
PREFACE

These notes were written for the Quantum Field Theory (II) class I taught in Spring 2021.

The first section (pages 1–9) deals with imaginary (“Euclidean”) time and its discretization in

path integrals in the ordinary quantum mechanics, so the students in my 389 K class should

be able to follow it. But mind the missing h̄ factors in my formulae here, because in my QFT

class I have used the h̄ = c = 1 units.

The remaining sections deals with subjects way beyond the scope of the Quantum Me-

chanics class, such as the Euclidean field theory and its Feynman rules, the StatMech / QFT

analogy, and the lattice field theory. Unless you are also taking Or have already taken) a

QFT class, I suggest you skip those sections.

i



Regulating Functional Integrals:

Euclidean Time and Discretization

Formally, the Lagrangian path integral for a quantum particle in 1D is defined as

∫∫∫

D′[x(t)] eiS[x(t)] = lim
N→∞

(

MN

2πiT

)N/2∫

dx1 · · ·
∫

dxN−1 exp
(

iSdiscr(x0, x1, . . . , xN−1, xN )
)

,

(1)

but this formula raises two separate convergence problems:

(1) Convergence of the ordinary integrals
∫

dN−1x eiS for finite N .

(2) Convergence of the continuum limit N →∞, ∆t→ 0.

In these notes I deal with these convergence issues in quantum mechanics and in quantum

field theory.

Let’s start with the first convergence problem. In general, multi-dimensional integrals
∫

dN−1~x eiS(~x) of rapidly oscillating but unimodular functions do not converge, not even con-

ditionally. For example, consider the Gaussian integral

I =

∫

dD~x eiα~x
2

. (2)

In D = 1 dimension, this integral is conditionally convergent. However, in any larger dimen-

sion D ≥ 2, the integral becomes

I = σ(D)×
∞
∫

0

dr rD−1 × eiαr
2

, (3)

which is completely divergent.

However, the divergence of this integral can be regulated by means of analytic continua-

tion. Indeed, let’s analytically continue α to a complex value with a positive imaginary part.

Consequently,
∣

∣

∣
eiα~x

2
∣

∣

∣
= e− Im(α)~x2 −−−−→

rapidly
0 for |~x| → ∞ , (4)

which makes the integral (2) absolutely convergent. At this point, we evaluate this integral
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to

I(α) =

(

πi

α

)D/2

, (5)

and then we may analytically continue α back to a real value.

Similar analytic continuation regulates the divergence of the discretized path integral (1)

for the discretized action

Sdiscr = ∆t
N
∑

n=1

(

M

2

(

xn − xn−1

∆t

)2

− V (xn)

)

. (6)

Let’s keep all the xn real but analytically continue the time interval δt to imaginary values

∆t = −i∆te (for real and positive ∆te). Then

Sdiscr → −i∆te

N
∑

n=1

(

−M
2

(

xn − xn−1

∆te

)2

− V (xn)

)

, (7)

or in other words

iSdiscr → −Sdiscr
E (8)

for a real and positive-definite (or at least bounded from below)

Sdiscr
E = ∆te

N
∑

n=1

(

M

2

(

xn − xn−1

∆te

)2

+ V (xn)

)

. (9)

Consequently, the discretized path integral

(coeff)×
∫

dN−1x exp(−Sdiscr
E ), (10)

becomes absolutely convergent, and once we evaluate it we may analytically continue its value

back to real ∆t.
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In the continuum limit of integrals over paths x(t), the analytic continuation ∆t→ −i∆te

means continuing to imaginary time t = −ite, although the space coordinates x(te) remain

real. Consequently, the exponent in the path integral becomes

iS[x(t)] = i

∫

dt

(

M

2

(

dx

dt

)2

− V (x)

)

−→ i

∫

(−idte)
(

−M

2

(

dx

dt

)2

− V (x)

)

= −SE [x(te)]

(11)

for a real and positive definite

SE [x(te)] =

∫

dte

(

M

2

(

dx

dt

)2

+ V (x)

)

. (12)

Consequently, the path integral itself becomes absolutely convergent

∫∫∫

D′[x(te)] e
−Se[x(te)]. (13)

(Assuming the continuum limit N →∞, ∆te → 0 converges, but that’s a separate issue.)

