
Bose–Einstein Condensation and Superfluidity
Field–Particle Duality

Our brains are classical and we have trouble understanding quantum system as such.

That is, once we understand what a quantum system describes, we can calculate all kinds

of interesting things; but to understand the nature of the system in the first place we need

to take a classical (or semiclassical) limit. Some quantum theories have two (or more) very

different classical limits, and these two (or more) limits act as dual descriptions of the same

quantum system.

For example, consider light: Is it a stream of photons or an electromagnetic wave?

Turns out, these are two classical limits of exactly same quantum theory. That is, we may

start with the classical electric and magnetic fields, quantize them, and get a quantum field

theory. But when we look for the Hamiltonian eigenstates of that quantum theory, we find

arbitrary numbers of identical bosons, each boson being a massless relativistic particle with

two transverse polarization states — a photon. On the other hand, we may build a quantum

theory of arbitrary number of photons — and mind the Bose statistics. But then in the

Hilbert space of that theory we find coherent states which behave exactly like the classical

EM fields, and even operators which act exactly like the quantum EM fields. Thus, the

quantum theory of photons and the quantum theory of EM fields are exactly the same —

the same Hilbert space and the same Hamiltonian.

The same field-particle duality applies to other kinds of fields and particles: some were

first discovered as fields — like the EM fields — while others as particles — like the electrons

— but the quantum theory always contains both the fields and the particles, and we may

take whichever classical limit is more convenient for the problem at hand. The same duality

works for the non-relativistic particles and fields in the condensed matter setting, and it’s

often very useful. For example, the superfluidity of liquid helium can be described by the

Landau–Ginzburg field theory, which is the classical limit of the quantum field theory whose

quanta are helium atoms. Similar Landau–Ginzburg descriptions work for the Bose–Einstein

condensates of cold heavy atoms, and even for the Cooper pairs in superconductors. On the

other hand, the quantized sound waves in crystals are often described in terms of quasipar-

ticles — the phonons; similarly, other kinds of waves in condensed matter are also described
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in terms of quasiparticles.

In my previous extra lecture I have explained constructed the non-relativistic quantum

field theory of an arbitrary number of identical bosons such as helium atoms, cf. my notes on

the subject. In this lecture — and in these notes — we shall start by taking a classical field

theory limit and seeing how it describes the Bose–Einstein condensate (BEC) of the helium

atoms at zero temperature, both at rest and in superfluid motion. We shall then go back to

the quantum field theory, get a better picture of the BEC ground state, and get the spectrum

of its quasi-particle excitations. In particular, we shall see that all the quasiparticles move

faster than some minimal velocity vm > 0, and then we shall use this minimal velocity to

explain how the superfluid can flow without any resistance.

Non-Relativistic QFT and the Landau–Ginzburg Theory

Let’s start with the non-relativistic QFT of an arbitrary number of bosonic atoms. For

simplicity, let’s assume spinless atoms like
4
He, so the atom-annihilation field ψ̂(x) and the

atom-creation field ψ̂†(x) do not carry any spin indices, and their (equal-time) commutation

relations are simply

[ψ̂(x), ψ̂(y)] = 0, [ψ̂†(x), ψ̂†(y)] = 0, [ψ̂(x), ψ̂†(y)] = δ(3)(x− y). (1)

We also assume that the interactions between the atoms are dominated by the 2-body po-

tential V2(x− y), thus in QFT terms

V̂net =
1

2

∫

d3x

∫

d3y V2(x− y)× ψ̂†(x)ψ̂†(y)ψ̂(y)ψ̂(x). (2)

Furthermore, the 2-body potential V2 is dominated by the short-range repulsion, so I am

making a zero-range approximation V2(x − y) = λδ(3)(x − y): It is a good approximation

to reality for a low-density ultra-cold BEC of heavy atoms, and its a good starting point for

qualitative understanding of the superfluid liquid helium. Thus,

V̂net =
λ

2

∫

d3x ψ̂†ψ̂†ψ̂ψ̂ 〈〈where all fields are at x 〉〉. (3)

To get the complete QFT Hamiltonian, we add the net kinetic energy operator

K̂net =
h̄2

2M

∫

d3x∇ψ̂† · ∇ψ̂. (4)

Also, for a system of a thermodynamically large number of atoms, we should put it in a
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chemical equilibrium with an infinite atom reservoir rather than precisely fix the number of

atoms, so the Hamiltonian should measure E − µN — where µ is the chemical potential —

rather than the internal energy E. Thus altogether,

Ĥ = K̂net + V̂net − µN̂ =

∫

d3x

(

h̄2

2M
∇ψ̂† · ∇ψ̂ +

λ

2
ψ̂†ψ̂†ψ̂ψ̂ − µψ̂†ψ̂

)

. (5)

Since I have derived this non-relativistic QFT as a theory of an arbitrary number of

quantum atoms, it has an obvious classical limit as a theory of classical atoms. But it

has a different classical limit as the Landau–Ginzburg theory in which the quantum field

ψ̂(x) becomes a classical complex field φ(x). In the Hamiltonian formulation, the canonical

conjugate ‘momentum’ to φ(x) at each x is 1
ih̄φ

∗(x), and the Hamiltonian is the classical

analogue of the quantum Hamiltonian (5), namely

H [φ, φ∗] =

∫

d3x

(

h̄2

2M
∇φ∗ · ∇φ +

λ

2
|φ|4 − µ |φ|2

)

. (6)

Or in the Lagrangian formulation,

L[φ, φ∗, φ̇, φ̇∗] =

∫

d3x

(

−h̄ Im(φ∗φ̇) +
h̄2

2M
∇φ∗ · ∇φ +

λ

2
|φ|4 − µ |φ|2

)

. (7)

As we shall see in a moment, the Landau–Ginzburg field φ(x) describes the superfluid motion

of the Bose–Einstein condensate (BEC), which the atoms form at very low temperatures.

In the undergraduate StatMech textbooks, Bose–Einstein condensation of a gas or liquid

at zero temperature is often described as all the atoms being in exactly the same quantum

state, namely the zero momentum state |k = 0〉. In terms of the occupation numbers nk for

the momentum modes k, such naive BEC has n0 = N while all the other nk = 0,

|naive BEC〉 =

(

â†0
)N

√
N !

|vac〉 . (8)

However, this naive BEC state has unphysical long-distance correlations between the quan-
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tum fields at arbitrarily distant points in space:

G(x− y) = 〈naive BEC| ψ̂†(x)ψ̂(y) |naive BEC〉

− 〈naive BEC| ψ̂†(x) |naive BEC〉 × 〈naive BEC| ψ̂(y) |naive BEC〉

= n − 0× 0 = n for any x− y,

where n = density =
N

volume
.

