
ROTATIONS IN QUANTUM MECHANICS

Symmetry Overview

Before we delve into specifics of the rotational symmetries, let’s review a few general

features of all kinds of symmetries: translations, rotations, isospin, whatever, . . . .

• Symmetry transforms of any system — classical quantum, purely mathematical, what-

ever — always form a group: The group product S2S1 — the consecutive action of the

two transforms, first the S1 and then the S2, is associative, S3(S2S1) = (S3S2)S1, so we

may write it as S3S2S1 without parenthesis. The trivial symmetry transform — mak-

ing no changes at all — acts as a unity element of the group, 1S = S1 = S. And for any

symmetry transform S there is an inverse transform S−1 such that SS−1 = S−1S = 1.

• The order of the product, S2S1 versus S1S2 matters in some symmetry groups nut not

in others. The groups where all symmetries commute, S2S1 = S1S2, are called abelian

groups. Examples:

∗ Group of space translations, T (a)T (b) = T (b)T (a) = T (a+ b).

∗ Group of rotations in 2 dimensions, R(α)R(β) = R(β)R(α) = R(α + β).

The groups where some symmetries do not commute, S2S1 6= S1S2 are called non-

abelian groups. Example:

∗ Group of rotations in 3 dimensions. Indeed, in 3D rotations around different axis

do not commute with each other. Figure 1 on the next page illustrates this fact

for

R(x axis,+90◦)R(y axis,−90◦) 6= R(y axis,−90◦)R(x axis,+90◦). (1)

∗ Likewise, rotations in any space dimension d > 3 form a non-abelian group.
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Figure 1: Rotations around different axis do not commute.

• In Quantum Mechanics, the symmetry transforms act as unitary operators Û(S) such

that

Û(group product S2S1) = operator product Û(S2)Û(S1). (2)

Also, Û(1) = 1 (the unit operator), and

∀S : Û(S−1) = Û−1(S) = Û†(S). (3)

Mathematically speaking, the unitary operators Û(S) form a representation of the

symmetry group. I shall explain this concept later in class.

• Symmetries of a dynamical system must commute with its time evolution: Two states

of the system related by a symmetry S at time t0 must remain related by the same

symmetry at all later times t > t0. In Quantum Mechanics, this means that the

symmetry operators Û(S) must commute with the time evolution operator Û(t− t0):

initial states |A〉 and |B〉 = Û(S) |A〉

evolve to
∣

∣A′
〉

= Û(t− t0) |A〉 and
∣

∣B′
〉

= Û(t− t0) |B〉 (4)

such that
∣

∣B′
〉

= Û(t− t0)Û(S) |A〉 = Û(S)Û(t− t0) |A〉 = Û(S)
∣

∣A′
〉

.
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Consequently, all the symmetry operators Û(S) must commute with the Hamiltonian

operator Ĥ.

• For a quantum system with a nonabelian symmetry, this means that the Hamiltonian

must commute with symmetry operators which do not commute with each other. As we

saw earlier in class, this means that the Hamiltonian’s spectrum must be degenerate!

∗ Example: a particle in a central potential V (r). It’s Hamiltonian has a non-abelian

symmetry of 3D rotations. And as you should have learned in the undergraduate

QM class, this Hamiltonian has eigenstates |nr, ℓ,m〉 whose energy is degenerate

WRT m,

Ĥ |nr, ℓ,m〉 = E(nr, ℓ only) |nr, ℓ,m〉 . (5)

∗ For most central potentials, there is no further degeneracy except by accident. But

for the Coulomb potential V (r) = −α/r there is further degeneracy, E(nr, ℓ) =

E(N = nr + ℓ + 1). Likewise, for a 3D Harmonic oscillator V (r) = +1
2mω

2r2

we have E(nr, ℓ) = E(2nr + ℓ). In both cases, the extra degeneracy is due to a

larger symmetry group then just the rotations; we shall return to this point later

in class.

• In the Schrödinger picture of quantum mechanics, the symmetry operators Û(S) act

on the quantum states while leaving the operators such as x̂ or p̂ invariant,

∣

∣ψ′
〉

= Û(S) |ψ〉 ,
〈

ψ′
∣

∣ = 〈ψ| Û†(S), Â′ = Â. (6)

In the Heisenberg picture, the symmetry operators leave the states invariant but act

on the operators according to

∣

∣ψ′
〉

= |ψ〉 ,
〈

ψ′
∣

∣ = 〈ψ| ,

Â′ = Û†(S)ÂÛ(S).
(7)

But in both pictures, the matrix elements transform in the same way, namely

〈ψ1| Â |ψ2〉′ = 〈ψ1| Û†(S)ÂÛ(S) |ψ2〉 . (8)
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Rotations in Two Dimensions

In 2 space dimensions there is only one rotation axis, so a rotation can be specified by

a single real parameter — the rotation angle α. A rotation act on components (x, y) or a

position vector x — or on components (vx, vy) of any other kind of a vector v — as

R(α) :

(

vx

vy

)

7→
(

v′x

v′y

)

=

(

+cosα − sinα

+ sinα +cosα

)(

vx

vy

)

. (9)

Note: both active and passive rotations act on components of vectors according to eq. (9),

but physically there is a difference: An active rotation rotates bodies — and hence radius-

vectors of all their points — in a fixed coordinate frame, while a passive rotation keeps the

body where they are while rotating the coordinate axes x→ x′ and y → y′.

x

y

P

P ′

α

active rotation

x

y

x ′

y ′

P

α

α

passive rotation

(10)

In these notes, I shall henceforth focus on the active rotations.

The 2D rotation group is abelian, R(α)R(β) = R(β)R(α) = R(α + β), hence R(−α) =
R−1(α), so in quantum mechanics the rotations are represented by the unitary operators

R̂(α) which obey similar product relations,

R̂(α)R̂(β) = R̂(β)R̂(α) = R̂(α + β), (11)

R̂(−α) = R̂−1(α) = R̂†(α). (12)
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Since any finite rotation obtains as a product of infinite number of infinitesimal rotations,

R̂(α) =
(

R̂
(

α
N

)

)N
, infinitesimal α

N for N → ∞, (13)

all the rotations obtain by exponentiating a common Hermitian generator

Ĵ2d
def
= ih̄

∂

∂α
R̂(α)

∣

∣

∣

∣

α=0

, (14)

R̂(α) = exp

(−iα
h̄
Ĵ2d

)

. (15)

Proof: Let’s start by checking the Hermiticity of the operator Ĵ2d defined according to

eq. (14):

Ĵ†
2d =

(

ih̄
∂

∂α
R̂(α)

)†

= −ih̄ ∂

∂α
R̂†(α)

〈〈 using eq. (12) 〉〉

= −ih̄ ∂

∂α
R̂(−α) = +ih̄

∂

∂α
R̂(α)

= Ĵ2d.

(16)

Next, for an infinitesimal angle φ, eq. (14) leads to

R̂(φ) = 1 + φ× ∂

∂φ
R̂(φ)

∣

∣

∣

∣

φ=0

+ O(φ2) = 1 +
φ

ih̄
× Ĵ2d + O(φ2). (17)

Now let α be a finite angle, then in the N → ∞ limit φ = α/N becomes infinitesimal.

Consequently,

R̂(α/N) = 1 +
α

Nih̄
× Ĵ2d + O(α2/N2) (18)

and therefore

R̂(α) =
(

R̂(α/N)
)N

=

(

1 +
−i(α/h̄)Ĵ2d

N
+ O(1/N2)

)N

. (19)

But

lim
N→∞

(

1 +
A

N
+ O(1/N2)

)N

= exp(A) (20)

regardless of the details of the O(1/N2) term inside the (), so taking the large N limit of
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eq. (19) gives us

R̂(α) = exp
(

−i(α/h̄)Ĵ2d
)

, (21)

exactly as in eq. (15). Quod erat demonstrandum.

We have seen earlier in class that the translations of space symmetries are generated by

the net momenta operators P̂ net
x , P̂ net

y , and P̂ net
z ,

T̂ (a) = exp

(−ia ·Pnet

h̄

)

. (22)

In the same way, the angular momentum operators generate the rotation symmetries ; in

particular, in 2D the operator Ĵ2d is the angular momentum operator Ĵnet
z and it generates

all the 2D rotation symmetries according to eq. (15).