In quantum field theory, the imaginary time te is usually called the Euclidean time because

it acts as a fourth coordinate of a Euclidean spacetime with signature (+ + ++). That is,

xµe = (x1, x2, x3, x4) = (x, te) = (x, it) with metric

(dxe)
2 = (dx1)

2 + (dx2)
2 + (dx3)

2 + (dx4)
2 = (dx)2 − (dt)2 = −(dxµ dxµ)Minkowski . (14)

By extension, the action functional (12) is called the Euclidean action, and the path inte-

gral (13) the Euclidean path integral.

Going back to the real-time path integral (1), its divergence makes it ill-defined as a math-

ematical construct. Instead, in Physics we define the real-time path integral as an analytic

continuation from the Euclidean path integral. Or in more detail, the path integral in real

continuous time is defined though the following procedure:

1. First, we analytically continue to Euclidean time, t→ −ite.
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2. Second, we discretize the Euclidean time te by splitting it into a large number of short

intervals ∆te. In the process, the Euclidean action (12) is discretized to (9).

3. Third, we evaluate the discretized Euclidean path integral. This integral converges

absolutely, but the actual evaluation may pose a challenge.

4. Fourth, we take the continuum limit, N → ∞, ∆te → 0. In quantum mechanics this

limit is usually well-behaved, but in QFT it often leads to UV divergences. I’ll come

back to this issue later in these notes.

5. Finally, we analytically continue the result back to the real time t.

Harmonic Oscillator Example

Let’s apply the above 5-step procedure to the partition function of the harmonic oscillator.

Formally,

Z(T ) = Tr
[

e−iT Ĥ = Û(T, 0)
]

=

∫

dx0 U(x0, T ; x0, 0)

=

∫

dx0

x(T )=x0
∫∫∫

x(0)=x0

D′[x(t)] eiS[x(t)] =

x(T )=x(0)
∫∫∫

D[x(t)] eiS[x(t)]
(15)

for

S[x(t)] =
M

2

T
∫

0

dt

(

(

dx

dt

)2

− ω2x2

)

. (16)

Analytically continuing to Euclidean time t→ −ite means also T → −iβ and hence

Z(T ) → Tr
[

e−βĤ
]

, (17)

which is precisely the partition function of Statistical Mechanics at temperature = 1/β.

Consequently, the SM partition function obtains via Euclidean path integral

Z(β) =

x(β)=x(0)
∫∫∫

D[x(te)] e−SE [x(te)] (18)

where we integrate over real periodic functions x(te) with

period = β =
1

temperature
, (19)
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and the Euclidean action in the exponent is

SE [x(tE)] =
M

2

β
∫

0

dt

(

(

dx

dte

)2

+ω2x2

)

. (20)

Next, we discretize the Euclidean time te by splitting the whole period β into N short

intervals ∆te = β/N . Consequently, the Euclidean action becomes

Sdiscr
E (x1, . . . , xN ) =

M

2
× β

N

N
∑

n=1

[

(

xn − xn−1

β/N

)2

+ ω2x2n

]

for x0 ≡ xN

=
NM

2β

N
∑

n=1

[

(xn − xn−1)
2 +

ω2β2

N2
x2n

]

.

(21)

Note that this discrete action is a quadratic function of the (x1, . . . , xN ) variables, so the

discretized Euclidean path integral

Z(β,N) =

(

MN

2πβ

)N/2 ∫

dNx exp
(

−Sdiscr
E (x1, . . . , xN )

)

(22)

is Gaussian and may be evaluated exactly. Unfortunately, the determinant of the quadratic

form (21) is rather formidable, so the best way to evaluate the integral (22) is to diagonalize

the action as a quadratic form.