(9)

In real life, such long-distance correlations can never happen in any macroscopic tank of

liquid helium, so we need a better model to the ground state of the BEC. For simplicity,

let’s keep all the atoms in the k = 0 mode, thus nk = 0 for all k 6= 0, but for the k = 0

mode we replace the |n0 = N〉 state with a coherent state with a similar average number of

atoms, thus

|coherent〉 = e−N/2 exp
(
√
Nâ†0

)

|0〉 . (10)

Note: not having a definite value of N is OK in the thermodynamic limit as long as ∆N ∼
√
N ≪ N , which is indeed what we have in the coherent state. In QFT terms, the coherent

state (10) obeys

ψ̂(x) |coherent〉 =
√
n |coherent〉 at all x, (11)

hence

〈coherent| ψ̂(y) |coherent〉 =
√
n, (12)

〈coherent| ψ̂†(x) |coherent〉 =
√
n, (13)

〈coherent| ψ̂†(x)ψ̂(y) |coherent〉 = n, (14)

and therefore

G(x− y) = n −
√
n×

√
n = 0, (15)

no long-distance correlations.

A moving BEC — such as a flowing superfluid helium — is also naively described as

all the atoms being in the same quantum state, but this time its not the |k = 0〉 state but
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rather some moving state with a wave-function Ψ(x). Again, to avoid un-physical long-

distance correlations, it’s better to approximate the moving BEC state by a coherent state

with

〈coh| ψ̂(x) |coh〉 =
√
N ×Ψ(x) = φ(x), (16)

where φ(x) can be identified as the classical Landau–Ginzburg field. Specifically, this coher-

ent state obtains as

|coh〉 = e−N/2 exp

(
∫

d3xφ(x)ψ̂†(x)

)

|0〉 , (17)

and it obeys

∀x : ψ̂(x) |coh〉 = φ(x) |coh〉 . (18)

The Landau–Ginzburg field φ(x) encodes both the density and the velocity of the flowing

BEC. To see how this works, let’s start with the net atom number the net momentum

operators

N̂ =

∫

d3x ψ̂†ψ̂, (19)

P̂ =

∫

d3x
(

− i
2 h̄ψ̂

†(∇ψ̂) + i
2 h̄(∇ψ̂

†)ψ̂
)

, (20)

which in QFT terms both look like integrals of local operators

number density n̂(x) = ψ̂†(x)ψ̂(x), (21)

momentum density
~̂P(x) = − i

2 h̄ψ̂
†(x)∇ψ̂(x) + i

2 h̄∇ψ̂
†(x)ψ̂(x). (22)

For the coherent state (17), the expectation values of these local operators evaluate to

n(x) = 〈coh| n̂(x) |coh〉 = φ∗(x)φ(x) = |φ(x)|2, (23)

~P(x) = 〈coh| ~̂P(x) |coh〉 = − i
2 h̄φ

∗(x)∇φ(x) + i
2 h̄φ(x)∇φ

∗(x)

= h̄ Im
(

φ∗(x)∇φ(x)
)

= h̄|φ(x)|2∇
(

phase(φ(x))
)

. (24)

Thus, we see that the magnitude of the Landau–Ginzburg field governs the local density of

the BEC. As to the velocity of the BEC flow, it follows from the phase of the LG field, or
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rather from the gradient of this phase. Indeed, the momentum density of any fluid is related

to it mass density Mn(x) and velocity v(x) as

~P(x) = Mn(x)v(x), (25)

hence for the flowing BEC

v(x) =
~P(x)

Mn(x)
=

h̄|φ(x)|2∇
(

phase(φ(x))
)

M |φ(x)|2 =
h̄

M
∇
(

phase(φ(x))
)

. (26)

Note: As written, eqs. (23) and (26) apply only at zero temperature, and only to the

approximation that the quantum state of the flowing BEC is the coherent state (17). In

a real superfluid at a finite (albeit rather low) temperature, the situation is a bit more

complicated. The best description of the liquid helium II (below 2.17 K) is the two fluid

theory: the superfluid and the normal fluid coexisting in the same space. The superfluid is

comprised of the BEC, while the normal fluid is comprised of the quasiparticle excitations

of the BEC ground state. For the superfluid component — and only for the superfluid

component — its density and velocity are encoded in the Landau–Ginzburg field

φ(x) = 〈helium| ψ̂(x) |helium〉 , (27)

ns(x) = |φ(x)|2, (28)

vs(x) =
h̄

M
∇
(

phase(φ(x))
)

, (29)

but the density and the velocity of the normal fluid are unrelated to the LG field.

BEC Ground State and Excitations

Let’s go back to the BEC at zero temperature and at rest. In the coherent state ap-

proximation, the expectation value of its energy obtains from the classical Landau–Ginzburg

Hamiltonian

H [φ, φ∗] = 〈coh| Ĥ |coh〉 =

∫

d3x

(

1

2m
|∇φ|2 +

λ

2
|φ|4 − µ|φ|2

)

, (30)

and the φ(x) which minimizes this classical energy gives us the best coherent-state approx-

imation to the BEC ground state. In particular, for any negative value of the chemical
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potential µ, the energy (30) is minimized for φ(x) ≡ 0, which corresponds to the vacuum

state of the quantum field theory. OOH, for a positive chemical potential, the energy (30)

is minimized for

|φ|2 = n̄s =
µ

λ
same at all x. (31)

The phase of φ is arbitrary, as long as it is the same at all x (in the non-moving BEC), so

without loss of generality we assume φground =
√
n̄s. In the quantum theory, this corresponds

to a constant non-zero ground-state expectation value

〈

ψ̂(x)
〉

=
√
n̄s = const. (32)

The simplest quantum state with this expectation value of the atom-annihilation field