To see how the operator Ĵ2d is the angular momentum operator, let’s start with a simple

quantum system comprising a single spinless particle. Such particle’s quantum state |ψ〉
is completely described in terms of its coordinate space wave function ψ(x, y), or in polar

coordinates

ψ(r, φ) = 〈r, φ|ψ〉 . (23)

In the polar coordinate basis, the active rotation operators R̂(α) act as

R̂(α) |r, φ〉 = |r, φ+ α〉 , (24)

hence

R̂†(α) |r, φ〉 = R̂(−α) |r, φ〉 = |r, φ− α〉 (25)

and therefore

〈r, φ| R̂(α) |ψ〉 = 〈ψ| R̂†(α) |r, φ〉∗ = 〈ψ|r, φ− α〉∗ = 〈r, φ− α|ψ〉 . (26)

Or in the wave-function terms,

R̂(α)ψ(r, φ) = ψ(r, φ− α). (27)
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Consequently,

Ĵ2dψ(r, φ) = ih̄
∂

∂α
R̂(α)ψ(r, φ)

∣

∣

∣

∣

α=0

= ih̄
∂

∂α
ψ(r, φ− α)

∣

∣

∣

∣

α=0

= −ih̄∂ψ(r, φ)
∂φ

: (28)

in polar coordinates, Ĵ2d acts as −ih̄(∂/∂φ). Translating this partial derivative to the Carte-

sian coordinates, we have

(

∂ψ

∂φ

)

r

=

(

∂x

∂φ

)

r

× ∂ψ

∂x
+

(

∂y

∂φ

)

r

× ∂ψ

∂y
= −y × ∂ψ

∂x
+ x× ∂ψ

∂y
, (29)

hence

Ĵ2dψ(x, y) = +ih̄y
∂ψ

∂x
− ih̄x

∂ψ

∂y
= −ŷp̂xψ(x, y) + x̂p̂yψ(x, y). (30)

In other words,

Ĵ2d = −ŷp̂x + x̂p̂y = (x̂× p̂)z = L̂z = L̂2d (31)

thus Ĵ2d is indeed the 2D orbital angular momentum operator. Or in 3D terms, it’s the z

component of the orbital angular momentum, the only component which makes sense for a

2D motion in the (x, y) plane.

Next, consider a system of two particles described in polar coordinates by ψ(r1, φ1; r2, φ2).

The rotations move both particles in the φ direction, thus

R̂(α) |r1, φ1; r2, φ2〉 = |r1, φ1 + α; r2, φ2 + α〉 (32)

and hence

R̂(α)ψ(r1, φ1; r2, φ2) = ψ(r1, φ1 − α; r2, φ2 − α). (33)

Consequently, taking the derivative WRT α at α = 0, we get

Ĵ2dψ(r1, φ1; r2, φ2) = −ih̄
(

∂

∂φ1
+

∂

∂φ2

)

ψ(r1, φ1; r2, φ2), (34)

or in Cartesian coordinates

Ĵ2dψ(x1, y1; x2, y2) = −ih̄
(

x1
∂ψ

∂y1
− y1

∂ψ

∂x1
+ x2

∂ψ

∂y2
− y2

∂ψ

∂x2

)

, (35)
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hence

Ĵ2d = x̂1p̂y,1 − ŷ1p̂x,1 + x̂2p̂y,2 − ŷ2p̂x,2 = L̂z,1 + L̂z,2 = L̂net
z = L̂net

2d , (36)

the net angular momentum of the two particles.

Likewise, for a system of any number of spinless particles the generator Ĵ of the 2D

rotation symmetries is the (z component of) the net angular momentum of all the particles.

Now consider a particle with spin — a degree of freedom unrelated to the space coordi-

nates (x, y) but subject to non-trivial transformations under rotations. For such a particle

R̂(α) = R̂space(α)× R̂spin(α) (37)

where the two factors on the RHS commute with each other, hence

Ĵ2d = L̂2d + Ŝ2d, [L̂2d, Ŝ2d] = 0. (38)

The Ŝ operator is called the spinorial angular momentum, or simply the spin; we shall see

the specific manner of its action later in class. For the moment, let me simply say that

if the spin degrees of freedom interact with the particle’s motion, then the orbital angular

momentum L̂ and the spin Ŝ might not be conserved but the net angular momentum Ĵ must

be conserved,

[L̂, Ĥ] 6= 0, [Ŝ, Ĥ ] 6= 0, but [Ĵ , Ĥ] = 0. (39)

Finally, for a system of several particles with spin, the rotations are generated by the net

angular momentum

Ĵnet =

particles
∑

i

(L̂i + Ŝi), (40)

and it is this net angular momentum which should commute with the Hamiltonian Ĥ.
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Spectrum of 2D Angular Momentum.

Let’s start with the orbital angular momentum L̂2d of a single particle. Consider an

eigenstate |ψ〉 of this operator,

L̂2d |ψ〉 = mh̄ |ψ〉 , (41)

where I wrote the eigenvalue as mh̄ because the angular momentum has the same dimen-

sionality as the h̄. In terms of the wave-function ψ(r, φ) of the polar coordinates, eq. (41)

becomes

−ih̄∂ψ
∂φ

= h̄mψ ⇐⇒ ∂ψ

∂φ
= imψ, (42)

and the general solution of this equation has form

ψ(r, φ) = ψr(r)× eimφ. (43)

However, the polar angle φ is a periodic coordinate modulo 2π, so any single-valued wave-

function must be a periodic function of φ,

ψ(r, φ+ 2π) = ψ(r, φ). (44)

The solution (43) is periodic with this period if an only if m is an integer, so the spectrum

of L̂2d comprises

L2d = h̄m, m = 0,±1,±2, . . . . (45)

Likewise, the spectrum of the net orbital angular momentum

L̂net
2d =

particles
∑

i

L̂2d(i
th) (46)

comprises whole numbers in units of h̄. This follow from the integer spectrum of each

particle’s L̂2d(i
th) and the fact that all these individual angular momenta commute with

each other.
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Another way to get this result is to note that as far as particles’ positions x1, . . . ,xN

are concerned, rotating the system through angle 2π brings it back to the original position,

R(2π) = 1 and hence R̂(2π)space = 1. In terms of the net orbital angular momentum, this

means

1 = R̂(2π)space = exp

(−2πi

h̄
L̂net
2d

)

, (47)

thus for any eigenvalue h̄m of the L̂net
2d operator we must have exp(−2πim) = 1 and hence

integer m.

But the spin part of the angular momentum may have a rather different spectrum. Since

the spin degrees of freedom are non-geometrical in nature, rotating them through angle 2π

does not have to bring them back to the original state. Thus

R̂(2π)spin = exp

(−2πi

h̄
Ŝ2d

)

does not have to = 1, (48)

hence the eigenvalues h̄ms of the Ŝ2d operator may have non-integer ms.

To find the actual spectrum of the 2D spin operator we should distinguish between the

quasiparticles which only exist in 2D systems, and the real 3D particles which simply happen

to move in only 2 dimensions. For the 3D particles, there is a theorem: a rotation of any

system through angle 4π around any axis is always trivial, thus for any quantum system

R̂(any axis, 4π) = 1. In particular,

R̂(z axis, 4π)spin = exp

(−4πi

h̄
Ŝz

)

= 1, (49)

hence for each eigenvalue h̄ms of Ŝ2d = Ŝz we must have exp(−4πims) = 1. Consequently,

the allowed values of ms are integers and half-integers,

ms = 0,±1,±2,±3, . . . or ms = ±1
2 ,±3

2 ,±5
2 , . . . . (50)

On the other hand, for the purely-2D quasiparticles there is no theorem about rotation by

4π, so ms does not have to be integer or half-integer but could be some weird fraction.

Indeed, the fractional quantum Hall effect is best described in terms of 2D quasiparticles —

called anyons — with ms = ±1
3 or some other fractions.
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To understand where the theorem about 4π rotations come from, consider a toy model of

the spin — the Dirac belt. Let’s represent the geometric degrees of freedom of a 2D particle

by a pencil lying on a table, and its non-geometric degrees of freedom — the spin — by a

belt attached to the pencil and stretching up to the ceiling. As we rotate the pencil by 2π,

the pencil itself comes back to its original direction, but the belt gets twisted. Similarly,

when we rotate the pencil n times through the 2π angle, it comes back to itself, but the belt

gets twisted by n while terms. For a pencil that is stuck on the horizontal plane of the table,

these twists cannot be undone without rotating the pencil in the opposite direction, so when

we look at the belt as well as the pencil we get R(n× 2π) 6= 1.

