

(205)

In particular, the dominant TE; o wave — which is the mode with the lowest cutoff frequency
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— has

F(TBip) = 2%, G(TEig) = 2 (206)

Resonator Cavities

e |Wikipedia article about microwave cavitied.

In principle, a microwave cavity can have any kind of geometry. In practice, most
cavities are cylinders of radius R and length d of comparable magnitudes; less common are
rectangular ¢ x b x d cavities. Either way, the cavity can be thought as a finite length d
of a waveguide in which some kind of a TM or TE wave travels along the z axis and gets

reflected back and forth of the two conducting end-caps at z = 0 and z = d, thus

E,B o Aeikz—iwt + Be—ikz—iwt' (207)

Approximating the end-caps — as well as the its walls — as perfectly conducting, we also
make them perfectly reflecting, thus |B| = |A|, while the relative phase of the forward and
backward amplitudes A and B is different for the TM and the TE waves.

Indeed, consider a TM wave

H.(z,y,2,t) = 0, (208)
Bu(a.y,2,1) = lo,y) (Aetihemiof . pemikemar), (209)
Ei(z,y,2,t) = ;—2 Vi (z,y) <Ae“k2*“’”t - Be*”“’“"t> : (210)
Ht<SL’,y, 2, f}) _ ’Lwlil‘LQNO (2 % Vt¢<x7y)) <A€+ik‘z7iwt + Befisziwt> ) (211)

Note the relative signs (marked in red) between the forward and the backward waves here.
In particular, note the opposite sign for the E; components, which stems from the opposite

signs of % — 4k,
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At the perfectly conducting endcap at z = 0, we have boundary conditions
E, = 0, H, = 0. (212)

The H, = 0 condition here is automatic for the TM waves, while the E; = 0 condition calls
for A — B = 0. Likewise, similar boundary conditions at the other endcap at z = d call for

Aetikd — Be=ikd - Altogether, this requires

pT

k = ” for a non-negative integer p = 0,1,2,3,... (213)
while
E. = Acoslilx x (@, y)e . (214)
¢

On the other hand, a TE wave has

E.(z,y,z,t) = 0, (215)

H.(z,y,2z,t) = ¥(x,y) <Ae+ikz_i“’t +Be_ikz_i“t> : (216)
ik +ikz—iwt —ikz—iwt

Ht(xv Y, Zat) = ? Vﬂﬁ(%?/) (Ae — Be ) ) (217)

Et(.r, v, Z,t) _ —21(:‘02660 (Z X Vtw(l’a y)) (AeJrisziwt + Befik‘zfiwt> ) (218)

For this wave, both H, = 0 and E; = 0 boundary conditions at each endcap are non-trivial;
however, both conditions lead to the same relations between the forward and backward

amplitudes. Specifically

A+ B =0 tokeep H,=0and E; =0 at z =0,

Aetikd o Be=ikd — g keep H, =0 and E; =0 at z =d, (219)
which together require
kE = ]%r for a positive integer p = 1,2,3.4,...
while
H, = iA sin]% X bz, y)e . (220)

Either way, we have a discrete set of wave numbers k£ and hence discrete set of resonance
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frequencies:

2 2

c2

and hence

c TP\ 2
Winnp = \/—G—M\/F?nn + (g) - (222)

For example, a rectangular a X b x d cavity resonates at frequencies

c \/m27r2 N n2m? N p2m2
w. =
P Ve Vo a? b2 d?

(223)

for integer m,n,p. Moreover, at least two of this integers must be positive while the third
may vanish. Specifically, the TM waves must have positive m and n while p may vanish,

while the TE waves may have either m = 0 or n = 0 (but not both) while p must be positive.

The lowest frequency resonance — called the fundamental mode — of the rectangular

cavity with d > a > b is the TEq o1 wave with m =1, n =0, and p = 1. For this mode,

2.2
g  TC 1 1
H, = Hy cos%x sin% et (225)
H, = —%HO sin%x cos%e*iwt, (226)
: a? . T, TZ
E, = iy/1+ 7] ZpwHp sin —sin—. (227)
H) = E, = E, = 0, (228)

For a cylindrical cavity, the TM and the TE waves have

[(TMp ) = ‘7”]2;”, [(TEp,) = j”g;”, (229)

where j, 5 is the nt positive root of the m'™ Bessel function J,,(x) and j;mn is the ntt

positive root of its derivative dJp,(z)/dx. Consequently, the resonant frequencies for these
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waves are

(jnun)z p272

02
e

form=20,1,2,...

[
€t

R2

()

_|_

d2
. n=1,23,....,p=0,1,2,...

p2ﬂ2

R2

+

a2
form=0,1,2,..., n=1,2,3,...,p=1,2,3....

|
)

For a stubby cavity with d < 2.03R, the fundamental mode is TMy 1,0 with

But for a longer cavity with d > 2.03R, the fundamental mode becomes TEq 11 with

o U1 = 1.84)
= 7= =

T) x cos(¢)

x Ji (j;;p) X cos(¢)

w

E.(p, ¢, 2)
Hy(p, ¢, 2)

E%
H,

+

T2

ji,1p

a2

9

Cc % ngi% 2.40
- Jen R ’
= FEoJo(jo,1p/R),
i £ ‘
= Z—Jé(]o;P/R),
pw
— H, = 0.