ψ̂(x) is the coherent state (17). However, interactions of this expectation value with the

fluctuations of the quantum fields around this coherent state change the ground states of the

k 6= 0 modes and they no longer correspond to nk = 0. To see how this works, consider the

shifted quantum fields

δψ̂(x) = ψ̂(x) −
〈

ψ̂
〉

= ψ̂ −
√
n̄s , δψ̂†(x) = ψ̂†(x) −

〈

ψ̂
〉∗

= ψ̂† −
√
n̄s , (33)

and let’s rewrite the Hamiltonian operator

Ĥ = K̂net + V̂net − µN̂ =

∫

d3x

(

h̄2

2M
∇ψ̂† · ∇ψ̂ +

λ

2
ψ̂†ψ̂†ψ̂ψ̂ − µψ̂†ψ̂

)

(5)

in terms of these shifted fields. Term by term in eq. (5), we have

∇ψ̂† · ∇ψ̂ = ∇δ̂ψ† · ∇δψ̂, (34)

ψ̂†ψ̂ = (
√
n̄s + δψ̂†)(

√
n̄s + δψ̂) = n̄s +

√
n̄s
(

δψ̂† + δψ̂
)

+ (δψ̂†)(δψ̂), (35)

ψ̂†ψ̂†ψ̂ψ̂ = (
√
n̄s + δψ̂†)2(

√
n̄s + δψ̂)2

= n̄2s + 2n̄
3/2
s

(

δψ̂† + δψ̂
)

+ n̄s
(

(δψ̂†)2 + 4(δψ̂†)(δψ̂) + (δψ̂)2
)

+ 2
√
n̄s(δψ̂

†)(δψ̂† + δψ̂)(δψ̂) + (δψ̂†)2(δψ̂)2, (36)
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hence for λn̄s = µ,

λ

2
(ψ̂†)2(ψ̂)2 − µψ̂†ψ̂ = −λn

2
s

2
+ 0× (δψ̂† + δψ̂)

+ λn̄s
(

1
2(δψ̂

†)2 + (δψ̂†)(δψ̂) + 1
2(δψ̂)

2
)

+ λ
√
n̄s(δψ̂

†)(δψ̂† + δψ̂)(δψ̂) + 1
2λ(δψ̂

†)2(δψ̂)2.

(37)

Note the organization of the RHS here according to net powers of the shifted fields δψ̂† and

δψ̂. Reorganizing the whole Landau–Ginzburg Hamiltonian along the similar lines, we get

Ĥ − µN̂ = const + Ĥfree + Ĥint (38)

where

Ĥfree =

∫

d3x

(

h̄2

2m
∇δψ̂† · ∇δψ̂ + λn̄s

(

(δψ̂†)(δψ̂) + 1
2(δψ̂)

2 + 1
2(δψ̂

†)2
)

)

(39)

comprises the quadratic (and bilinear) terms in the shifted fields, while

Ĥint =

∫

d3x
(

λ
√
n̄s(δψ̂

†)(δψ̂† + δψ̂)(δψ̂) + 1
2λ(δψ̂

†)2(δψ̂)2
)

(40)

comprises the cubic and the quartic terms. Physically, the Ĥfree describes the free quanta

of the shifted fields — i.e., of the quantum fields’ fluctuations around their ground-state

expectation values, — while the Ĥint describes the interactions between such quanta.

Our next task is to diagonalize the Ĥfree; this should give us the leading approximation to

the excitation spectrum as well as the next approximation to the ground state (next after the

coherent state). The better approximations after that would obtain by perturbation theory

in Ĥint, but I won’t do it in these notes. Instead, diagonalizing just the free Hamiltonian for

the fluctuations would be interesting enough.

In terms of the operators â†
k
and â

k
creating and annihilating atoms with definite mo-
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menta, the shifted fields (33) are

δψ̂(x) = ψ̂(x) −
〈

ψ̂
〉

= L−3/2
∑

k 6=0

e−ik·xâk + shifted zero mode,

δψ̂†(x) = ψ̂†(x) −
〈

ψ̂
〉∗

= L−3/2
∑

k 6=0

e+ik·xâ†k + shifted zero mode.
(41)

Plugging these expansions into eq. (39) and ignoring the shifted zero modes, we get

Ĥfree =
∑

k 6=0

((

h̄2k2

2m
+ λn̄s

)

â†
k
â
k

+ 1
2λn̄s

(

â
k
â−k

+ â†
k
â†−k

)

)

. (42)

This Hamiltonian has general form

Ĥ =
∑

k

(

Akâ
†
k
â
k

+ 1
2Bk

(

â
k
â−k

+ â†
k
â†−k

)

)

, (43)

for real Ak = A−k and Bk = B−k, so it may be diagonalized via the Bogolyubov transform

of the creation and annihilation operators:

b̂
k

= cosh(tk)× â
k

+ sinh(tk)× â†−k
,

b̂†
k

= cosh(tk)× â†
k

+ sinh(tk)× â−k
.

(44)

for appropriate real parameters tk = t−k. To save class time, let me summarize this Bo-

golyubov transform in a few lemmas that I shall prove in the Appendix to these notes instead

of right here.

Lemma 1: For any real tk = t−k, the b̂k and b̂†k operators obey the same bosonic commu-

tation relations as the â
k
and â†

k
operators,

[

b̂k, b̂k′

]

= 0,
[

b̂†k, b̂
†
k′

]

= 0,
[

b̂k, b̂
†
k′

]

= δk,k′ . (45)

Lemma 2: For any Hamiltonian of the form (43) with real Ak = A−k, real Bk = B−k and

|Bk| < Ak, there is a Bogolyubov transform (44) with

tk =
1

2
artanh

Bk

Ak

, (46)

which leads to

Ĥ =
∑

k

h̄ω(k) b̂†kb̂k + constant (47)
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for h̄ω(k) =
√

A2
k
− B2

k
. (48)

Clearly, the ground state of the Hamiltonian (47) is the state annihilated by all the b̂
k

operators,

∀k, b̂
k
|ground〉 = 0, (49)

while the excited states obtain by acting with the b̂†k operators on the ground state,

|excited〉 = b̂†
k1

· · · b̂†
kn

|ground〉 , Eexcited − Eground = ω(k1) + · · · + ω(kn). (50)

Physically, we may interpret such excitations as containing n quasiparticles of respective

energies ω(k1), . . . ω(kn). Thus, the operators b̂†
k
create quasiparticles, the operators b̂

k

annihilate those quasiparticles, and the ground state defined by eq. (49) is the quasiparticle

vacuum.