On the other hand, when a pencil is allowed to move up and down, or a belt is allowed

to wiggle around the pencil, we cannot undo a rotation by 2π but we can undo a rotation

by 4π, as shown on this YouTube video. Consequently, R(4π) = 1, and that’s what restricts

the particles’ spins to integer or half-integer values.

Another useful general theorem is the spin-statistics theorem: for any rotation axis

in 3D, R̂(2π) = ±1 where the sign depends on the particle’s statistics: it’s +1 for the bosons

and −1 for the fermions. Consequently, the bosonic particles have integer spins (in units

of h̄) while the fermionic particles have half-integer spins.

There are similar spin-statistics theorems in other dimensions. In d ≥ 3 dimensions the

only options are bosons with integer spins and fermions with half-integer spins, but in d = 2

dimensions there is a third option: anyons with fractional spins and fractional statistics.

Instead of

ψ(2, 1) = ψ(1, 2)×
{

+1 for the bosons,

−1 for the fermions,
(51)

for the anyons

ψ(2, 1) = ψ(1, 2)× e±2πims (52)

where the sign of the phase ±2πms depends on the way we exchange the two particles:

e+2πims e−2πims (53)
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Rotations in Three Dimensions

Rotation Group.

In 2D there is only one possible axis of rotation, but in 3D one may rotate around any

axis one likes. I am going to use unit vectors to indicate the rotation axes, so R(n, α) denotes

rotating through angle α around the axis pointed by the unit vector n.

A rotation R(n, δα) through an infinitesimal angle δα acts on a vector v as

v′ = v + δαn× v + O(δα2). (54)

For a finite rotation rotation angle, the action follows from

R(n, α) =
(

R(n, α
N )
)N

(55)

and taking the N → ∞ limit. As you shall see in homework set#9, the finite rotations act

as

R(α,n) : v 7→ v′ = cosα v + sinαn× v + (1− cosα)(n · v)n. (56)

Or in index notations

v′i = Rij(n, α)vj 〈〈 implicit
∑

j 〉〉, (57)

for Rij(n, α) = cosα δij + sinα ǫikjnk + (1− cosα)ninj . (58)

The 9 coefficients Rij(n, α) form a 3× 3 real matrix ‖R(n, α)‖; for example, for n = z axis,

‖R(z axis, α)‖ =







cosα − sinα 0

+ sinα cosα 0

0 0 1






. (59)

You shall also see in the homework set#9 that the matrix ‖R(n, α)‖ of any rotation is a

special orthogonal matrix, where special means it has a unit determinant det ‖R‖ = +1 and
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orthogonal means it preserves the magnitudes of the vectors it acts on; orthogonality is the

real analogue of the unitarity. In index notations, orthogonality means

for v′i = Rijvj :

v′iv
′
i = Rijvj Rikvk

=

vjvj = δjkvjvk ,

(60)

which calls for RijRik = δjk, or on matrix notations ‖R‖⊤‖R‖ = 1. The special orthogonal

N ×N matrices form a group called SO(N) where the group product is the matrix product.

For the present purposes we are interested in the SO(3) group since any rotation matrix is an

SO(3) matrix. Moreover, the matrix of a product of two consecutive rotations R3 = R2R1 is

the matrix product ‖R3‖ = ‖R2‖ ‖R1‖: Indeed, rotating a vector v first through α1 around

axis n1 and then through α2 around axis n2 produces

v′j = R
(1)
jk vk ,

v′′i = R
(2)
ij v

′
j = R

(2)
ij R

(1)
jk vk

= R
(3)
ik vk

for R
(3)
ik = R

(2)
ij R

(1)
jk ,

i. e., ‖R3‖ = matrix product ‖R2‖ ‖R1‖.

(61)

Finally, any SO(3) matrix is a rotation matrix ‖R(n, α)‖ for some axis n and some angle

α. (Proof is a part of the homework set#9.) Altogether, this means that the group of 3D

rotations is isomorphic to the SO(3). In practice, people usually identify the 3D rotation

group with the SO(3) and use the same notation R(n, α) for the rotation and for its SO(3)

matrix.

Likewise, the rotation group in any other space dimension d ≥ 2 is isomorphic to the

SO(d) and is often identified with the SO(d).

13

http://www.ph.utexas.edu/~vadim/Classes/2023f/hw09.pdf


Rotation Generators

In quantum mechanics, the rotations are represented by the unitary operators R̂(n, α)

such that

for R(n3, α3) = R(n2, α2)R(n1, α1) we always have R̂(n3, α3) = R̂(n2, α2)R̂(n1, α1).

(62)

Similar to the 2D rotations, the 3D rotations are generated by the angular momentum

operator, or rather the 3 components Ĵx, Ĵy, Ĵz of the 3D angular momentum. To see how

this works, consider the infinitesimal rotations

R(n, δα) : v 7→ v′ = v + δαn× v + O(δα2). (54)

To first order in δα, all such rotations commute with each other and the infinitesimal angles

— or rather δαn — add up as vectors:

R(n3, δα3) = R(n2, δα2)R(n1, δα1) for δα3n3 = δα1n1 + δα2n2 + O(δα2). (63)

Consequently, for small angles we may treat (αnx, αny, αnz) as three components of a vector

and take the derivatives of the rotation operator R̂(n, α) = R̂(αnx, αny, αnz) with respect

to these components. Thus, let

Ĵx = ih̄
∂R̂

∂(αnx)
, Ĵy = ih̄

∂R̂
∂(αny)

, Ĵz = ih̄
∂R̂

∂(αnz)
, all at αnx = αny = αnz = 0.

(64)

Equivalently, we may say that for an infinitesimal rotation angle δα

R̂(n, δα) = 1 +
δα

ih̄
n · Ĵ + O(δα2) (65)

where Ĵ is a 3-vector whose components are Hermitian operators (Ĵx, Ĵy, Ĵz). As in 2D, the

Hermiticity of these operators follows from

R̂†(n, δα) = R̂−1(n, δα) = R̂(n,−δα), (66)

hence

1 +
δα

−ih̄ n · Ĵ† + O(δα2) = 1 +
−δα
ih̄

n · Ĵ + O(δα2) (67)

and therefore Ĵ† = Ĵ.
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Similarly to what we had in 2D, eq. (65) for the infinitesimal angles implies that for the

finite rotation angles

R̂(n, α) = exp

(−iα
h̄

n · Ĵ
)

. (68)

Indeed,

R̂(n, α) =
(

R̂(n, α
N )
)N

〈〈 for N → ∞ and hence infinitesimal α
n 〉〉

= lim
N→∞

(

1 +
α/N

ih̄
n · Ĵ + O(α2/N2)

)N

= lim
N→∞

(

1 +
(α/ih̄)n · Ĵ

N
+ O(1/N2)

)N

= exp
(

(α/ih̄)n · Ĵ
)

.

(69)

Thus, the 3 Hermitian operators (Ĵx, Ĵy, Ĵz) generate all the rotations of the 3D space.

Physically, these 3 generators are components of the 3D angular momentum operator

Ĵ. Indeed, for a single particle without internal degrees of freedom, we may proceed exactly

as we did in 2D and show that the Ĵz operator acts on the wave function ψ(x, y, z) as

L̂z = x̂p̂y − ŷp̂x. Similarly, we may show that the Ĵx acts as L̂x = ŷp̂z − ẑp̂y and Ĵy acts

as L̂y = ẑp̂x − x̂p̂z, thus for a single particle without spin Ĵ = L̂. Likewise, for multiple

particles without spin

Ĵ = L̂net =

particles
∑

i

L̂(ith), (70)

and for particles with spins — i.e., internal degrees of freedom that are affected by the space

rotations — we have

Ĵ = L̂net + Ŝnet =

particles
∑

i

(

L̂(ith) + Ŝ(ith)
)

. (71)
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Commutation Relations

The 3D rotation group SO(3) is non-abelian, so its generators (Ĵx, Ĵy, Ĵz) should not

commute with each other. Indeed, we know that the orbital angular momenta (L̂x, L̂y, L̂z)

do not commute; instead

[L̂i, L̂j ] = ih̄ǫijkL̂k . (72)

Actually, the components of any king of an angular momentum obey the same commutation

relations

[Ĵi, Ĵj] = ih̄ǫijkĴk, (73)

regardless of its physical origin: The orbital angular momentum, the spin, the angular mo-

mentum of the EM fields, the net angular momentum, whatever. Any 3 operators (Ĵx, Ĵy, Ĵz)

that generate 3D rotations of any kind of a quantum system or sub-system must obey the

commutation relations (73).