The continuum-time Euclidean action is diagonalized via Fourier transform

x(tE) =
+∞
∑

k=−∞

β−1/2 e−2πikte/β × yk ,

SE [x] =
M

2

∑

k

(

ω2 +
(2πk)2

β2

)

|yk|2:
(23)

note that the frequencies here are discrete because the Euclidean time is periodic; also, y∗k =

yN−k. For the discretized action (21) however, we need the discrete Fourier transform

xn =
1√
N

N
∑

k=1

e−2πikn/Nyk (24)

where the discrete frequencies k are defined modulo N , i.e. y0 ≡ yN , y−k ≡ yN−k, etc., etc.;

again, the frequency modes yk are complex, but the complete set of y1, . . . yN is self-conjugate
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as y∗k = y
−k. The key formula of the discrete Fourier transform is

∑

n

e−2πi(k−ℓ)n/N = NδmodN (k − ℓ), (25)

which immediately leads to

modN
∑

n

x2n =

modN
∑

n

x∗nxn =

modN
∑

n

1

N

modN
∑

k,ℓ

e+2πikn/Ny∗k × e−2πiℓn/Nyℓ

=
modN
∑

k,ℓ

y∗kyℓ ×
(

1

N

modN
∑

n

e2πi(k−ℓ)n/N = δmodN (k − ℓ)

)

=

modN
∑

k

y∗kyk.

(26)

Also,

xn − xn−1 =
1√
N

modN
∑

k

(

e−2πikn/N − e−2πik(n−1)/N
)

× yk

=
1√
N

modN
∑

k

e−2πikn/N ×
(

1− e+2πik/N
)

× yk ,

(27)

hence similarly to eq. (26),

modN
∑

n

(xn − xn−1)
2 =

modN
∑

k

∣

∣

∣
1− e2πik/N

∣

∣

∣

2
y∗kyk =

modN
∑

k

4 sin2
πk

N
× y∗kyk . (28)

Altogether, the discretized Euclidean action (21) becomes

Sdiscr
E [yk] =

MN

2β

modN
∑

k

(

4 sin2
πk

N
+

ω2β2

N2

)

|yk|2, (29)

and therefore

Z(β, ω,N) =

(

MN

2πβ

)N/2

× J(N)×
∫

dNy e−Sdiscr

E (y) (30)

where J(N) is the Jacobian of the discrete Fourier transform (24)
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=

(

MN

2πβ

)N/2

× J(N)×
modN
∏

k

√
π

/

√

MN

2β
×
(

4 sin2
πk

N
+

ω2β2

N2

)

= J(N)×
modN
∏

k

(

4 sin2
πk

N
+

ω2β2

N2

)−1/2

. (31)

To evaluate the Jacobian J of the discrete Fourier transform, we perform the transform twice:

yk =

modN
∑

m

N−1/2e−2πimk/Nzm, xn =

modN
∑

k

N−1/2e−2πikn/Nyk = z−n , (32)

which immediately tells us that

(

det

∥

∥

∥

∥

∂xn
∂yk

∥

∥

∥

∥

)2

= det

∥

∥

∥

∥

∂xn
∂zm

∥

∥

∥

∥

= ±1.

Consequently, J = | det(∂xn/∂yk)| = 1 and therefore

Z(β, ω,N) =

modN
∏

k

(

4 sin2
πk

N
+

ω2β2

N2

)−1/2

. (33)

At this point, let me use without proof a somewhat obscure mathematical formula

N−1
∏

k=1

(

2 sin
πk

N

)

= N, (34)

which allows me to re-write the discretized partition function as

Z(β, ω,N) =

(

0 +
ω2β2

N2

)−1/2

×
N−1
∏

k=1

(

4 sin2
πk

N
+

ω2β2

N2

)−1/2

=
N

ωβ
×

N−1
∏

k=1

1

2N sin(πk/N)
×
(

1 +
ω2β2

4N2 sin2 πk
N

)−1/2

=
1

ωβ
×

N−1
∏

k=1

(

1 +
ω2β2

4N2 sin2 πk
N

)−1/2

.

(35)

And this is the end of step 3 — calculating the partition function in discretized Euclidean

time.
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The next step is taking N →∞; physically, this is the limit of continuous Euclidean time.