Lemma 3: The quasiparticle creation and annihilation operators b̂†k and b̂k are related to

the atomic creation and annihilation operators â†k and âk by a unitary operator transform,

b̂†
k

= e+F̂ × â†
k
× e−F̂ , b̂

k
= e+F̂ × â

k
× e−F̂ , (51)

for the antihermitian operator

F̂ =
1

2

∑

k

tk
(

âkâ−k − â†kâ
†
−k

)

. (52)

Consequently, the state

|ground〉 = e+F̂ |coherent〉 (53)

is annihilated by all the quasiparticle annihilation operators b̂k, so it’s the ground state of

the Hamiltonian (47).

Unlike the |coherent〉 state of the BEC which has all the atoms in the k = 0 mode, the

ground state (53) also has a lot of atoms paired in (+k,−k) modes. In fact, experiments

with the Bose–Einstein condensates of ultra-cold atoms show more atoms in such ±k pairs

than the atoms in the k = 0 mode itself.
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Lemma 4: For the state (53), the net number of atoms in k 6= 0 modes is

Nk 6=0 = 〈ground| N̂k 6=0 |ground〉 =
∑

k 6=0

sinh2(tk). (54)

Lemma 5: The quasiparticle vacuum state (49) has zero net mechanical momentum, while

the quasiparticles have definite momenta h̄k, thus

P̂net =
∑

k

h̄kâ†kâk =
∑

k

h̄kb̂†kb̂k . (55)

I shall prove the Lemmas 1–5 in the Appendix to these notes. Meanwhile, let me put

them in the specific context of the Bose–Einstein condensate, so let’s go back to the Landau–

Ginzburg theory and the Hamiltonian (38) for the fluctuation fields. — or rather the free

part of that Hamiltonian,

Ĥfree =
∑

k 6=0

((

h̄2k2

2m
+ λn̄s

)

â†
k
â
k

+ 1
2λn̄s

(

â
k
â−k

+ â†
k
â†−k

)

)

. (42)

Clearly, this free Hamiltonian is a special case of (43) with

Ak =
h̄2k2

2m
+ λn̄s , Bk = λn̄s, (56)

hence

tk =
1

2
artanh

2λn̄sm

2λn̄2m + h̄2k2
−→

{∞ for small k,

0 for large k.
(57)

while

h̄ω(k) =

√

√

√

√

(

h̄2k2

2m
+ λn̄s

)2

− (λn̄s)2 = h̄k ×
√

k2

4m2
+
λn̄s
m

. (58)
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Graphically,

k

ω(k)

phonons, ω ≈ cs × k

atoms knocked out of BEC, h̄ω ≈ h̄2k2

2m

(59)

• Note that at high quasiparticle momenta k we have h̄ω(k) ≈ h̄2k2/2m while t(k) ≪ 1

and hence b̂k ≈ âk and b̂†k ≈ â†k. In other words, the quasiparticle created by the b̂†k

and annihilated by the b̂
k
is approximately a free atom, or rather an atom kicked out

of the BEC condensate and given a high momentum k.

• On the other hand, for low (but non-zero) quasiparticles momenta

ω(k) ≈ k ×
√

λn̄s/m ≡ k × cs (60)

while t(k) is large and hence b̂†k ∝ (â†k+ â−k). This means that the b̂†k operator creates

a quantum of the δφ∗(x) + δφ(x) ∝ δns(x), i.e., a quantum of the condensate density

wave. In other words, the quasiparticle created by the b̂†k (and annihilated by the b̂k)

is a phonon; indeed, the quasiparticle’s velocity cs =
√

λn̄s/m is the speed of sound

in the BEC.
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• Finally, at the intermediate momenta k, the quasiparticles interpolate between the

phonons and the atoms kicked out of the BEC.

Thus far, we have ignored the interactions between the fluctuation fields δψ̂(x) and

δψ̂†(x) and hence between the quasiparticles. In quasiparticle terms, the interaction Hamil-

tonian

Ĥint =

∫

d3x
(

λ
√
n̄s(δψ̂

†)(δψ̂† + δψ̂)(δψ̂) + 1
2λ(δψ̂

†)2(δψ̂)2
)

(40)

comprises terms of the form

b̂b̂b̂, b̂†b̂b̂, b̂†b̂†b̂, b̂†b̂†b̂†, and b̂b̂b̂b̂, b̂†b̂b̂b̂, b̂†b̂†b̂b̂, b̂†b̂†b̂†b̂, b̂†b̂†b̂†b̂†. (61)

In particular, the b̂†b̂†b̂† and the b̂†b̂†b̂†b̂† terms do not annihilate the |ground〉 state of the

free Hamiltonian, so it suffers perturbative corrections. Fortunately, there is a way to recast

all such corrections in terms of the unitary operator transform,

|true ground state〉 = eF̂ |coherent〉 (62)

for

F̂ = 1
2

∑

k 6=0

tk(âkâ−k
− â†

k
â†−k

)

+ perturbative corrections involving terms of the form

(âââ − â†â†â†), (ââââ − â†â†â†â†), . . .

(63)

Consequently, we may redefine the quasiparticle creation and annihilation operators as

b̂†k = e+F̂ × â†k × e−F̂ , b̂k = e+F̂ × âk × e−F̂ , (51)

in terms of the perturbatively corrected unitary transform eF̂ , so that the b̂
k
and the b̂†

k
obey

the bosonic commutation relations and all the b̂
k
annihilate the true ground state. Thus,

we still have the quasiparticle picture of the excited states of the complete Hamiltonian,

although the relation ω(k) between quasiparticles energy and momentum suffers perturbative

corrections. Nevertheless, qualitatively the ω(k) function remains as on the diagram (59), so

the low-momentum quasiparticles are phonons, the high-momentum quasiparticles are atoms

kicked out of the BEC, and the intermediate-momentum quasiparticles interpolate between

the two.
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Superfluid Helium

Thus far we have used the Landau–Ginzburg theory which is good for the BEC of ultra-

cold atoms but becomes inaccurate for the superfluid liquid helium. The problem stems

from higher average momenta of the helium atoms and hence shorter De Broglie wavelength

which becomes comparable to the range of the inter-atomic forces. Consequently, we may

no longer approximate the two-body potential as V2(x−y) = λδ(3)(x−y), so instead of the

local Landau–Ginzburg Hamiltonian we should use

Ĥ −µN̂ =

∫

d3x

(

1

2m
∇̂ψ† · ∇ψ̂ − µψ̂†ψ̂

)

+
1

2

∫

d3x

∫

d3y V2(x−y)×ψ̂†(x)ψ̂†(y)ψ̂(y)ψ̂(x).