The commutation relations (73) stem from the non-abelian nature of the rotation group

SO(3). To see how this works, consider two infinitesimal rotations R(1) = R(n1, α1) and

R(2) = R(n2, α2) to the second order in the infinitesimal angles α1, α2. In index notations

R
(1)
ij = cosα1δij + sinα1ǫiℓjn1ℓ + (1− cosα1)n1in1j

= (1− 1
2α

2
1)δij + α1ǫiℓjn1ℓ + 1

2α
2
1n1in1j + O(α3

1)

= δij + α1ǫiℓjn1ℓ + 1
2α

2
1(n1in1j − δij) + O(α3

1)

(74)

and likewise

R
(2)
jk = δjk + α2ǫjmkn2m + 1

2α
2
2(n2jn2k − δjk) + O(α3

2). (75)

Now consider the products of these two rotations matrices in both orders:

(

R(1)R(2)
)

ik
= R

(1)
ij R

(2)
jk

= δij × δjk + α1ǫiℓjn1ℓ × δjk + δij × α2ǫjmkn2m

+ 1
2α

2
1(n1in1j − δij)× δjk + δij × 1

2α
2
2(n2jn2k − δjk)

+ α1ǫiℓjn1ℓ × α2ǫjmkn2m + O(α3) (76)
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= δik + (α1niℓ + α2n2ℓ)ǫiℓk + 1
2α

2
1(n1in1k − δik) + 1

2α
2
2(n2in2k − δik)

+ α1α2ǫiℓjǫjmk × n1ℓn2m + O(α3), (76)

and likewise

(

R(2)R(1)
)

ik
= R

(2)
ij R

(1)
jk

= δik + (α1niℓ + α2n2ℓ)ǫiℓk + 1
2α

2
1(n1in1k − δik) + 1

2α
2
2(n2in2k − δik)

+ α1α2ǫiℓjǫjmk × n2ℓn1m + O(α3).
(77)

Note the difference between the terms marked in red. Thus, to the second order in the

infinitesimal angles

(

R(1)R(2) −R(2)R(1)
)

ik
= α1α2ǫiℓjǫjmk(n1ℓn2m − n2ℓn1m) + O(α3) (78)

where

ǫiℓjǫjmk(n1ℓn2m − n2ℓn1m) = (δimδℓk − δikδℓm)(n1ℓn2m − n2ℓn1m)

= n1kn2i − δik(n1 · n2) − n2kn1i + δik(n2 · n1)

= n1kn2i − n1in2k = (−δiℓδkm + δimδkℓ)n1ℓn2m

= −ǫikjǫjℓmniℓn2m = −ǫikj(n1 × n2)j

= +ǫijk(n1 × n2)j .

(79)

Consequently,

(

R(1)R(2) −R(2)R(1)
)

ik
= ǫijk(α1α2n1 ×n2)j + O(α3

1,2) =
(

R(3) − 1
)

ik
+ O(α3

1,2) (80)

for

R(3) = R(n3, α3), α3n3 = α1α2(n1 × n2). (81)

The operators R̂(n, α) representing rotations in the Hilbert space of any quantum system
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should obey similar commutation relation: for infinitesimal angles α1 and α2,

R̂(n1, α1)R̂(n2, α2) − R̂(n2, α2)R̂(n1, α1) = R̂(n3, α3) − 1 + O(α3
1,2) (82)

for α3n3 = α1α2(n1 × n2). (83)

On the other hand,

R̂(n, α) = exp

(−iα
h̄

n · Ĵ
)

= 1 − iα

h̄
(n · Ĵ) − α2

2h̄2
(n · Ĵ)2 + O(α3), (84)

hence

R̂(n1, α1)R̂(n2, α2) = 1 − iα1
h̄

(n1 · Ĵ) − iα2
h̄

(n2 · Ĵ)

− α2
1

2h̄2
(n1 · Ĵ)2 − α2

2

2h̄2
(n2 · Ĵ)2

− α1α2

h̄2
(n1 · Ĵ)(n2 · Ĵ) + O(α3

1,2)

(85)

and likewise

R̂(n2, α2)R̂(n1, α1) = 1 − iα1
h̄

(n1 · Ĵ) − iα2
h̄

(n2 · Ĵ)

− α2
1

2h̄2
(n1 · Ĵ)2 − α2

2

2h̄2
(n2 · Ĵ)2

− α2α1

h̄2
(n2 · Ĵ)(n1 · Ĵ) + O(α3

1,2).

(86)

Again, the red color marks the terms different between the two products. Taking the differ-

ence, we arrive at

[

R̂(n1, α1), R̂(n2, α2)
]

= −α1α2
h̄2

[

(n1 · Ĵ), (n2 · Ĵ)
]

+ O(α3
1,2).

At the same time, to the second order in α1,2 — and hence to the first order in the α3 —

we have

R̂(n3, α3) − 1 =
−iα3
h̄

(n3 · Ĵ) + O(α2
3) =

−iα1α2
h̄

(n1 × n2) · Ĵ + O(α4
1,2) (87)

Consequently, plugging the last two formulae into eq. (82) and focusing on the leading
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O(α1α2) term, we arrive at

−α1α2
h̄2

[

(n1 · Ĵ), (n2 · Ĵ)
]

=
−iα1α2

h̄
(n1 × n2) · Ĵ (88)

and hence

[

(n1 · Ĵ), (n2 · Ĵ)
]

= ih̄(n1 × n2) · Ĵ. (89)

Finally, let’s respell eq. (89) in index notations:

[

n1iĴi, n2j Ĵj
]

= ih̄ǫijkn1in2j Ĵk

=

n1in2j
[

Ĵi, Ĵj
]

〈〈 since n1i and n2j commute with everything 〉〉

(90)

and since eq. (89) must work for any rotation axes n1 and n2, we need

[

Ĵi, Ĵj
]

= ih̄ǫijkĴk . (73)

Or in vector notations

Ĵ× Ĵ = ih̄Ĵ. (91)

I would like to emphasise that any kind of angular momentum generating 3D rotation

of any kind of a quantum system must obey the commutation relations (73). Indeed, we

saw back in homework set#4 that the orbital angular momentum L̂ indeed satisfies the

relations (73). Likewise, for a spin = 1
2 atom like silver, the spin operator Ŝ = h̄

2~σ (where

σx, σy, σz are the Pauli matrices) satisfies the same relations:

σiσj = δij12×2 + iǫijkσk =⇒ [σi, σj ] = 2iǫijkσk =⇒ [Ŝi, Ŝj ] = ih̄ǫijkŜk . (92)

Also, if a system has two kinds of angular momenta acting on different degrees of freedom —

such as different particles, or position and spin state of the same particle, — then we should
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have

[

Ĵ
(1)
i , Ĵ

(1)
j

]

= ih̄ǫijkĴ
(1)
k ,

[

Ĵ
(2)
i , Ĵ

(2)
j

]

= ih̄ǫijkĴ
(2)
k , but

[

Ĵ
(1)
i , Ĵ

(2)
j

]

= 0. (93)

Consequently, the net angular momentum Ĵnet = Ĵ(1) + Ĵ(2) automatically obeys the com-

mutation relations (73):

[

Ĵnet
i , Ĵnet

j

]

=
[

Ĵ
(1)
i , Ĵ

(1)
j

]

+
[

Ĵ
(1)
i , Ĵ

(2)
j

]

+
[

Ĵ
(2)
i , Ĵ

(1)
j

]

+
[

Ĵ
(2)
i , Ĵ

(2)
j

]

= ih̄ǫijkĴ
(1)
k + 0 + 0 + ih̄ǫijkĴ

(2)
k

= ih̄ǫijkĴ
net
k .

Likewise, for the net angular momentum of several degrees of freedom — whatever they are

— its components (Ĵnet
x , Ĵnet

y , Ĵnet
z ) obey the commutation relations (73).