X sin —

Jl(
p

R
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Z
d
v cosT#
cos —
d )
) X sin(¢) x cos % ,

Y

(230)

(231)

(236)

(237)

(238)

(239)



E, = 0, (240)

2 y
E, = —iy|1+ <ﬁ> Zpw Ho X _,R Ji <‘71§p> X sin(¢) x sin%z, (241)
J 1

L1d Vil
R\ J11p
. ™ 1,1 . T2
E, = 1 — | Z,wH J! . —. 242
b 1 + <ji,1d> pwHo X Jp ( I ) X cos(¢) X sin 7 (242)

QUALITY OF A RESONATOR CAVITY

The quality of any kind of a resonator — be it a mechanical pendulum, an LC circuit,

or a microwave cavity, — is defined as

stored energy

Q = wo X (243)

power loss

where wq is the central frequency of the resonance. In class, I am going to explain this

subject off-the-notes.

In these notes, I am going to focus on the microwave cavities and estimate their qualities
as resonators. In general, a microwave cavity looses power to 3 mechanisms: (1) Ohmic
losses in the cavity walls, (2) losses in the dielectric filling the cavity, and (3) losses through
the hole in the wall or the antenna connecting the cavity to the outside world, thus

P = P+ P, + Py (244)

loss

and hence
1 n 1 n 1
Qnet Ql QQ Q3 .

In these notes, I am going to focus on the first mechanism and estimate ()1, but in real life

(245)

the other 2 mechanisms might reduce the net quality of the microwave cavity.

Similarly to the waveguides, the power loss due to Ohmic resistance in the walls is

P = %//|H|2d2area (246)

where the area integral is over the entire surface of the cavity — including both the side
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walls and the end caps, — while

1 W tmetal L0
B od 20 (247)

is the surface resistivity of the metal; for a copper wall and w = 27 x 10 GHz, Rs =~ 26 mS).

At the same time, the energy stored in the cavity is

— €0 g2 4 HHO 2 B = HHO 2 13
U—///<4|E| + 2 |H|)dx : ///|H|dx, (248)

hence cavity quality

woU  wppo _ [H|? dPvolume

= = X 249
@ P Ry JTTH|? d?area (249)
Sometimes, this formula is written down as
G
= — 250
Q-7 (250)
where
H|? d3vol
G = wappug x AL 4 volume (251)

J1H|? d?area

is often called the geometry factor because it depends on the cavity’s geometry but not on
the conductivity of it’s walls. But just as often, the name geometry factor refers to the

dimensionless geometry factor

A G wyen " [l H? d3volume
Zpw JTH]? d?area

(252)

it depends on a particular resonating mode of the cavity as well as on the ratios of its
dimensions — for example on the d/R ratio of a cylindrical cavity, — but does not depends

on its overall size. In terms of this dimensionless geometry factor, the quality factor of the
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microwave cavity is

Z A
Q = 2 xQ. (253)
R
As an order-of-magnitude estimate,
18 ? d3volume cavity’s volume

~ (cavity's size), (254)

J[1H|? d?area ™ " cavity’s area

while

VAl ! (255)

hence

G ~ 1. (256)
Thus, a typical microwave cavity has

Zow

~ 10% 257
R. (257)

Q ~

To conclude this section, let me actually calculate the geometry factor G for the funda-
mental TMp 1, mode of a cylindrical cavity with d < 2.03R. In this mode, the magnetic
field points in the ¢ direction throughout the cavity while its magnitude depends only on

the radial coordinate p but on on ¢ or z,

H, = HyJy(Tp) for T = w (258)
Consequently,
/ |H|? d?area = 2w Rd x |Ho|*> x C (259)
sidewall
where
C = |JIR)P = [Jy(o1)* ~ 0.270, (260)
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while

R Jo1
1
/ |H|2d2area = 27T‘H()‘2 X /\Jé(l“p)|2pdp = 27R? x |H0\2 X Gon)? /(Jé(x))zxda:
Jo,1
endcup 0 0
(261)
where
Jo,1 o
1
: @) xde = = 262
oz [l - (262)
0
for the same constant C' as in eq. (260), — which really surprised me when I have calculated
this integral using Mathematica, — hence altogether

/ |H|? d%area = 27Rd|Hp|? x C' + 2><27TR2|H0|2><% — 27C R(d+ R) x |Hy|%. (263)

whole
surface

At the same time,

R
CR?
///\H\2d3volume — 2md|Ho|? x /\J()(rp)dep — 2md|Ho|? x — (264)
0
so the ratio of the volume to surface integrals amounts to
CdR? Rd
H|2 dvol H?d%area = ——— = 1% 265
Jlfme e /[ o < S TG < sty e
Meanwhile the resonating frequency wp of the TMy 1, mode is
c Jo1
_ =22 266
REVCT (%) 200
hence
A ' Rd ' d 1.20d
G =1, 0 Sl ~ (267)

R 2(R+4d) 2  R+d R+d

For example, in a cavity with d = R the fundamental mode has G = 0.40. For a more specific

example, consider an air-filled cavity with copper walls and R = 11.5 cm which makes for
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wo = 27w x 1.00 GHz. At this frequency, copper has 75 ~ 8.15 m{2, hence quality factor

377 Q)
~ 2L 0040 = 18500. 2
Q ~ gyz—g X040 = 18500 (268)

For a longer cylindrical cavity with d > 2.03R, the fundamental mode switches from the

TMp,1,0 to the TEq 11, and the calculation becomes more complicated. So instead of doing

it here, let me put it on your phext homework set#1{] as problem#3.
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