Quantum Two Body Problem

Consider the two body problem: Two point-like particles interacting with each other but not subject to any external forces. In quantum mechanics, this 2-body system is described by a Hamiltonian of the form

$$
\begin{equation*}
\hat{H}=\frac{\hat{\mathbf{P}}_{1}^{2}}{2 M_{1}}+\frac{\hat{\mathbf{P}}_{2}^{2}}{2 M_{2}}+V\left(\hat{\mathbf{X}}_{1}-\hat{\mathbf{X}}_{2}\right) \tag{1}
\end{equation*}
$$

For simplicity, we assume both particles are spinless. Note that the potential $V\left(\hat{\mathbf{X}}_{1}-\hat{\mathbf{X}}_{2}\right)$ depends only on the relative position of the two particles but is invariant under simultaneous translations

$$
\begin{equation*}
\mathbf{X}_{1} \rightarrow \mathbf{X}_{1}+\mathbf{a}, \quad \mathbf{X}_{2} \rightarrow \mathbf{X}_{2}+\mathbf{a}, \quad \text { same shift } \mathbf{a} \text { for both particles, } \tag{2}
\end{equation*}
$$

and that's why the 2 particles interact with each other but are not subject to any external forces.

In quantum mechanics, the translational symmetries (2) are implemented by the unitary translation operators

$$
\begin{equation*}
\hat{T}_{\mathbf{a}}=\exp \left(-i \mathbf{a} \cdot \hat{\mathbf{P}}_{\text {net }}\right), \quad \hat{\mathbf{P}}_{\text {net }}=\hat{\mathbf{P}}_{1}+\hat{\mathbf{P}}_{2} \tag{3}
\end{equation*}
$$

which act in the coordinate basis as

$$
\begin{equation*}
\hat{T}_{\mathbf{a}}\left|\mathbf{X}_{1}, \mathbf{X}_{2}\right\rangle=\left|\mathbf{X}_{1}+\mathbf{a}, \mathbf{X}_{2}+\mathbf{a}\right\rangle . \tag{4}
\end{equation*}
$$

It is easy to see that the 3 generators $\hat{P}_{\text {net }}^{i}(i=x, y, z)$ of the translation symmetry commute with the Hamiltonian (1). Indeed, all 6 momentum operators $\hat{P}_{1,2}^{i}$ commute with each other, so the $\hat{P}_{\text {net }}^{i}$ commute with all functions of momenta such as
the net kinetic energy operator (the first 2 terms in eq. (1)), which leaves with

$$
\begin{equation*}
\left[\hat{P}_{\mathrm{net}}^{i}, \hat{H}\right]=\left[\hat{P}_{\mathrm{net}}^{i}, \hat{V}\right] . \tag{5}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
& {\left[\hat{P}_{\text {net }}^{i}, \hat{V}\right]=\left[\hat{P}_{1}^{i}, \hat{V}\right]+\left[\hat{P}_{2}^{i}, \hat{V}\right]=-i \hbar \frac{\widehat{\partial V}}{\partial X_{1}^{i}}-i \hbar \frac{\widehat{\partial V}}{\partial X_{2}^{i}}=0} \\
& \text { because } \frac{\partial V}{\partial X_{1}^{i}}+\frac{\partial V}{\partial X_{2}^{i}}=0 \text { for } V\left(\mathbf{X}_{1}-\mathbf{X}_{2}\right) \tag{6}
\end{align*}
$$

Altogether, we have the 3 generators $\hat{P}_{\text {net }}^{i}$ and hence all the translation operators $\hat{T}_{\mathbf{a}}$ commuting with the Hamiltonian (1). Consequently, in the common eigenbasis of the net momenta operators $\hat{P}_{\text {net }}^{i}$, all the translation operators are diagonal, and the Hamiltonian operator \hat{H} should be block-diagonal.