Scalars, Vectors, and Tensors

Let’s start with the definitions. A vector V is more than just an array of three compo-

nents (Vx, Vy, Vz). To make a vector, the three components must transform under a passive

rotation of the coordinate system according to

Vi → V ′
i = Rij(n, φ)Vj . (94)

Likewise, a vector property of a body — or a system of bodies — must transform according

to eq. (93) when that body or system is actively rotated in space.

Similarly, a scalar S is more than a single quantity, it must also be invariant under all

passive rotations of the coordinate system. And a scalar property of a body or system stays

invariant when that body or system is actively rotated in space.

Many physical quantities are scalars or vectors, but other quantities form tensors. For

example, the quadrupole moments, the moments of inertia, or the stresses and the strains

in some solid body form 2-index tensors Tij . Again, such a tensor is more than just an

array of 3×3 components, but these components must transform in a specific manner under
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rotations:

T ′
ij = Rik(n, α)Rjℓ(n, α)Tjℓ . (95)

Likewise, a 3-index tensor Tijk is an array of 33 components which transform under rotations

according to

T ′
ijk = RiℓRjmRknTℓmn , (96)

and ditto for tensors with more indices.

With these definitions, it is easy to check that for any scalar S and vectors A and B:

SA is a vector,

A ·B is a scalar,

A×B is a vector,

Tij = AiBj is a 2-index tensor.

(97)

Some tensors have symmetry relation between their indices, and the rotations preserve

such relations. For example, for a 2-index symmetric tensor

Tij = +Tji =⇒ T ′
ij = +T ′

ji , (98)

and for a 2-index antisymmetric tensor

Tij = −Tji =⇒ T ′
ij = −T ′

ji . (99)

Actually, in 3D — and only in 3D — an antisymmetric 2-index tensor is equivalent to a

vector,

Tij = −Tji = ǫijkVk , Vk = 1
2ǫkijTij , (100)

and both of these relations are preserved by the SO(3) rotations. Also, the trace of a

symmetric 2-index tensor Tij = +Tji is a scalar,

tr(T )
def
= Tii = Txx + Tyy + Tzz

= tr(T ′) for any rotation T ′ of T .
(101)

(The proof of both statements a part of problem 2 of homework set#9.)
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For the tensors with 3 or more indices, there are may different symmetry patterns. For

example:

• totally symmetric tensors,

Tany permutation of (i,j,...,n) = +T(i,j,...,n); (102)

• totally antisymmetric tensors,

Tany permutation of (i,j,...,n) = T(i,j,...,n) × (−1)parity of the permutation; (103)

• mixed symmetry tensors such as

Tijk = +Tjik = −Tikj = −Tkji . (104)

But in 3D, any antisymmetric or mixed-symmetry tensor is equivalent to a totally symmetric

tensor with fewer indices. Consequently, any tensor is equivalent to one or several totally

symmetric tensors.

Scalar, Vector, and Tensor Operators

In Quantum Mechanics, we call an operator Ŝ a scalar operator if and only if all its

matrix elements are scalars, i.e., invariant under rotation symmetries:

〈

ψ′
1

∣

∣ Ŝ′
∣

∣ψ′
2

〉

= 〈ψ1| Ŝ |ψ2〉 for any 〈ψ1| and |ψ2〉 . (105)

In the Schrödinger picture of QM,

∣

∣ψ′
2

〉

= R̂(n, α) |ψ2〉 ,
〈

ψ′
1

∣

∣ = 〈ψ1| R̂†(n, α), Ŝ′ = Ŝ, (106)

while in the Heisenberg picture

∣

∣ψ′
2

〉

= |ψ2〉 ,
〈

ψ′
1

∣

∣ = 〈ψ1| , Ŝ′ = R̂†(n, α)ŜR̂(n, α), (107)
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but in both pictures

〈

ψ′
1

∣

∣ Ŝ′
∣

∣ψ′
2

〉

= 〈ψ1| R̂†(n, α)ŜR̂(n, α) |ψ2〉 . (108)

Plugging this formula into eq. (105), we see that an operator Ŝ is a scalar if and only if

R̂†(n, α)ŜR̂(n, α) = Ŝ (109)

for any space rotation R(n, α). Or equivalently, Ŝ is a scalar operator if and only if it

commutes with all the rotation operators R̂(n, α).

Now consider the vector operators. By definition, we call a trio of component operators

(V̂x, V̂y, V̂z) a vector operator V̂ if and only if the the matrix elements of the components

transform into each other under rotations as components of a vector,

〈

ψ′
1

∣

∣ V̂ ′
i

∣

∣ψ′
2

〉

= Rij(n, α) 〈ψ1| V̂j |ψ2〉 . (110)

Similar to the scalar case, the LHS here amounts to

〈ψ1| R̂†(n, α)V̂iR̂(n, α) |ψ2〉 , (111)

so to make sure eq. (110) holds for the matrix elements between all possible 〈ψ1| and |ψ2〉,
we need the operatorial identity

R̂†(n, α)V̂iR̂(n, α) = Rij(n, α)V̂j . (112)

In other words, V̂ is a vector operator if and only if its components V̂i obey eq. (112) for all

space rotations.

Similar rules apply to the tensor operators. For example, 9 component operators T̂ij form

a 2-index tensor operator if and only if their matrix elements transform under rotations as

components of a 2-index tensor, or equivalently if and only if for any space rotation

R̂†(n, α)T̂ijR̂(n, α) = Rik(n, α)Rjℓ(n, α)T̂kℓ . (113)

And ditto for the 3-index tensor operators, etc., etc.
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All these criteria for the scalar, vector, and tensor operators can be restated in terms of

the commutation relations with the angular momentum operators (Ĵx, Ĵy, Ĵz) which generate

all space rotations,

R̂(n, α) = exp
(

(−iα/h̄)n · Ĵ
)

(68)

Consequently, by the Baker–Hausdorff lemma

eB̂Ĉe−B̂ = Ĉ + [B̂, Ĉ] + 1
2 [B̂, [B̂, Ĉ]] + · · · + 1

n! [B̂, [B̂, . . . , [B̂, Ĉ] . . .]]n + · · · . (114)

we may expand the rotated operators of the form

R̂†(n, α)ÂR̂(n, α) (115)

on the left hand sides of eqs. (109), (112), and (113) into multiple commutators of the op-

erator Â with (n · Ĵ) and hence with the angular momentum operators (Ĵx, Ĵy, Ĵz). Conse-

quently, the criteria (109), (112), and (113) become equivalent to the following commutation

relations:

• Ŝ is a scalar operator if and only if it commutes with the angular momentum,

[

Ŝ, Ĵi
]

= 0. (116)

• V̂ is a vector operator if and only it its components obey

[

V̂i, Ĵj ] = ih̄ǫijkV̂k . (117)

Note that by this criterion, the angular momentum Ĵ is itself a vector operator.

• T̂ij components comprise a 2-index tensor operator if and only if they obey

[

T̂ij , Ĵk
]

= ih̄ǫikℓT̂ℓj + ih̄ǫjkℓT̂iℓ . (118)

— Ditto for the tensor operators with 3 or more indices.
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Proving that these commutation relations are equivalent to the criteria (109), (112), and (113)

is a part of your homework set#9 (problem 2), so I am not going to do it in these notes.

Instead, let me simply illustrate these commutation relation in the Hilbert space of a single

spinless particle in a central potential. For such a particle Ĵ is simply the orbital angular

momentum L̂ = x× p̂, and we expect x̂, p̂, and L̂ itself to be vector operators, thus

[x̂i, L̂j ] = ih̄ǫijkx̂k , [p̂i, L̂j ] = ih̄ǫijkp̂k , [L̂i, L̂j] = ih̄ǫijkL̂k . (119)

On the other hand, we expect the operators r̂2 = x̂2, p̂2, L̂2 to be scalar operators, thus

[x̂2, L̂j ] = 0, [p̂2, L̂j ] = 0, [L̂2, L̂j] = 0. (120)

And indeed, back in homework set#4 (problem 2) we saw that all these commutation relation

hold true.

Lie Groups and Lie Algebras

Let’s go back to general symmetries, or rather to the general continuous symmetries.

Mathematically, such symmetries form a Lie groups — a group whose elements S also form

a differentiable manifold of some dimension N . In other words, we may continuously — and

differentiably — parametrize the symmetries by N independent real variables, (a1, . . . , aN ),

and we may always chose such parameters such that S(0, . . . , 0) = 1 while for the infinitesimal

(da1, . . . , daN ) the symmetry S(da1, . . . , daN ) is infinitesimally close to the identity. For

example, the 3D rotations R(n, α) can be re-parametrized as R(ax, ay, az) for (ax, ay, az) =

(αnx, αny, αnz).