(64)

To find the ground state of this Hamiltonian, we start with the classical field limit and

minimize the classical Hamiltonian

H [φ, φ∗] =

∫

d3x

(

1

2m
|∇φ|2 − µ|φ|2

)

+
1

2

∫

d3x

∫

d3y V2(x−y)×|φ(x)|2×|φ(y)|2. (65)

Again, the minimum obtains for φ(x) = const, specifically

|φ|2 = n̄s =
µ

λ
, any constant phase of φ, (66)

where

λ
def
=

∫

d3xV2(x) > 0, (67)

or in terms of the Fourier transform of the two-atom potential

W (k) =

∫

d3xV2(x)e
−ik·x, (68)

λ = W (0). (69)

Given the classical ground-state expectation value of the condensate field φ, we go back

to the quantum field theory and shift the quantum field just as we did before,

δψ̂(x) = ψ̂(x) −
〈

ψ̂
〉

= ψ̂ −
√
n̄s , δψ̂†(x) = ψ̂†(x) −

〈

ψ̂
〉∗

= ψ̂† −
√
n̄s , (33)

and then we re-express the Hamiltonian (64) in terms of the shifted quantum fields and

re-arrange the terms according to the net power of the shifted fields. Just as we had earlier
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for the Landau–Ginzburg theory, we end up with

Ĥ − µN̂ = const + Ĥfree + Ĥint (38)

where Ĥfree comprises the quadratic (and bilinear) terms while Ĥint comprises the cubic and

the quartic terms which we treat as perturbations.

Lemma 6:

Ĥfree =
h̄2

2m

∫

d3x∇δψ̂† · ∇δψ̂

+

∫

d3x

∫

d3y V2(x− y)×
(

ψ̂†(x)ψ̂(y) + 1
2 ψ̂(x)ψ̂(y) + 1

2 ψ̂
†(x)ψ̂†(y)

)

=
∑

k 6=0

((

h̄2k2

2m
+ n̄sW (k)

)

â†kâk + 1
2 n̄sW (k)

(

âkâ−k + â†kâ
†
−k

)

)

.

(70)

Again, this Hamiltonian can be diagonalized by a Bogolyubov transform, exactly as we

did it for the LG theory in lemmas 1–5, except for the new values of

Ak =
h̄2k2

2m
+ n̄sW (k) and Bk = n̄sW (k). (71)

Consequently, we end up with

Ĥfree =
∑

k 6=0

h̄ω(k)b̂†kb̂k + const (72)

so the ground state is the quasiparticle vacuum, while the quasiparticles have definite mo-

menta k and energies

h̄ω(k) =

√

√

√

√

(

h̄2k2

2m
+ n̄sW (k)

)2

− (λn̄s)2 = h̄k ×
√

k2

4m2
+
n̄s
m
W (k) . (73)
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For the helium atoms, the W (k) drops off at large momenta,

k

W (k)

hence the energy-momentum relation ω(k) for the quasiparticles — or equivalently, the

wavenumber-frequency dispersion relation for the waves of small fluctuations — has a dip:

k

ω(k)

ω
k = vc

ω = csk

h̄ω = h̄2k2

2m

(74)

Again, this curve shows that the low-momenta quasiparticles are phonons while the high

momenta quasiparticles are helium atoms knocked out from the BEC. But now we also have

unexpectedly-low energy quasiparticles at intermediate momenta; they are called the rotons
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for historical reason. The rotons have much larger phase space than the phonons, so at

temperatures T ∼ 1 K the rotons dominate the quasiparticle gas, which is the normal-fluid

component of the finite-temperature liquid Helium II.

The most important feature of the ω(k) curve (74) is the positive lower bound on the

energy-to-momentum ratio,

∀k : ω(k) > vc × |k| for a positive vc. (75)

We shall see momentarily that it is this lower bound which gives rise to the superfluidity.

Superfluidity

Consider a flowing superfluid; for simplicity, let it flow with a uniform velocity v. Clas-

sically, this flow is described by

φ(x) =
√
n̄s × exp(imv · x) (76)

while quantum mechanically, we have a coherent pile up of atoms into the k = mv mode,

while other atoms form pairs with momenta k1,2 = mv±krel. Altogether, we have a quantum

state very much like the state of the superfluid at rest, except all atom’s momenta are shifted

by mv. In other words, the state of the flowing superfluid obtains from the ground state of

the superfluid at rest via Galilean boost of velocity v.

The excitation spectrum of the moving superfluid also obtains via Galilean boost of the

Hamiltonian,

Ĥ ′ = Ĥ + v · P̂net + 1
2v

2Mnet . (77)

For simplicity, let’s ignore the interactions between the quasiparticles and focus on their free

Hamiltonian. In quasiparticle terms,

Ĥfree = const +
∑

k

h̄ω(k) b̂†
k
b̂
k
, (78)

P̂net =
∑

k

h̄k b̂†kb̂k , (79)
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hence for a moving superfluid

Ĥ ′(v) = const′ +
∑

krel

h̄
(

ω(krel) + v · krel
)

b̂†
krel
b̂
krel

(80)

where h̄krel denotes the quasiparticle momenta in the frame of the moving superfluid ; in the

lab frame, the quasiparticle momentum is p = h̄krel +mv.

Before we apply eq. (80) to the liquid Helium II, consider the ideal gas. For the ideal

gas at rest, the Hamiltonian also has form (78) where the ‘quasiparticles’ are the atoms and

ω(k) = h̄k2/2m. Consequently, the uniformly flowing gas has

Ĥ ′(v) = const +
∑

krel

(

h̄2krel
2

2m
+ v · h̄krel

)

b̂†
krel
b̂
krel

(81)

where the frequencies

ω′(krel) =
h̄krel

2

2m
+ v · krel (82)

are positive for some modes krel and negative for other modes. In particular, for krel in

opposite direction from the gas flow v and of magnitude h̄krel < 2mv, the frequency ω′(krel)

is negative.

