
Quantum Two Body Problem

Consider the two body problem: Two point-like particles interacting with each

other but not subject to any external forces. In quantum mechanics, this 2-body

system is described by a Hamiltonian of the form

Ĥ =
P̂2

1

2M1
+

P̂2
2

2M2
+ V (X̂1 − X̂2). (1)

For simplicity, we assume both particles are spinless. Note that the potential

V (X̂1 − X̂2) depends only on the relative position of the two particles but is in-

variant under simultaneous translations

X1 → X1 + a, X2 → X2 + a, same shift a for both particles, (2)

and that’s why the 2 particles interact with each other but are not subject to any

external forces.

In quantum mechanics, the translational symmetries (2) are implemented by

the unitary translation operators

T̂a = exp
(
−ia · P̂net

)
, P̂net = P̂1 + P̂2 (3)

which act in the coordinate basis as

T̂a |X1,X2〉 = |X1 + a,X2 + a〉 . (4)

It is easy to see that the 3 generators P̂ i
net (i = x, y, z) of the translation symmetry

commute with the Hamiltonian (1). Indeed, all 6 momentum operators P̂ i
1,2 com-

mute with each other, so the P̂ i
net commute with all functions of momenta such as
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the net kinetic energy operator (the first 2 terms in eq. (1)), which leaves with

[
P̂ i
net, Ĥ

]
=
[
P̂ i
net, V̂

]
. (5)

Furthermore,

[
P̂ i
net, V̂

]
=
[
P̂ i
1, V̂

]
+
[
P̂ i
2, V̂

]
= −ih̄ ∂̂V

∂Xi
1

− ih̄
∂̂V

∂Xi
2

= 0

because
∂V

∂Xi
1

+
∂V

∂Xi
2

= 0 for V (X1 −X2).

(6)

Altogether, we have the 3 generators P̂ i
net and hence all the translation operators

T̂a commuting with the Hamiltonian (1). Consequently, in the common eigenbasis

of the net momenta operators P̂ i
net, all the translation operators are diagonal, and

the Hamiltonian operator Ĥ should be block-diagonal.

To see how this works, we need linear redefinitions of the two particles’ positions

and momenta. On the position side we trade the X̂1 and the X̂2 operators for the

center of mass position X̂cm =
M1

M1 +M2
X̂1 +

M2

M1 +M2
X̂2

and relative position X̂rel = X̂1 − X̂2 ,

(7)

while on the momentum side we trade the P̂1 and the P̂2 operators for the

net momentum P̂net = P̂1 + P̂2

and reduced momentum P̂red =
M2

M1 +M2
P̂1 −

M1

M1 +M2
P̂2 .

(8)

Note that the net momentum is canonically conjugate to the center-of-mass posi-

tion while the reduced momentum is conjugate to the relative position. In quantum
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terms, this means

[
X̂i

cm, P̂
j
net

]
= ih̄δij , (a)

and
[
X̂i

rel, P̂
j
red

]
= ih̄δij , (b)

but
[
X̂i

rel, P̂
j
net

]
= 0, (c)

and
[
X̂i

cm, P̂
j
red

]
= 0. (d)

Indeed:

[
X̂i

cm, P̂
j
net

]
=

M1

M1 +M2

[
X̂i

1, P̂
j
1

]
+

M2

M1 +M2

[
X̂i

2, P̂
j
2

]
=

M1

M1 +M2
× ih̄δij +

M2

M1 +M2
× ih̄δij = 1× ih̄δij , (a)

[
X̂i

rel, P̂
j
red

]
=

M2

M1 +M2

[
X̂i

1, P̂
j
1

]
+

M1

M1 +M2

[
X̂i

2, P̂
j
2

]
=

M2

M1 +M2
× ih̄δij +

M1

M1 +M2
× ih̄δij = 1× ih̄δij , (b)

[
X̂i

rel, P̂
j
net

]
= +

[
X̂i

1, P̂
j
1

]
−
[
X̂i

2, P̂
j
2

]
= +ih̄δij − ih̄δij = 0, (c)