In quantum mechanics, such symmetries are represented by unitary operators

Û(a1, . . . , aN ) = Û(S(a1, . . . , aN ))

which is a differentiable function of the (a1, . . . , aN ),

Û(0, . . . , 0) = 1.

(121)

So let’s define N generators of the symmetry group as the derivatives

T̂i def
= ih̄

∂Û

∂ai

∣

∣

∣

∣

∣

a1=···=aN=0

, i = 1, . . . , N. (122)

By unitarity of the symmetry operators Û(a1, . . . , an), these generators are Hermitian oper-
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ators. Indeed, to the first order in the the infinitesimal parameters dai,

Û(da1, . . . , daN ) = 1 − i

h̄

N
∑

i=1

T̂i dai + O(da2), (123)

hence

Û†(da1, . . . , daN ) = 1 +
i

h̄

N
∑

i=1

T̂ †
i dai + O(da2), (124)

and

U†U = 1 − i

h̄

N
∑

i=1

(T̂i − T̂ †
i )dai + O(da2). (125)

But the symmetry operator Û(da1, . . . , dan) must be unitary, Û†Û = 1, so the O(da) term

on the RHS here must vanish for any infinitesimal (da1, . . . , dan), thus T̂i−T̂ †
i = 0. In other

words, all N generators T̂i must be Hermitian operators.

To see how the operators T̂i generate the finite symmetry transformations Û(a1, . . . , aN ),

let us choose the parameters (a1, . . . , aN ) of the finite symmetries such that

S(a1, . . . , aN ) =
[

S
(a1
m
, . . . ,

aN
m

)]m
, (126)

similarly to what we have for the rotations parametrized by the a = αn: R(αnx, αnu, αnz) =
[

R(αnx

m , αny

m , αnz

m )
]m

. Then,

Û(a1, . . . , aN ) =
[

Û
(a1
m
, . . . ,

aN
m

)]m

〈〈where all ai

m become infinitesimal for m→ ∞〉〉

= lim
m→∞

[

1 − i

h̄

∑

i

ai
m
T̂i + O(a2/m2)

]m

= lim
m→∞

[

1 +
1

m

(−i
h̄

∑

i
aiT̂i

)

+ O(1/m2)

]m

= exp

(−i
h̄

∑

i
aiT̂i

)

.

(127)

For example, the 3D rotation symmetries are generated by the angular momentum Ĵ,

Ĵi = ih̄
∂R̂(αn)

∂(αn)i

∣

∣

∣

∣

∣

αn=0

, R̂(finite αn) = exp

(−i
h̄
αn · Ĵ

)

, (128)
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while the space translation symmetries are generated by the linear momentum P̂,

P̂i = ih̄
∂T̂ (a)

∂ai

∣

∣

∣

∣

∣

a=0

, T̂ (finite a) = exp

(−i
h̄
a · P̂

)

. (129)

Clearly, the generators of an abelian symmetry group — like the translations — must

commute with each other, [T̂i, T̂j ] = 0, while the generators of a non-abelian group — like the

3D rotations — should not commute. Instead, the commutators of the non-abelian group’s

generators are linear combinations of the other generators,

[

T̂i, T̂j
]

= ih̄
∑

k

fijkT̂k (130)

for some constant coefficients fijk, called the structure constants of the symmetry group in

question. Similarly to what we did for the SO(3) rotation symmetry — for which fijk = ǫijk,

thus [Ĵi, Ĵj ] = ih̄ǫijkĴk, — the structure constants for other non-abelian symmetries obtain

by looking at the infinitesimal symmetries S(da1, . . . , daN ) and their products to the second

order in dai. In general, all infinitesimal symmetries commute to first order in da,

S(db1, . . . , dbn)×S(da1, . . . , daN ) = S(da1, . . . , daN )×S(db1, . . . , dbn) + O(da×db), (131)

while to the second order in da and db we have

S(db1, . . . , dbn)× S(da1, . . . , daN ) = S(da1, . . . , daN )× S(db1, . . . , dbn)× S(dc1, . . . , dcN )

(132)

for some

dck =
∑

ijk

daidbjfijk + O(da2 db or da db2). (133)

For example, eqs. (80) and (81) for the rotation symmetries become in present notations

R(db)×R(da) = R(da)×R(db)× R(dc) (134)

for

dc = da× db + O(da2db or da db2), (135)

which corresponds to fijk = ǫijk.
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For other symmetry groups we would have some other structure constants fijk and

hence different commutation algebras — AKA Lie algebras — (130). Indeed, eq. (132) for

the symmetries themselves translates to

Û(db1, . . . , dbn)× Û (da1, . . . , daN ) = Û(da1, . . . , daN )× Û (db1, . . . , dbn)× Û (dc1, . . . , dcN ),

(136)

hence to the second order in da and db and the first order in dc,

−1

h̄2

∑

ij

daidbj T̂iT̂j =
−1

h̄2

∑

ij

dbjdaiT̂j T̂i − i

h̄

∑

k

dckT̂k + higher orders (137)

and therefore

∑

ij

daidbj [T̂i, T̂j] = ih̄
∑

k

dckT̂k + higher orders. (138)

Since the dck in this formula should be exactly as in eq. (133), this means

∑

ij

daidbj [T̂i, T̂j ] = ih̄
∑

ijk

daidbjfijkT̂k (139)

and therefore

[

T̂i, T̂j
]

= ih̄
∑

k

fijkT̂k . (130)

Thus, we see that the non-abelian group product of the infinitesimal symmetries com-

pletely determines the commutator algebra of the group’s generators. Conversely, the com-

mutator algebra of the generators completely determines the products of all the finite sym-

metries. Indeed, consider the Baker–Campbell–Hausdorff formula: for any matrices or op-

erators X̂ and Ŷ ,

exp(X̂) exp(Ŷ ) = exp(Ẑ) (140)

where Ẑ is a series in multiple commutators of X̂ and Ŷ ,

Ẑ = X̂ + Ŷ + 1
2 [X̂, Ŷ ] + 1

12 [(X̂ − Ŷ ), [X̂, Ŷ ]] − 1
24 [Ŷ , [X̂, [X̂, Ŷ ]]] + · · · . (141)
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Note that the product of any two finite symmetries

Û(a1, . . . , an)× Û(b1, . . . , bn) = exp

(−i
h̄

∑

i
aiT̂i

)

× exp

(−i
h̄

∑

j
bj T̂j

)

(142)

has the form of the BCH formula’s LHS for

X̂ =
−i
h̄

∑

i

aiT̂i , Ŷ =
−i
h̄

∑

j

bj T̂j . (143)

As to the RHS of that formula, all multiple commutators of these X̂ and Ŷ obtain from the

Lie algebra (130):

[X̂, Ŷ ] =
−i
h̄

∑

i,j,k

aibjfijkT̂k , (144)

[(X̂ − Ŷ ), [X̂, Ŷ ]] =
−i
h̄

∑

i,j,k,ℓ,m

(ai − bi)ajbkfjkℓfiℓmT̂m , (145)

etc., etc.

Altogether, on the RHS of the BCH formula we end up with

Ẑ =
−i
h̄

∑

m

cmT̂m (146)

where the coefficients cm are power series in the ai and bj ,

cm = am + bm +
1

2

∑

i,j

aibjfijm +
1

12

∑

i,j,k,ℓ

(ai − bi)ajbkfjkℓfiℓm + · · · , (147)

and therefore

Û(a1, . . . , an)× Û(b1, . . . , bn) = Û(c1, . . . , cm) (148)

where the parameters (c1, . . . , cN ) of the product obtain as the power series (147) in the

parameters (a1, . . . , an) and (b1, . . . , bn) of the two factors.
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Representations and Multiplets

A representation of a group G is a map from G to the space of matrices or operators,

S 7→ M(S) or S 7→ Û(S) such that

M(group product S2S1) = matrix product M(S2)M(S1)

or Û(group product S2S1) = operator product Û(S2)Û(S1).
(149)

A point of terminology: a representation by finite n× n matrices is called a finite represen-

tation of dimension n, while a representation by operators in an infinite-dimensional Hilbert

space is called an infinite representation.