To take this limit of eq. (35), we are going to split the product over k’s into 3 sets — small

k ≪ N , small (N − k)≪ N , and everything in between, — and use different approximation

(which become exact for N →∞) for each set. Specifically:

for 1 < k ≪ N : 4N2 sin2
πk

N
≈ (2πk)2, (36)

and likewise

for 1 < (N − k) ≪ N : 4N2 sin2
πk

N
≈ (2π(N − k))2, (37)

while for the remaining modes

4N2 sin2
πk

N
≫ 1 =⇒ 1 +

ω2β2

4N2 sin2 πk
N

≈ 1. (38)

Consequently,

Z(β, ω,N) −−→
N≫1

1

ωβ
×

∏

1≤k≪N

(

1 +
ω2β2

(2πk)2

)−1/2

×
∏

1≤(N−k)≪N

(

1 +
ω2β2

(2π(N − k))2

)−1/2

=
1

ωβ
×

∏

1≤k≪N

(

1 +
ω2β2

(2πk)2

)−1

−−−→
N→∞

1

ωβ
×

∞
∏

k=1

(

1 +
ω2β2

(2πk)2

)−1

.

(39)

To evaluate the infinite product on the bottom line of eq. (39), consider it as an analytic

function of a complex variable ν evaluated for ν = ωβ/2,

f(ν) =
1

2ν
×

∞
∏

k=1

1

1 + (ν/πk)2
, Z(ω, β) = f(ν = ωβ/2). (40)

The infinite product here converges absolutely for all finite ν ∈ C, so f(ν) is an analytic

function whose only singularities are poles and zeros. In fact, it has no zeros while its poles
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are located along the imaginary axis at ν = πi× an integer; indeed,

2f(ν) =
1

ν
×

∞
∏

k=1

(πk)2

(ν − πik)× (ν + πik)
. (41)

In other words, 2f(ν) has the same poles and zeros as the 1/ sinh(ν/2) function, and indeed

there is a well-known formula

sinh(ν) = ν ×
∞
∏

k=1

(

1 + (ν/πk)2
)

(42)

hence

2f(ν) =
1

sinh(ν)
. (43)

Thus, in the continuous Euclidean time limit we get

Z(β, ω) =
1

2 sinh(βω/2)
. (44)

Finally, analytically continuing back to the real time, we get

Z(T, ω) =
1

2i sin(ωT/2)
. (45)

Either of these partition functions can be used to obtain the energy spectrum of the

quantum harmonic oscillator. For example,

Z(β, ω) =
1

2 sinh(ωβ/2)
=

1

e+ωβ/2 − e−ωβ/2

= e−ωβ/2 ×
(

1− e−ωβ
)−1

= e−ωβ/2 ×
∞
∑

n=1

e−nωβ

=
∞
∑

n=1

e−(n+ 1

2
)ωβ,

(46)

hence non-degenerate eigenvalues En = (n+ 1
2)ω for n = 0, 1, 2, . . ..
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QFT Functional Integral in Euclidean Spacetime

When we calculated the n-field correlation functions

Gn(x1, . . . , xn) = 〈Ω|T Φ̂H(x1) · · · Φ̂H(xn) |Ω〉 (47)

back in January (cf. my notes), we had tilted the time axis in the complex plane

+∞× (1− iǫ)

−∞× (1− iǫ)

t

(48)

in order to project the initial and the final states of the matrix element onto the vacuum state

of the theory. In order to define the “path” integrals for the quantum fields such as

Z[J ] =

∫∫∫

D[Φ(x, t)] exp
(

i

∫

d4x (L+ JΦ)

)

, (49)

we need to analytically continue from the real time t = x0 to imaginary time t = −ite; in
terms of the complex time diagram (48) this means tilting the time axis the whole 90◦ till it

points straight down,

t

(50)
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After this tilt, t = −ite becomes imaginary (for real te) while the space coordinates (x
1, x2, x3)

remain real, and the scalar field values Φ(x, te) remain real. From the spacetime point of view,

we may identify the te as x
4, the fourth coordinate of a Euclidean 4D spacetime with positive

metric

xe = (x, x4 = te), (dxe)
2 = (dx)2 + (dx4)2 = (dx)2 − (dt)2 = −(dxµdxµ)Minkowski .

(51)

This Euclidean spacetime has SO(4) rotational symmetry, which is the analytic continuation

of the SO+(3, 1) Lorentz symmetry of the Minkowski spacetime.