Now, while a harmonic oscillator with a positive frequency ω has a unique ground state,

the oscillator with a negative frequency has energy spectrum unlimited from below. Which

means that any perturbation — however small it might be — would cause transitions building

up the number of quanta while lowering the energy. For the ideal gas, this means spontaneous

build up of atoms with ω′(krel) < 0 — i.e., with lab-frame velocities

∣

∣

∣

∣

vqp(krel) = v +
h̄krel
m

∣

∣

∣

∣

< |v|, (83)

by taking them out of the coherent motion with the gas. In other words, any interactions

with the outside world (for example, the walls of the pipe the gas flows through) would

spontaneously knock the atoms out of the coherent flow of the gas and slow them down.

Such slowed-down atoms would dissipate the net energy and the net momentum of the

flowing gas; it is this dissipation that we experimentally observe as resistance to the flow.
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Now consider the superfluid Helium with ω(k) as on the diagram (74). Unlike the ideal

gas with ω ∝ k2, the superfluid has ω ∝ |k| at low momenta, and for any quasiparticle

momenta ω(k) > vc × |k| for some positive vc. Consequently, as long as the Helium flows at

speed v less than the critical speed vc, we have

ω′(krel) = ω(krel) + v · krel > 0 for all krel . (84)

Indeed,

ω(krel) + v · krel > ω(krel) − vkrel > ω(krel) − vckrel ≥ 0. (85)

Consequently, there are no negative-energy quasiparticles — like the slowed-down atoms —

so there are no microscopic transitions lowering the superfluid’s net energy. This means no

energy dissipation, and that’s why the superfluid flows without resistance, hence the name

superfluidity.

APPENDIX: Proofs of the Lemmas

Lemma 1: the bosonic commutation relations (45) for the quasiparticle creation and anni-

hilation operators. Starting from the bosonic commutation relations

[âk, âk′] = 0, [â†k, â
†
k′] = 0, [âk, â

†
k′] = δk,k′ (86)

for the operators creating and annihilating the atoms, and treating eqs.

b̂
k

= cosh(tk)× â
k

+ sinh(tk)× â†−k
,

b̂†
k

= cosh(tk)× â†
k

+ sinh(tk)× â−k
.

(44)

as the definitions of the b̂k and b̂†k operators, we immediately calculate

[b̂
k
, b̂

k′ ] = cosh(tk) sinh(tk′)×
(

[â
k
, â†

−k′] = δk,−k′

)

+ sinh(tk) cosh(tk′)×
(

[â†−k
, â

k′] = −δ−k,k′

)

= δk′,−k ×
(

cosh(tk) sinh(tk′) − sinh(tk) cosh(tk′) = sinh(tk′ − tk)
)

= 0 because t′k = tk when k′ = −k.

(87)

In the same way, [b̂†
k
, b̂†

k′ ] = 0.
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Finally,

[b̂k, b̂
†
k′ ] = cosh(tk) cosh(tk′)×

(

[âk, â
†
k′] = δk,k′

)

+ sinh(t−k) sinh(t−k′)×
(

[â†−k, â−k′] = −δ−k,−k′ = −δk,k′

)

= δk,k′ ×
(

cosh2(tk)− sinh2(t−k) = cosh2(tk)− sinh2(tk) = 1
)

= δk,k′ .

(88)

Quod erat demonstrandum.

Lemma 2: bringing the Hamiltonian

Ĥ =
∑

k

(

Akâ
†
kâk + 1

2Bk

(

âkâ−k + â†kâ
†
−k

)

)

, (43)

to the form

Ĥ =
∑

k

h̄ω(k) b̂†
k
b̂
k

+ constant (47)

for h̄ω(k) =
√

A2
k
− B2

k
. (48)

Let’s start by expressing the product b̂†
k
b̂
k
in terms of the â† and â operators. Applying both

definitions (44), we immediately obtain

b̂†kb̂k = cosh2(tk) â
†
kâk + cosh(tk) sinh(tk) (â

†
kâ

†
−k + â−kâk)

+ sinh2(tk) (â−kâ
†
−k = â†−kâ−k + 1).

(89)

Likewise,

b̂†−k
b̂−k

= cosh2(t−k) â
†
−k
â−k

+ cosh(t−k) sinh(tk) (â
†
−k
â†
k
+ â

k
â−k

)

+ sinh2(t−k) (âkâ
†
k
= â†

k
â
k
+ 1).

(90)

Assuming t−k = tk, we may combine

b̂†
k
b̂
k
+ b̂†−k

b̂−k
=
(

cosh2(tk) + sinh2(tk) = cosh(2tk)
)

× (â†
k
â
k
+ â†−k

â−k
)

+
(

2 cosh(tk) sinh(tk) = sinh(2tk)
)

× (â†
k
â†−k

+ â−k
â
k
) + const.

(91)

Now let’s plug this formula into a Hamiltonian of the form (47) for some ωk and require that
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the result matches the original Hamiltonian (43). Assuming ω−k ≡ ωk, we obtain

Ĥ =
∑

k

h̄ωkb̂
†
kb̂k =

1

2

∑

k

h̄ωk(b̂
†
kb̂k + b̂†−kb̂−k)

=
∑

k

h̄ωk cosh(2tk)â
†
kâk + 1

2

∑

k

h̄ωk sinh(2tk)
(

â†kâ
†
−k + â−kâk

)

+ const.
(92)

This formula must match (up to a constant) the original Hamiltonian (43), so we need to

choose the parameters ωk = ω−k and tk = t−k such that

h̄ωk cosh(2tk) = Ak and h̄ωk sinh(2tk) = Bk . (93)

These equations are easy to solve, and the solution exists as long as Ak = A−k, Bk = B−k,

and Ak > |Bk|, namely

tk =
1

2
artanh

Bk

Ak

and h̄ωk =
√

A2
k
−B2

k
. (94)

Quod erat demonstrandum.