[
X̂i

cm, P̂
j
red

]
= +

M1M2

(M1 +M2)2
[
X̂i

1, P̂
j
1

]
− M2M1

(M1 +M2)2
[
X̂i

2, P̂
j
2

]
= +

M1M2

(M1 +M2)2
× ih̄δij − M2M1

(M1 +M2)2
× ih̄δij = 0. (d)

Similar to what we have in the homework#3 (problem 4(f)), eqs. (a–d) im-

ply that in the |Xcm,Xnet〉 coordinate basis, the net and the reduced momentum

operators act on the wave-functions as

P̂ i
netΨ(Xcm,Xrel) = −ih̄ ∂Ψ

∂Xi
cm

, P̂ i
redΨ(Xcm,Xrel) = −ih̄ ∂Ψ

∂Xi
rel

. (9)

Consequently, the eigenstates of the net momentum operator have wave-function
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of the form

Ψ(Xcm,Xrel) = exp
(
−iPnet ·Xcm/h̄

)
× ψ(Xrel) (10)

where ψ(Xrel) is any 1-particle wave-function of the relative position. Thus, we

see that all the eigenvalues of the net momentum are infinitely degenerate, and

the eigenstate subspace for each eigenvalue is equivalent to the 1-particle Hilbert

space.

Now consider the two-particle Hamiltonian operator (1). Since it commutes

with the net momenta, it must be block-diagonal the basis of net momentum

eigenstates. In terms of the wave functions (10), this means

for Ψ(Xcm,Xrel) = exp
(
−iPnet ·Xcm/h̄

)
× ψ(Xrel),

ĤΨ(Xcm,Xrel) = exp
(
−iPnet ·Xcm/h̄

)
× Ĥ(block Pnet)ψ(Xrel)

(11)

where Ĥ(block Pnet) — the diagonal block of Ĥ for a particular value of the

net momentum — acts only on the 1-particle wave function ψ(Xrel), so we may

interpret it as some kind of a 1-particle Hamiltonian.

Moreover, all the Ĥ(block Pnet) for different net momenta are completely simi-

lar to each other apart from constant terms. To see how this works, let’s re-express

the net kinetic energy in terms of the net and the reduced momenta:

K̂net =
P̂2

1

2M1
+

P̂2
2

2M2
=

P̂2
net

2Mnet
+

P̂2
red

2Mred
, (12)

where

Mnet = M1 + M2 and Mred =
M1M2

M1 +M2
. (13)

Consequently, the net 2-particle Hamiltonian becomes

Ĥ =
P̂2

net

2Mnet
+

P̂2
red

2Mred
+ V (X̂rel), (14)
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and when we restrict it to an eigenspace of the net momentum, we get

Ĥ(block Pnet) =

(
constant

P2
net

2Mnet

)
+ Ĥred , (15)

with the same reduced Hamiltonian

Ĥred =
P̂2

red

2Mred
+ V (X̂rel) (16)

for all eigenvalues of the net momentum. This reduced Hamiltonian governs the

relative motion of the two particles, which looks like the motion of a single par-

ticle of reduced mass Mred in the external potential V (X). In the wave-function

language, it acts only on the ψ(Xrel factor of the 2-particle wave-function (10) as

Ĥredψ(Xrel) = − h̄2

2Mred
∇2ψ(Xrel) + V (Xrel)× ψ(Xrel). (17)

Altogether, we have reduced the 2-particle problem to a 1-particle problem in

an external potential. Indeed, once we diagonalize the reduced Hamiltonian (16)

and find its eigenvalues Ered
n and eigenwaves ψn(Xrel),

Ĥredψn(Xrel) = Ered
n ψn(Xrel), (18)

the eigenstates of the net 2-particle Hamiltonian Ĥ obtain as |Pnet;n〉 with wave-

functions

Ψ(Xcm,Xrel) = exp
(
−iPnet ·Xcm/h̄

)
× ψn(Xrel) (19)

and energies

E(Pnet;n) =
P2

net

2Mnet
+ Ered

n . (20)
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