In Euclidean spacetime ∂0 = ∂/∂t becomes +i∂4 = +i∂/∂te, in perfect agreement with

p0 = +ip4 for Minkowski vs. Euclidean momenta. Thanks to ∂0 = i∂4, the kinetic term in

the scalar field’s Lagrangian becomes

1
2(∂µΦ)(∂

µΦ) = 1
2(∂0Φ)

2 − 1
2(∇Φ)

2 = −1
2(∂4Φ)

2 − 1
2(∇Φ)

2 = −1
2(∂µΦ)

2
e , (52)

hence

L = 1
2(∂µΦ)(∂

µΦ) − V (Φ) −→ −LE
for LE = +1

2(∂µΦ)
2
E + V (Φ),

(53)

and therefore

iS[Φ(x), J(x)] = i

∫

d4x
(

L+ JΦ
)

−→ −SE [Φ(xe), J(xe)]

for SE[Φ(xe), J(xe)] =

∫

d4xe
(

LE−JΦ
)

.

(54)

Consequently, the Euclidean functional integral

Z[J(xe)] =

∫∫∫

D[Φ(xe)] exp
(

−
∫

d4xe(LE−JΦ)
)

(55)

converges absolutely, so all we have to worry about are the discretization and the eventual

continuum limit.
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In light of the signs in eq. (55) and the absence of any imaginary factors, in the Euclidean

spacetime the connected correlation functions obtain from variational derivatives of logZ[J ]

without any factors of i, thus

Gconn
n (x1, . . . , xn) =

δ

δJ(x1)
· · · δ

δJ(xn)
logZ[J ]

∣

∣

∣

∣

J≡0

. (56)

At the the connected Feynman diagrams contributing to these correlation functions, we are

used to calculating them by starting with the Minkowski-space Feynman rules, but then

analytically continuing to the Euclidean loop momenta to calculate the integrals. But now

we can take a simpler way by using the Euclidean Feynman rules to begin with. Starting

from the Euclidean Lagrangian

LE = LfreeE + LpertE , LfreeE =
1

2
(∂µΦ)

2
E +

m2

2
Φ2 =

1

2
Φ(m2 − ∂2e )Φ, LpertE = +

λ

24
Φ4

(57)

and the perturbative expansion of the Euclidean path integral as

∫∫∫

D[Φ(x)] exp
(

−
∫

d4xe LfreeE

)

×
∞
∑

n=0

1

n!

(

−
∫

d4xeLpertE

)n

, (58)

the propagator obtains from the free Lagrangian as

=
1

m2 − ∂2e
=

1

m2 + p2e
(59)

without any factors of i, and the vertex follows from the perturbation LpertE and the red minus

sign in the expansion (58),

= −λ. (60)

Note: the vertex factor also does not have an i factor, but it carries and overall minus sign

(relative to perturbation LpertE ) stemming from the minus sign in exp(−SE).
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QFT / StatMech Analogy

The Euclidean path integral formulation of the quantum field theory is rather similar to

the equilibrium statistical mechanics of condensed matter systems. For an example, consider

a magnetic material in an external magnetic field B(x). Microscopically, the magnetiza-

tion stems from atomic spins and hence magnetic moments, but macroscopically — i.e., at

distance scales much larger that distances between neighboring atoms, — we may describe

the magnetization by a classical macroscopic field M(x). For simplicity, let’s assume a pre-

ferred magnetization axis (and the external field parallel to that axis), so we may treat the

magnetization field as a scalar rather than a vector.

The classical Hamiltonian of the magnetization field has general form

H [M(x)] =

∫

d3x
(a

2
(∇M)2 + V (M) − BM

)

where V (M) =
b

2
M2 +

c

24
M4 + · · ·

(61)

for some constants a, b, c, . . .. Consequently, the thermal equilibrium at temperature T of the

magnetization field is governed by the partition function

Z[B(x)] =

∫∫∫

D[M(x)] e−H [M(x)]/T (62)

where
∫∫∫

D[M(x)] =

(

continuum

limit of

)

(

(

normalization

factor

)

×
∏

atoms

∫

dmatom

)

. (63)