Lemma 3: By the Baker–Hausdorff Lemma,

e+F̂ × âk × e−F̂ = âk + [F̂ , âk] + 1
2 [F̂ , [F̂ , âk]] + 1

6 [F̂ , [F̂ , [F̂ , âk]]] + · · · (95)

and likewise for the â†
k
. Specifically, for

F̂ =
1

2

∑

q

tq
(

âqâ−p − â†qâ
†
−p

)

, (52)

we have

[F̂ , â
k
] = −tk[â†kâ

†
−k
, â

k
] = +tkâ

†
−k

(96)

and

[F̂ , â†−k] = +tk[âkâ−k, â
†
−k] = +tkâk . (97)
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Consequently, multiple commutators yield

[F̂ , [F̂ , . . . [F̂ , âk] · · ·]]n times = (tk)
n ×

{

âk for even n,

â†−k for odd n.
, (98)

and therefore

e+F̂ × â
k
× e−F̂ =

∑

evenn

(tk)
n

n!
× â

k
+
∑

oddn

(tk)
n

n!
× â†−k

= cosh(tk)× âk + sinh(tk)× â†−k

= b̂k .

(99)

In exactly the same way

[F̂ , [F̂ , . . . [F̂ , â†
k
] · · ·]]n times = (tk)

n ×
{

â†
k

for even n,

â−k
for odd n.

, (100)

and therefore

e+F̂ × â†k × e−F̂ =
∑

evenn

(tk)
n

n!
× â†k +

∑

oddn

(tk)
n

n!
× â−k

= cosh(tk)× â†
k

+ sinh(tk)× â−k

= b̂†
k
.

(101)

This establishes the unitary transform (51) of the creation and annihilation operators.

The unitary transforms (51) automatically preserve the commutation relations between

the operators, so instead of going through the algebra of proving the Lemma 1, we may

simply use

[b̂
k
, b̂†

k′ ] = eF̂ [â
k
, â†

k′]e
−F̂ = eF̂ δk,k′e−F̂ = δk,k′ (102)

and likewise for the [b̂k, b̂k′ ] and [b̂†k, b̂
†
k′ ].

In the same manner, the fact that the |coherent〉 state is annihilated by all the âk opera-

tors with k 6= 0 automatically leads to the |ground〉 = eF̂ |coherent〉 state being annihilated
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by all the b̂k operators,

b̂k |ground〉 = eF̂ âke
−F̂ × eF̂ |coherent〉 = eF̂ âk |coherent〉 = eF̂ × 0 = 0. (103)

In other words, the |ground〉 = eF̂ |coherent〉 state is the quasi-particle vacuum state — it

has no quasiparticles at all. And since all the quasiparticle energies h̄ωk are positive, this

state is the ground state of the (free part of the) excitation Hamiltonian (47).

Quod erat demonstrandum.

Lemma 4: The operator F̂ — and hence its exponential eF̂ — creates and annihilates the

atoms in ±k pairs independently from all the other pairs. Consequently, the BEC ground

state |ground〉 = eF̂ |coherent〉 can be written as a direct product of independent states of

±k modes (and the coherent state for the k = 0 mode),

|ground〉 = |Ψcoherent(k = 0)〉 ⊗
⊕

±k pairs

|Ψ(±k)〉 , (104)

where each

|Ψ〉 (±k) = exp
(

tk(âkâ−k − â†kâ
†
−k)
)

|0k, 0−k〉 =

∞
∑

n=1

Cn(tk) |nk, n−k〉 (105)

for some coefficients Cn(tk). To calculate these coefficients, we use

d

dt
etF̂ |0, 0〉 = F̂ etF̂ |0, 0〉 (106)

hence

d

dt

∑

n

Cn(t) |n, n〉 = (â
k
â−k

− â†
k
â†−k

)
∑

n

Cn(t) |n, n〉

=
∑

n

Cn(t)
(

n |n− 1, n− 1〉 − (n + 1) |n+ 1, n+ 1〉
)

=
∑

n

|n, n〉 ×
(

(n+ 1)Cn+1(t) − nCn−1(t)
)

,

(107)

which leads us to differential equations

d

dt
Cn(t) = (n+ 1)Cn+1(t) − nCn−1(t) (108)

subject to initial conditions Cn(0) = δn,0. Instead of going through the long song and dance
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of solving the equations (108), let me simply give you the solutions

Cn(t) =
(− tanh(t))n

cosh(t)
(109)

and verify that they indeed solve the equations (108):

d

dt

(− tanh(t))n

cosh(t)
= n

(− tanh t)n−1

cosh t
× −1

cosh2 t
− (− tanh t)n × sinh t

cosh2 t

=
1

cosh t

(

n(− tanh t)n−1 × (−1 + tanh2 t) + (− tanh t)n+1
)

= −n (− tanh t)n−1

cosh t
+ (n+ 1)

(− tanh t)n+1

cosh t
.

(110)

Quod erat demonstrandum.

Now, given the quantum state (105) of the ±k modes of the atoms, we may calculate

the expectation value of the atom number in these two modes as

N±k =
∞
∑

n=0

(2n)× C2
n(tk). (111)

Specifically, for the Cn coefficients as in eq. (109),

N±k =
2

cosh2 tk
×
∑

n

n(− tanh tk)
2n =

2

cosh2 tk
× tanh2(tk)

(1− tanh2(tk))2
= 2 sinh2(tk). (112)

Finally, combining all such ±k pairs of modes, we get the net (average) number of atoms in

all the k 6= 0 modes as

Nk 6=0 =
1

2

∑

k

N±k =
∑

k

sinh2(tk). (54)

Quod erat demonstrandum.
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Lemma 5: the net momentum operator is

P̂net =
∑

k

h̄kâ†kâk . (113)

Using eqs. (89) and (90) from the proof of Lemma 2 and t−k = tk, we immediately see that

b̂†kb̂k − b̂†−kb̂−k =
(

cosh2(tk)− sinh2(tk) = 1
)

× (â†kâk − â†−kâ−k). (114)

Consequently, for the momentum operator (113) we have

P̂ =
∑

k

h̄k× â†
k
â
k

=
∑

k

h̄(−k)× â†−k
â−k

=
1

2

∑

k

h̄k× (â†kâk − â†−kâ−k)

=
1

2

∑

k

h̄k× (b̂†kb̂k − b̂†−kb̂−k)

=
∑

k

h̄k× b̂†
k
b̂
k
.

(115)

Quod erat demonstrandum.