The same group G may have an infinite variety of different representations. For example,

for any rotationally symmetric quantum system, the unitary rotation operators R̂(n, α) form

a representation of the rotation group. Moreover, the same rotation group has an infinite

series of finite representations of dimensions n = 1, 2, 3, 4, . . .. For example, the SO(3)

matrices

Rij(n, α) = cosαδij + sinαnkǫikj + (1− cosα)ninj (58)

form a 3-dimensional representation of the rotation group, while the SU(2) matrices

Uαβ(n, α) =
(

exp
(

−iα2 n · ~σ
)

)

αβ
= cos α

2 δαβ − i sin α
2 nk(σk)αβ (150)

(where σx,y,z are Pauli matrices) form a 2-dimensional representation. (The proof is a part

of the homework set#9, problem 1.)

A representation is called reducible if all the matrices M(S) or operators Û(S) are block-

diagonal in the same basis. In this case, every diagonal block by itself is a smaller rep-

resentation of the same symmetry group. A representation by matrices which cannot be

block-diagonalized in the same basis is called irreducible. By these definitions, a reducible

representation is a tensor sum of its irreducible diagonal blocks,

(r)net = (r)1 ⊕ (r2)⊕ · · · , (151)

so once we classify all the irreducible representations of some group G, all the reducible

representations obtain as tensor sums (151).
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Now consider a Lie algebra (the commutator algebra) of some continuous symmetry

group. A representation (r) of the Lie algebra is a set of finite matrices T
(r)
i or operators

T̂
(r)
i which obey the same commutation relations as the algebra’s generators T̂i,

[

T
(r)
i , T

(r)
j

]

= ih̄
∑

k

fijkT
(r)
k . (152)

Any representation of a Lie algebra can be turned into a representation of the corresponding

Lie group by matrix exponentiation: for S(a1, . . . , aN ) such that

Û(S(a1, . . . , aN )) = operator exp

(−i
h̄

∑

i
aiT̂i

)

, (153)

we let

M (r)(a1, . . . , aN ) = matrix exp

(−i
h̄

∑

i
aiT

(r)
i

)

. (154)

Then by the Baker–Campbell–Hausdorff formula, for

S(c1, . . . , cN ) = S(a1, . . . , aN )× S(b1, . . . , bN ) (155)

we get

M (r)(c1, . . . , cN ) = M (r)(a1, . . . , aN )×M (r)(b1, . . . , bN ) (156)

in the same way as

Û(c1, . . . , cN ) = Û(a1, . . . , aN )× Û(b1, . . . , bN ). (157)

For example, a representation (r) of the angular momentum algebra is a set of 3 matrices

J
(r)
x , J

(r)
y , and J

(r)
z such that

[

J
(r)
i , J

(r)
j

]

= ih̄ǫijkJ
(r)
k , (158)

and any such representation can be turned into a representation of the rotation group as

M (r)(n, α) = matrix exp

(−i
h̄
αn · J(r)

)

. (159)
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In particular, the 2× 2 Hermitian matrices J
(2)
i = 1

2 h̄σi,

J
(2)
x =

h̄

2

(

0 1

1 0

)

, J
(2)
y =

h̄

2

(

0 −i

+i 0

)

, J
(2)
z =

h̄

2

(

+1 0

0 −1

)

(160)

generate the 2-dimensional representation (150) of the rotation group, while the 3× 3 imag-

inary antisymmetric (and hence Hermitian) matrices

(

J
(3)
i

)

jk
= ih̄ǫjik , (161)

— or in explicit matrix form

J
(3)
x = h̄





0 0 0

0 0 −i

0 +i 0



 , J
(3)
y = h̄





0 0 +i

0 0 0

−i 0 0



 , J
(3)
z = h̄





0 −i 0

+i 0 0

0 0 0



 (162)

— generate the 3-dimensional representation by the SO(3) rotation matrices (58) themselves.

Now consider symmetries of a quantum system. The unitary operators Û(S) in the

Hilbert space of the system form an infinite representation of the symmetry group G. But

usually, this representation is highly reducible, so in some basis {|α, µ〉} the matrix elements

of all the symmetries become block-diagonal,

〈α, µ| Û(S) |β, ν〉 = δα,β × U
(α)
µ,ν (S), (163)

for some matrices U
(α)
µ,ν (S). The states |α, µ〉 belonging to the same block α form a multiplet

of the symmetry group: Under the symmetry transforms, the states in a multiplet mix with

each other but not with any states in other multiplets,

Û(S) |α, ν〉 =
∑

µ

|α, µ〉 × U
(α)
µ,ν (S) but no terms with β 6= α. (164)

The multiplets of a symmetry is closely related to the representations as all the matrices

U
(α)
µ,ν (S) form representations of the symmetry group, thus

U
(α)
µ,ν (S) = M

(r)
µ,ν(S) for some representation (r). (165)

However, the representations (r) are classified just by the matrices M
(r)
µ,ν(S) regardless of

which states are transformed according to this matrix, so different multiplets α 6= β may
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transform according to the same representation of the symmetry. In other words, the repre-

sentation is the multiplet type, but the Hilbert space may contain many distinct multiplets

of the same type.

For example, consider the rotational symmetry of a spinless particle in a central potential.

As you (should have) learned in the undergraduate school, the Hamiltonian eigenstates for

such a particle are labeled by the radial quantum number nr, the orbital quantum number

ℓ, and the magnetic quantum number m; they have wave-functions of the form

Ψnr,ℓ,m(r, θ, φ) = ψnr ,ℓ(r)× Yℓ,m(θ, φ) (166)

and energies E(nr, ℓ) which are degenerate WRT m,

Ĥ |nr, ℓ,m〉 = E(nr, ℓ only) |nr, ℓ,m〉 . (167)

As we shall see in a few pages, the rotational symmetries act in this basis as

R̂(n, α) |nr, ℓ,m〉 =
∑

m′ only

∣

∣nr, ℓ,m
′
〉

×D(ℓ)
m′,m(n, α). (168)

Thus, states with the same nr and ℓ but different m form a multiplet — the rotations do

not mix them up with the other states. In other words, the quantum numbers nr and ℓ label

multiplets while m labels states within the multiplets. Furthermore, the transformation

matrices D(ℓ)
m,m′(n, α) for the members of a multiplet (nr, ℓ) depend on ℓ but not on the nr.

Thus, we have the same representation (ℓ) of the rotation group for all multiplets (nr, ℓ)

with the same ℓ but different nr.

I shall return to this issue once we have classified the representations of the angular

momentum algebra and hence of the rotation group.
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Representations of the Angular Momentum

To classify the (finite, unitary, and irreducible) representation of the angular momentum

algebra, consider a generic quantum system with a rotational symmetry and its generators

Ĵx,y,z. The key to our classification is the operator Ĵ2 = Ĵ2
x + Ĵ

2
y + Ĵ

2
z and its spectrum. The

most important feature of the Ĵ2 operator is that it commutes with all 3 generators Ĵx,y,z:

[

Ĵi, Ĵ
2
]

=
[

Ĵi, ĴjĴj
]

=
[

Ĵi, Ĵj
]

Ĵj + Ĵj
[

Ĵi, Ĵj
]

= (ih̄ǫijkĴk)Ĵj + Ĵj(ih̄ǫijkĴk) = ih̄ǫijk
{

Ĵj , Ĵk
}

= 0 because ǫijk = −ǫikj while {Ĵj , Ĵk
}

= +{Ĵk, Ĵj
}

.

(169)

The Ĵ2 is the quadratic Casimir operator of the angular momentum algebra. Other Lie

algebras also have quadratic Casimir operators of the form

Ĉ2 =
∑

ij

gij T̂iT̂j (170)

where the metric gij is chosen such that the Ĉ2 commutes with all the generators, [Ĉ2, T̂i] = 0.

Since the angular momentum operators Ĵx,y,z do not commute, we cannot diagonalize all

of them in the same basis; but we can simultaneously diagonalize the Ĵ2 operator and one

of the generators, say the Ĵz. Since Ĵ2 is a non-negative Hermitian operator, its eigenvalues

are non-negative real numbers; for future convenience, we shall write them as

eigenvalue(Ĵ2) = h̄2j(j + 1) for j ≥ 0. (171)

Likewise, we shall write the eigenvalues of Ĵz as h̄m, but m may be positive or negative (or

zero). Altogether, we look for a basis of the states |α, j,m〉 where

Ĵ2 |α, j,m〉 = h̄2j(j + 1) |α, j,m〉 ,

Ĵz |α, j,m〉 = h̄m |α, j,m〉 ,

and α distinguishes different states with the same j and m.