The Helmholtz’s free energy follows from the partition function as

F [B(x)] = −T logZ[B(x)] (64)

and then acts as a generation functional of the connected correlation functions of the magne-

tization field,

Gconn
n (x1, . . . ,xn)

def
= 〈M(x1) · · ·M(xn)〉conn = −T n−1 δF [B(x)]

δB(x1) · · · δB(xn)
. (65)

Altogether, we see a clear analogy between the classical magnetization field M(x) in 3D

statistical mechanics and the quantum field Φ(xe) in 4D Euclidean spacetime. The inte-

gral (63) over the magnetization field is the obvious analogy of the functional integral over
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Φ(xe), the classical Hamiltonian (61) corresponds to QFT’s Euclidean action

SE [Φ(x)] =

∫

d4xe

(

1
2(∂µΦ)

2
e + V (Φ) − JΦ

)

, (66)

the external magnetic field B(x) corresponds to the source J(xe), the statistical partition

function (62) — to the QFT partition function Z[J(xe)], and the the statistical correlation

functions (65) — to the quantum correlation functions of the QFT.

Likewise, the Euclidean path integral formulations of more general quantum field theories

make them analogous to classical statistical mechanics in 4D.

In this analogy, the Euclidean action of QFT plays the role of the classical Hamiltonian of

a StatMech system, which begs the question: What is the QFT’s analogue of the temperature

T? At first blush, the answer seems to be the Planck’s constant h̄; indeed, the StatMech

partition function (62) is the integral of exp(−H/T ) while the QFT’s partition function is

the integral of exp(−SE/h̄). However, h̄ is a universal constant — which can be set to 1 by a

choice of units — so it cannot vary like we can vary the temperature of a condensed matter.

Instead, the proper QFT analog of the temperature is the coupling constant, such as λ, αQED,

or αQCD.

To see how this works in the λφ4 theory, let us rescale rescale the Φ(x) field by the factor

1/
√
λ:

Φ(x) =
1√
λ
ϕ(x), (67)

hence

1

2
(∂µΦ)

2
e =

1

2λ
(∂µϕ)

2
e,

m2

2
Φ2 =

m2

2λ
ϕ2,

λ

24
Φ4 =

1

24λ
ϕ4, (68)

and therefore

SE [Φ(x)] =

∫

d4xe

(

1

2
(∂µΦ)

2
e +

m2

2
Φ2 +

λ

24
Φ4

)

=
1

λ

∫

d4xe

(

1

2
(∂µϕ)

2
e +

m2

2
ϕ2 +

1

24
ϕ4

)

=
1

λ
×H [ϕ(x)].

(69)

Thus, once we map the rescaled field ϕ(x) (rather than the original field Φ(x)) onto the magne-

tization field M(x) of statistical mechanics, then H [ϕ(x)] maps onto the classical Hamiltonian
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for the M(x) while λ maps onto the temperature T so that

exp(−SE) = exp(−H [ϕ]/λ) ←→ exp(−H [M ]/T ). (70)

Likewise, in the Yang–Mills theory we simply use the group-normalized (rather than canoni-

cally normalized) gauge fields Aµ(x) = gAµ(x) and tensions

Fµν(x) = gFµν(x) = ∂µAν − ∂νAµ + i[Aµ,Aν ] (71)

so the Euclidean Yang–Mill action becomes

SE [Aµ(x)] =
1

2g2

∫

d4xe tr(FµνFµν). (72)

Consequently, the overall factor 1/g2 plays the role of 1/T , so g2 — or equivalently α = g2/4π

— plays the temperature’s role.

In both examples, a strongly coupled QFT acts as a hot condensed matter where the

fluctuations explore most of the system’s phase space. On the other hand, a weakly coupled

QFT acts as a cold condensed matter which sticks to the lowest-energy configurations and

small fluctuations around them. The lowest-energy configurations here are the minima of the

Hamiltonian functional; in QFT terms, they are the minima of the action and hence solutions

of the classical field equations. And the small fluctuations around these solutions are governed

by the perturbation theory.