To see how this works, we need linear redefinitions of the two particles' positions and momenta. On the position side we trade the $\hat{\mathbf{X}}_{1}$ and the $\hat{\mathbf{X}}_{2}$ operators for the

$$
\begin{align*}
\text { center of mass position } & \hat{\mathbf{X}}_{\mathrm{cm}}=\frac{M_{1}}{M_{1}+M_{2}} \hat{\mathbf{X}}_{1}+\frac{M_{2}}{M_{1}+M_{2}} \hat{\mathbf{X}}_{2} \tag{7}\\
\text { and relative position } & \hat{\mathbf{X}}_{\mathrm{rel}}=\hat{\mathbf{X}}_{1}-\hat{\mathbf{X}}_{2}
\end{align*}
$$

while on the momentum side we trade the $\hat{\mathbf{P}}_{1}$ and the $\hat{\mathbf{P}}_{2}$ operators for the

$$
\begin{align*}
\text { net momentum } & \hat{\mathbf{P}}_{\text {net }}=\hat{\mathbf{P}}_{1}+\hat{\mathbf{P}}_{2} \\
\text { and reduced momentum } & \hat{\mathbf{P}}_{\text {red }}=\frac{M_{2}}{M_{1}+M_{2}} \hat{\mathbf{P}}_{1}-\frac{M_{1}}{M_{1}+M_{2}} \hat{\mathbf{P}}_{2} \tag{8}
\end{align*}
$$

Note that the net momentum is canonically conjugate to the center-of-mass position while the reduced momentum is conjugate to the relative position. In quantum
terms, this means

$$
\begin{align*}
{\left[\hat{X}_{\mathrm{cm}}^{i}, \hat{P}_{\mathrm{net}}^{j}\right] } & =i \hbar \delta^{i j} \tag{a}\\
\text { and } \quad\left[\hat{X}_{\mathrm{rel}}^{i}, \hat{P}_{\mathrm{red}}^{j}\right] & =i \hbar \delta^{i j}, \tag{b}\\
\text { but } \quad\left[\hat{X}_{\mathrm{rel}}^{i}, \hat{P}_{\mathrm{net}}^{j}\right] & =0, \tag{c}\\
\text { and } \quad\left[\hat{X}_{\mathrm{cm}}^{i}, \hat{P}_{\mathrm{red}}^{j}\right] & =0 . \tag{d}
\end{align*}
$$

Indeed:

$$
\begin{align*}
{\left[\hat{X}_{\mathrm{cm}}^{i}, \hat{P}_{\mathrm{net}}^{j}\right] } & =\frac{M_{1}}{M_{1}+M_{2}}\left[\hat{X}_{1}^{i}, \hat{P}_{1}^{j}\right]+\frac{M_{2}}{M_{1}+M_{2}}\left[\hat{X}_{2}^{i}, \hat{P}_{2}^{j}\right] \\
& =\frac{M_{1}}{M_{1}+M_{2}} \times i \hbar \delta^{i j}+\frac{M_{2}}{M_{1}+M_{2}} \times i \hbar \delta^{i j}=1 \times i \hbar \delta^{i j} \tag{a}\\
{\left[\hat{X}_{\mathrm{rel}}^{i}, \hat{P}_{\mathrm{red}}^{j}\right] } & =\frac{M_{2}}{M_{1}+M_{2}}\left[\hat{X}_{1}^{i}, \hat{P}_{1}^{j}\right]+\frac{M_{1}}{M_{1}+M_{2}}\left[\hat{X}_{2}^{i}, \hat{P}_{2}^{j}\right] \\
& =\frac{M_{2}}{M_{1}+M_{2}} \times i \hbar \delta^{i j}+\frac{M_{1}}{M_{1}+M_{2}} \times i \hbar \delta^{i j}=1 \times i \hbar \delta^{i j} \tag{b}\\
{\left[\hat{X}_{\mathrm{rel}}^{i}, \hat{P}_{\mathrm{net}}^{j}\right] } & =+\left[\hat{X}_{1}^{i}, \hat{P}_{1}^{j}\right]-\left[\hat{X}_{2}^{i}, \hat{P}_{2}^{j}\right] \\
& =+i \hbar \delta^{i j}-i \hbar \delta^{i j}=0, \tag{c}\\
{\left[\hat{X}_{\mathrm{cm}}^{i}, \hat{P}_{\mathrm{red}}^{j}\right] } & =+\frac{M_{1} M_{2}}{\left(M_{1}+M_{2}\right)^{2}}\left[\hat{X}_{1}^{i}, \hat{P}_{1}^{j}\right]-\frac{M_{2} M_{1}}{\left(M_{1}+M_{2}\right)^{2}}\left[\hat{X}_{2}^{i}, \hat{P}_{2}^{j}\right] \\
& =+\frac{M_{1} M_{2}}{\left(M_{1}+M_{2}\right)^{2}} \times i \hbar \delta^{i j}-\frac{M_{2} M_{1}}{\left(M_{1}+M_{2}\right)^{2}} \times i \hbar \delta^{i j}=0 \tag{d}
\end{align*}
$$