Alternatively, we may use the unitary operator transform of Lemma 3 and the fact that

the F̂ operator commutes with the net momentum P̂. Indeed, for every k mode

P̂â
k
â−k

= â
k
(P̂− h̄k)â−k

= â
k
â−k

P̂ (116)

and likewise

P̂â†
k
â†−k

= â†
k
(P̂+ h̄k)â†−k

= â†
k
â†−k

P̂, (117)

hence P̂F̂ = F̂ P̂. Consequently, the BEC ground state |ground〉 = eF̂ |coherent〉 has the

same momentum as the |coherent〉 state, namely zero, and the quasiparticles created by the

b̂†k and annihilated by the b̂k carry the same definite momenta h̄k as the atoms created by

the â†
k
and annihilated by the â

k
.

25



Lemma 6: the finite-range potential V2(x − y) for the helium atoms. Consider the net

potential operator

V̂ =
1

2

∫

d3x

∫

d3y V2(x− y)× ψ̂†(x)ψ̂†(y)ψ̂(y)ψ̂(x). (118)

In terms of the shifted fields δψ̂(x) = ψ̂(x)−√
n̄s and δψ̂†(x) = ψ̂†(x)−√

n̄s, we have

ψ̂†(x)ψ̂†(y)ψ̂(y)ψ̂(x) = n̄2s + n̄
3/2
s

(

δψ̂†(x) + δψ̂†(y) + δψ̂(x) + δψ̂(y)
)

+ n̄s

(

δψ̂†(x)δψ̂(x) + δψ̂†(y)δψ̂(y)
)

+ n̄s

(

δψ̂†(x)δψ̂(y) + δψ̂†(y)δψ̂(x)
)

+ n̄s

(

δψ̂†(x)δψ̂†(y) + δψ̂(y)δψ̂(x)
)

+ cubic + quartic.

(119)

The terms on the first two lines here depend only on the x or only on the y, so when we

plug them into the potential operator (118), we may immediately integrate over the other

space position to obtain

[@any fixed y]

∫

d3xV2(x− y) = [@any fixed x]

∫

d3y V2(x− y) = W (0). (120)

Consequently, integrating over the expansion (119) in the context of the potential (118) and

making use of the x ↔ y symmetry, we obtain

V̂ = n̄s ×W (0)×
∫

d3x
(

1
2 n̄s +

√
n̄s
(

δψ̂†(x) + δψ̂(x)
)

+ δψ̂†(x)δψ̂(x)
)

+
n̄s
2

×
∫

d3x

∫

d3y V2(x− y)×
(

2δψ̂†(x)δψ̂(y) + δψ̂†(x)δψ̂†(y) + δψ̂(y)δψ̂(x)
)

+ cubic + quartic.
(121)

Now consider the other non-derivative term in the Helium’s Hamiltonian

Ĥnet = K̂ + V̂ − µN̂, (122)
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namely the chemical potential term,

−µN̂ = −µ
∫

d3x ψ̂†(x)ψ̂(x)

= −µ
∫

d3x
(

n̄s +
√
n̄s
(

δψ̂(x) + δψ̂†(x)
)

+ δψ̂†(x)δψ̂(x)
)

(123)

If we generalize the µ = λn̄s formula of the Landau–Ginzburg theory to the

µ = W (0)× n̄s , (124)

then the chemical potential term (123) cancels the top line of the two-body potential (121)

(except for the constant part), hence

V̂ − µN̂ =
n̄2
2

∫

d3x

∫

d3y V2(x− y)×
(

2δψ̂†(x)δψ̂(y) + δψ̂†(x)δψ̂†(y) + δψ̂(y)δψ̂(x)
)

+ constant + cubic + quartic.
(125)

Thus altogether,

Ĥ = constant + Ĥfree + Ĥinteractions (126)

where

Ĥfree =
h̄2

2m

∫

d3x∇δψ̂†(x) · ∇δψ̂(x)

+
n̄2
2

∫

d3x

∫

d3y V2(x− y)×
(

2δψ̂†(x)δψ̂(y) + δψ̂†(x)δψ̂†(y) + δψ̂(y)δψ̂(x)
)

.

(127)

This completes the proof of the first part of the Lemma 6 — the top two lines of the eq. (70).

To prove the second part of the Lemma (the bottom line of eq. (70)) we simply Fourier

transform from the shifted creation and annihilation fields to the creation and annihilation

operators for atoms with specific momenta k 6= 0 (and ignore the shifted operators for the

k = 0 mode)

δψ̂†(x) = L−3/2
∑

k 6=0

e+ikxâ†
k
, δψ̂(x) = L−3/2

∑

k 6=0

e−ikxâ
k
. (128)
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Consequently,

∫

d3x

∫

d3y V2(x− y)× δψ̂†(x)δψ̂(y) =

=

∫

d3x

∫

d3y V2(x− y)× L−3
∑

k,k′

eikx−ik′y × â†
k
â
k′

=
∑

k,k′

â†
k
â
k′ × L−3

∫

d3x

∫

d3y V2(x− y)× eikx−ik′y

(129)

where

L−3

∫

d3x

∫

d3y V2(x− y)× eikx−ik′y =

= L−3

∫

d3y

∫

d3(z = x− y) V2(z)× eik(y+z)−ik′y

=

∫

d3z V2(z)e
ikz × L−3

∫

box

d3y eiky−ik′y

= W (k)× δk,k′ ,

(130)

hence
∫

d3x

∫

d3y V2(x− y)× δψ̂†(x)δψ̂(y) =
∑

k

W (k)× â†kâk . (131)

In the same way we obtain

∫

d3x

∫

d3y V2(x− y)× δψ̂†(x)δψ̂†(y) =

=

∫

d3x

∫

d3y V2(x− y)× L−3
∑

k,k′

eikx−ik′y × â†
k
â†−k

=
∑

k

W (k)× â†
k
â†−k

(132)

and likewise

∫

d3x

∫

d3y V2(x− y)× δψ̂(x)δψ̂(y) =
∑

k

W (k)× â−kâk . (133)
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Combining all these formulae with the gradient term in the Hamiltonian (127),

K̂ =
h̄2

2m

∫

d3x∇ψ† · ∇ψ =
h̄2

2m

∫

d3x∇δψ† · ∇δψ =
∑

k

h̄2k2

2m
â†kâk , (134)

we finally assemble all quadratic terms to

Ĥfree =
∑

k

((

h̄2k2

2m
+ W (k)n̄s

)

â†
k
â
k
+ 1

2W (k)n̄s
(

â†
k
â†−k

+ â−k
â
k

)

)

. (135)

Quod erat demonstrandum.

29