Lattice Field Theory

In condensed matter, M(x) is the macroscopic field; microscopically, there are magnetic

moments of individual atoms, thus

∫∫∫

D[M(x)] =

(

continuum

limit of

)

(

(

normalization

factor

)

×
∏

atoms

∫

dmatom

)

. (63)

Moreover, the atoms form a discrete crystalline lattice rather than a continuous space.
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By analogy, in quantum field theory the proper definition of the path integral involves

discretizing all 4 dimensions of the Euclidean spacetime, i.e. replacing the 4 continuous coor-

dinates xµe with some kind of a 4D crystalline lattice. The simplest such lattice is hypercubic:

xµe = anµe = (an1, an2, an3, an4) for integer n1, n2, n3, n4 ∈ Z. (73)

The a here is the lattice constant which we take to be very short. On the lattice, the scalar

field Φ(xe) becomes a discrete set of variables Φ(ne), one variable for each lattice site (73),

hence the path integral becomes the product of ordinary integrals,

∫∫∫

D[Φ(xe)] e−SE[Φ] −→
(

normalization

factor

)

×
∏

ne

∫

dΦ(ne) exp
(

−Sdiscr
E

(

all the Φ(ne)
)

)

. (74)

As to the discretized Euclidean action, we use

1

a

(

Φ(ne + 1µ) − Φ(ne)
)

−−→
a→0

∂µΦ(xe) (75)

(where 1µ denotes the unit vector in the Euclidean direction µ), so we may use the LHS here

as the definition of the derivative in the lattice space theory, hence,

Sdiscr
E = a4

∑

ne

(

1

2a2

∑

µ

(

Φ(ne + 1µ)− Φ(ne)
)2

+
m2

2
Φ2(ne) +

λ

24
Φ4(ne)− J(ne)Φ(ne)

)

(76)

where the overall factor a4 comes from discretizing the spacetime integral
∫

d4xe. Altogether,

the partition function of the lattice field theory is

Z[J(ne)] =

(

normalization

factor

)

×
∏

ne

∫

dΦ(ne) exp
(

−Sdiscr
E [Φ(ne), J(ne)]

)

(77)

where all the integrals are absolutely convergent.

From the low-energy point of view, the lattice is a non-perturbative ultraviolet cutoff

Λ = π/a. To see how this works, let’s start with a periodic lattice in 1 dimension of space.

The momentum space for such a lattice is a periodic circle of length 2π/a; indeed

for any p′ = p + (2π/a)× integer, eip
′x = eipx for any x ∈ lattice, (78)

hence p′ is equivalent to p. Likewise, for the hypercubic lattice in 4 Euclidean dimensions,

each component pµe of any Euclidean momentum spans a periodic circle of length 2π/a. so we
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may parametrize it by −(π/a) ≤ pµe ≤ +(π/a) only. Consequently, the momentum space has

a finite volume (2π/a)4 similar to the hard-edge UV cutoff, except that there is no actual edge:

Instead of a ball with a hard spherical surface, the lattice momentum space is topologically

a 4D torus T 4 — a direct product of 4 circles, — and it does not have any surface. This

allows us to shift the loop momentum variables by constants when evaluating the Feynman

diagrams. However, the flip side of the T 4 momentum-space geometry is the rather ugly

scalar propagator:

=

(

m2 +
4

a2

∑

µ

sin2(apµ/2)

)−1

−→ 1

m2 + p2e
only for p2e ≪ (1/a)2

(79)

which makes the lattice a rather inconvenient cutoff for the perturbation theory.

On the other hand, the lattice field theory allows non-perturbative calculation of path in-

tegrals like (77) on a computer. In practice, this means simulating the statistical mechanics of

the 4D classical lattice theory with probability distribution exp(−Sdiscr
E ) using a Monte–Carlo

algorithm such as Metropolis–Hasting. For some theories, there are other non-perturbative

methods for calculating the functional integrals of lattice theories, for example the strong-

coupling expansion in powers of 1/g2 for g2 ≫ 1. However, such methods go way beyond the

scope of this class.

Note that the parameters λ and m2 of the discretized action (76) are the bare coupling λb

and the bare mass2 m2
b for the lattice cutoff rather than the physical coupling or mass2.