Similar to what we have in the homework\#3 (problem 4(f)), eqs. (a-d) imply that in the $\left|\mathbf{X}_{\mathrm{cm}}, \mathbf{X}_{\text {net }}\right\rangle$ coordinate basis, the net and the reduced momentum operators act on the wave-functions as

$$
\begin{equation*}
\hat{P}_{\mathrm{net}}^{i} \Psi\left(\mathbf{X}_{c m}, \mathbf{X}_{\mathrm{rel}}\right)=-i \hbar \frac{\partial \Psi}{\partial X_{\mathrm{cm}}^{i}}, \quad \hat{P}_{\mathrm{red}}^{i} \Psi\left(\mathbf{X}_{c m}, \mathbf{X}_{\mathrm{rel}}\right)=-i \hbar \frac{\partial \Psi}{\partial X_{\mathrm{rel}}^{i}} \tag{9}
\end{equation*}
$$

Consequently, the eigenstates of the net momentum operator have wave-function
of the form

$$
\begin{equation*}
\Psi\left(\mathbf{X}_{c m}, \mathbf{X}_{\mathrm{rel}}\right)=\exp \left(-i \mathbf{P}_{\mathrm{net}} \cdot \mathbf{X}_{\mathrm{cm}} / \hbar\right) \times \psi\left(\mathbf{X}_{\mathrm{rel}}\right) \tag{10}
\end{equation*}
$$

where $\psi\left(\mathbf{X}_{\text {rel }}\right)$ is any 1-particle wave-function of the relative position. Thus, we see that all the eigenvalues of the net momentum are infinitely degenerate, and the eigenstate subspace for each eigenvalue is equivalent to the 1-particle Hilbert space.

Now consider the two-particle Hamiltonian operator (1). Since it commutes with the net momenta, it must be block-diagonal the basis of net momentum eigenstates. In terms of the wave functions (10), this means

$$
\text { for } \begin{align*}
\Psi\left(\mathbf{X}_{c m}, \mathbf{X}_{\mathrm{rel}}\right) & =\exp \left(-i \mathbf{P}_{\mathrm{net}} \cdot \mathbf{X}_{\mathrm{cm}} / \hbar\right) \times \psi\left(\mathbf{X}_{\mathrm{rel}}\right) \\
\hat{H} \Psi\left(\mathbf{X}_{c m}, \mathbf{X}_{\mathrm{rel}}\right) & =\exp \left(-i \mathbf{P}_{\text {net }} \cdot \mathbf{X}_{\mathrm{cm}} / \hbar\right) \times \hat{H}\left(\text { block } \mathbf{P}_{\text {net }}\right) \psi\left(\mathbf{X}_{\mathrm{rel}}\right) \tag{11}
\end{align*}
$$

where \hat{H} (block $\mathbf{P}_{\text {net }}$) - the diagonal block of \hat{H} for a particular value of the net momentum - acts only on the 1-particle wave function $\psi\left(\mathbf{X}_{\text {rel }}\right)$, so we may interpret it as some kind of a 1-particle Hamiltonian.

Moreover, all the $\hat{H}\left(\right.$ block $\left.\mathbf{P}_{\text {net }}\right)$ for different net momenta are completely similar to each other apart from constant terms. To see how this works, let's re-express the net kinetic energy in terms of the net and the reduced momenta:

$$
\begin{equation*}
\hat{K}_{\mathrm{net}}=\frac{\hat{\mathbf{P}}_{1}^{2}}{2 M_{1}}+\frac{\hat{\mathbf{P}}_{2}^{2}}{2 M_{2}}=\frac{\hat{\mathbf{P}}_{\mathrm{net}}^{2}}{2 M_{\mathrm{net}}}+\frac{\hat{\mathbf{P}}_{\mathrm{red}}^{2}}{2 M_{\mathrm{red}}} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{\mathrm{net}}=M_{1}+M_{2} \quad \text { and } \quad M_{\mathrm{red}}=\frac{M_{1} M_{2}}{M_{1}+M_{2}} . \tag{13}
\end{equation*}
$$

Consequently, the net 2-particle Hamiltonian becomes

$$
\begin{equation*}
\hat{H}=\frac{\hat{\mathbf{P}}_{\mathrm{net}}^{2}}{2 M_{\mathrm{net}}}+\frac{\hat{\mathbf{P}}_{\mathrm{red}}^{2}}{2 M_{\mathrm{red}}}+V\left(\hat{\mathbf{X}}_{\mathrm{rel}}\right) \tag{14}
\end{equation*}
$$

and when we restrict it to an eigenspace of the net momentum, we get

$$
\begin{equation*}
\hat{H}\left(\text { block } \mathbf{P}_{\mathrm{net}}\right)=\left(\text { constant } \frac{\mathbf{P}_{\mathrm{net}}^{2}}{2 M_{\mathrm{net}}}\right)+\hat{H}_{\mathrm{red}} \tag{15}
\end{equation*}
$$

with the same reduced Hamiltonian

$$
\begin{equation*}
\hat{H}_{\mathrm{red}}=\frac{\hat{\mathbf{P}}_{\mathrm{red}}^{2}}{2 M_{\mathrm{red}}}+V\left(\hat{\mathbf{X}}_{\mathrm{rel}}\right) \tag{16}
\end{equation*}
$$

for all eigenvalues of the net momentum. This reduced Hamiltonian governs the relative motion of the two particles, which looks like the motion of a single particle of reduced mass $M_{\text {red }}$ in the external potential $V(\mathbf{X})$. In the wave-function language, it acts only on the $\psi\left(\mathbf{X}_{\text {rel }}\right.$ factor of the 2-particle wave-function (10) as

$$
\begin{equation*}
\hat{H}_{\mathrm{red}} \psi\left(\mathbf{X}_{\mathrm{rel}}\right)=-\frac{\hbar^{2}}{2 M_{\mathrm{red}}} \nabla^{2} \psi\left(\mathbf{X}_{\mathrm{rel}}\right)+V\left(\mathbf{X}_{\mathrm{rel}}\right) \times \psi\left(\mathbf{X}_{\mathrm{rel}}\right) \tag{17}
\end{equation*}
$$

Altogether, we have reduced the 2-particle problem to a 1-particle problem in an external potential. Indeed, once we diagonalize the reduced Hamiltonian (16) and find its eigenvalues $E_{n}^{\text {red }}$ and eigenwaves $\psi_{n}\left(\mathbf{X}_{\text {rel }}\right)$,

$$
\begin{equation*}
\hat{H}_{\mathrm{red}} \psi_{n}\left(\mathbf{X}_{\mathrm{rel}}\right)=E_{n}^{\mathrm{red}} \psi_{n}\left(\mathbf{X}_{\mathrm{rel}}\right), \tag{18}
\end{equation*}
$$

the eigenstates of the net 2-particle Hamiltonian \hat{H} obtain as $\left|\mathbf{P}_{\text {net }} ; n\right\rangle$ with wavefunctions

$$
\begin{equation*}
\Psi\left(\mathbf{X}_{c m}, \mathbf{X}_{\mathrm{rel}}\right)=\exp \left(-i \mathbf{P}_{\mathrm{net}} \cdot \mathbf{X}_{\mathrm{cm}} / \hbar\right) \times \psi_{n}\left(\mathbf{X}_{\mathrm{rel}}\right) \tag{19}
\end{equation*}
$$

and energies

$$
\begin{equation*}
E\left(\mathbf{P}_{\mathrm{net}} ; n\right)=\frac{\mathbf{P}_{\mathrm{net}}^{2}}{2 M_{\mathrm{net}}}+E_{n}^{\mathrm{red}} \tag{20}
\end{equation*}
$$