Likewise, the lattice field Φ(xe = ane) is the bare field Φb(xe) =
√
ZΦren(xe) rather than the

renormalized field. Consequently, when we change the lattice spacing a, we must adjust the

λb and m2
b parameters and the field strength factor

√
Z in order to keep the long-distance

physics invariant. In particular, we should adjust the bare mass such that the physical mass

comes out much smaller than than the lattice cutoff, m2
phys ≪ (1/a)2, otherwise the scalar

field would not propagate to macroscopic distances ≫ a. In condensed matter terms, this

corresponds to keeping the dimensionless bare parameters a2m2
b and λb very close to a critical

point.
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Lattice Symmetries

The continuous Euclidean spacetime has an SO(4) rotation symmetry, the analytic con-

tinuation of the SO+(3, 1) Lorentz symmetry of the Minkowski spacetime. The discrete lattice

has only a discrete group of symmetries such as the hypercubic group HC = SO(4;Z) sub-

group of the 4D rotation group SO(4), so the geometric symmetries of the lattice field theory

are also limited to the hypercubic group. Indeed, the lattice propagator (79) is invariant

under the hypercubic symmetries of the momentum vector pµe but not under general SO(4)

symmetries. Consequently, in the continuum limit of the lattice field theory, its Euclidean

Lagrangian contains all kinds of terms which respect the hypercubic symmetry but break the

SO(4), for example

LE ⊃
c

2

∑

µ

(

∂2µΦ
)2

+
c′

2

∑

µν

(∂µ∂νΦ)
2 (80)

for some un-equal couplings c′ 6= c. (For c′ = c this operators would be SO(4) invariant, but

the hypercubic symmetry allows for c′ 6= c.) Fortunately, all such operators have dimensions

∆ ≥ 6 > 4 which make them irrelevant from the RG point of view. Indeed, in the continuum

limit of a lattice theory, any operator of dimension ∆ > 4 has a coupling of magnitude no

stronger than O(a∆−4), — for example, the operators (80) have couplings c = −a2/12 and

c′ = 0, — so the dimensionless strength of such an operator at energy E ≪ (1/a) is

O
(

(Ea)positive
)

−→ 0 for E → 0. (81)

Consequently, at energies much lower than the lattice cutoff, all such operators have negligibly

weak couplings so we may simply disregard them. Thus, at low-energies we may limit the

effective Lagrangian of the renormalized theory to the relevant and marginal operators only.

Fortunately, all relevant or marginal operators which respect the hypercubic symmetry of the

lattice also respect the SO(4) rotational symmetry, and that’s how the continuum limit of

the lattice field theory becomes SO(4) symmetric, hence Lorentz symmetric in the Minkowski

spacetime.

This mechanism is a special case of a custodial symmetry. In general, it works like this:

Suppose some QFT has an exact symmetry group G. It can be global or local, discrete or

continuous, spacetime or internal, it does not matter as long as it’s exact. Now write down all
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the relevant and marginal operators (i.e., operators of dimension ∆ ≤ D) which are invariant

under G. Sometimes, all such operators would be invariant under a bigger symmetry group

H ⊃ G. In this case, G acts as a custodial symmetry of H : it limits H violation to irrelevant

operators with very small low-energy couplings.

For a non-geometric example, consider baryon number violation in the Standard Model.

Thanks to Lorentz and SU(3)color symmetries of the Standard Model, any B-violating oper-

ator has to have dimension ∆ ≥ 6, for example

ǫijkΨ
i
quarkΨ

j
quarkΨ

k
quarkΨlepton (82)

(never mind the Dirac and flavor indices). At low energies, the dimensional strength of such

an operator is suppressed by powers of (E/Λ)∆−4≥2 where Λ is the upper limit on energies

for which we may use the Standard Model, hence proton decay rate is limited to

Γ <∼
M5

p

Λ4
. (83)

In particular, for Λ >∼ 1016 GeV, we get the proton lifetime within the current experimental

limit (1/Γ) > 1034 year.

On the other hand, the experimental limit on proton decays is so stringent that even

an irrelevant operators can cause trouble if its coupling is greater than 10−32 (GeV)4−∆.

Avoiding such operators is a major constraint on beyond-the-Standard-Model physics, espe-

cially on lepto-quarks and other colored particles of masses M <∼ 1016 GeV. In particular,

this constraint rules out several Grand Unified Theories such as minimal SU(5) and minimal

supersymmetric SU(5).
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