(172)

A while ago, we have seen how for a Harmonic oscillator, the commutation relation

[â, â†] = 1 completely determines the spectrum of the operator n̂ = â†â and hence of
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the oscillator’s Hamiltonian. For the angular momentum, we have a similar situation: the

Hermiticity of the generators Ĵ†
i = Ĵi and their commutation relations [Ĵi, Ĵj] = ih̄ǫijkĴk

completely determine the mutual spectrum of the operators Ĵ2 and Ĵz.

For the harmonic oscillator, we have raising/lowering operators â† and â which raise/lower

n by ±1. For the angular momentum, we have similar raising/lowering operators

Ĵ±
def
= Ĵx ± iĴy ,

(

Ĵ±
)†

= Ĵ∓ (173)

which raise/lower m by ±1 while leaving j unchanged. Indeed,

[Ĵ2, Ĵ±] = [Ĵ2, Ĵx] ± i[Ĵ2, Ĵy] = 0 ± i0 = 0, (174)

while

[Ĵz, Ĵ±] = [Ĵz, Ĵx] ± i[Ĵz , Ĵy]

= ih̄Ĵy ± i(−ih̄Ĵx) = ±h̄
(

Ĵx ± iĴy
)

= ±h̄Ĵ± ,

(175)

or in other words

ĴzĴ± = Ĵ±(Ĵz ± h̄). (176)

Now let |Ψ〉 = Ĵ± |α, j,m〉 and assume |Ψ〉 6= 0. Then |Ψ〉 is a state of definite j′ = j and

definite m′ = m± 1. Indeed,

Ĵ2 |Ψ〉 = Ĵ2Ĵ± |α, j,m〉 = Ĵ±Ĵ
2 |α, j,m〉 = Ĵ±

(

h̄2j(j + 1) |α, j,m〉
)

= h̄2j(j + 1)Ĵ± |α, j,m〉 = h̄2j(j + 1) |Ψ〉 ,
(177)

while

Ĵz |Ψ〉 = ĴzĴ± |α, j,m〉 = Ĵ±(Ĵz ± h̄) |α, j,m〉

= Ĵ±
(

h̄m |α, j,m〉 ± h̄ |α, j,m〉
)

= h̄(m± 1)Ĵ± |α, j,m〉

= h̄(m± 1) |Ψ〉 .

(178)

Thus, |Ψ〉 must be a linear combination of states |α′, j,m± 1〉.
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Next, consider the operator product

Ĵ∓Ĵ± = (Ĵx ∓ iĴy)(Ĵx ± iĴy) = Ĵ2
x + Ĵ2

y ± i[Ĵx, Ĵy]

= Ĵ2 − Ĵ2
z ∓ h̄Ĵz .

(179)

Acting with this operator product on the state |α, j,m〉, we get the state

Ĵ∓Ĵ± |α, j,m〉 = Ĵ2 |α, j,m〉 − Ĵ2
z |α, j,m〉 ∓ h̄Ĵz |α, j,m〉

= h̄2j(j + 1) |α, j,m〉 − h̄2m2 |α, j,m〉 ∓ h̄2m |α, j,m〉

= h̄2
(

j(j + 1)−m2 ∓m
)

|α, j,m〉

(180)

with exactly the same α, j, andm. Thus, when we use operators Ĵ+ and Ĵ− to move between

the states |α, j,m〉 and |α′, j,m+ 1〉,

|α, j,m〉 |α′, j,m+ 1〉,
Ĵ+

Ĵ−

(181)

going both ways brings us back to exactly the same state we have started from. Consequently,

we may reorganize the basis of α′ for the states |α′, j,m+ 1〉 so that we have the same α on

both sides of this diagram, thus

|α, j,m〉 |α, j,m+ 1〉,
Ĵ+

Ĵ−

(182)

Likewise, we may rearrange the basis of α′ for the states |α′, j,m− 1〉 so that

|α, j,m− 1〉 |α, j,m〉,
Ĵ+

Ĵ−

(183)

works for the same α on both sides of the diagram. Naturally, we can repeat this procedure

for all the other |α, j,m′〉 states using several raising/lowering operators Ĵ+ and Ĵ−, which
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gets us a whole chain of states with the same α and j but different m:

Ĵ+

Ĵ
−

|α, j,m− 2〉
Ĵ+

Ĵ
−

|α, j,m− 1〉
Ĵ+

Ĵ
−

|α, j,m+ 0〉
Ĵ+

Ĵ
−

|α, j,m+ 1〉
Ĵ+

Ĵ
−

|α, j,m+ 2〉
Ĵ+

Ĵ
−

· · · · · ·

(184)

Each step here changes m by ±1.

For the harmonic oscillator we had similar chains of |α, n〉 states, and all such chains

terminated at the lower end nmin = 0 but run to n → +∞ at the upper end. By contrast,

the chain (184) of the angular momentum states must terminate at both ends. To see that,

consider the operators Ĵ∓Ĵ±: Since Ĵ+ and Ĵ− are Hermitian conjugates of each other, both

Ĵ+Ĵ− and Ĵ−Ĵ+ are Hermitian non-negative operators, so all their eigenvalues must be real

and non-negative. At the same time, we have

Ĵ∓Ĵ± |α, j,m〉 = h̄2
(

j(j + 1)−m2 ∓m
)

|α, j,m〉 , (180)

which means that for any |α, j,m〉 state we must have

j(j + 1) − m2 ∓ m ≥ 0 . (185)

Combining these equations for both signs of ∓, we get

j(j + 1) ≥ |m|2 + |m| (186)

and hence

−j ≤ m ≤ +j. (187)

And that’s why the chain (184) must terminates at both ends.

Now consider the top of the chain, the state |α, j,mmax〉 with the highest m = mmax.

To keep the chain from extending to still higher m > mmax, we need Ĵ+ |α, j,mmax〉 = 0 and
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hence Ĵ−Ĵ+ |α, j,mmax〉 = 0. In light of eq. (180), this calls for

j(j + 1) − m2
max − mmax = 0, (188)

and this quadratic equation has 2 solutions: mmax = +j or mmax = −j − 1. However, only

the first solution satisfies the limit (187), thus

mmax = +j. (189)

Similarly, at the bottom of the chain (184) we has the state |α, j,mmin〉 with the lowest m =

mmin. To keep the chain from running to the still lowerm < mmin we need Ĵ− |α, j,mmin〉 = 0

and hence Ĵ+Ĵ− |α, j,mmin〉 = 0. Again, in light of eq. (180), this requirement calls for

j(j + 1) − m2
min + mmin = 0 (190)

and hence either mmin = +j + 1 or mmin = −J . But this time, only the second solution

satisfies the limit (187), thus

mmin = −j. (191)

Altogether, we have m running from −j to +j by 1,

m = (−j), (1− j), . . . , (j − 1), (+j). (192)

Consequently, 2j must be an integer! Thus,

either j is a non-negative integer, j = 0, 1, 2, 3, . . . ,

or j is a positive half-integer, j = 1
2 ,

3
2 ,

5
2 , . . . .

(193)

Furthermore, for an integer j, m should also be integer, while for a half-integer j, m should

also be half-integer. For example, for j = 1
2 , m takes values −1

2 and +1
2 but not 0.
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Note that we derived these quantization rules without any assumptions about the nature

of the quantum system in question besides having a 3D rotational symmetry. The system

may involve spins and other degrees of freedom unrelated to the particle’s motion that

contribute to the net angular momentum Ĵ. But for all such systems, the very structure of

the SO(3) rotation group guarantees that the angular momenta have quantized eigenvalues:

j(j + 1)h̄2 for the Ĵ2 and mh̄ for the Ĵz, with integer or half-integer j and m.

Matrix Elements, Multiplets, and Representations.

The chain (184) of states |α, j,m〉 for fixed α and j, and all m running from −j to +j

by 1 comprises a multiplet of the angular momentum algebra. Indeed,

Ĵz |α, j,m〉 = h̄m |α, j,m〉 ,

Ĵ± |α, j,m〉 = coefficient × |α, j,m± 1〉 ,

}

for the same α and j. (194)

As to the coefficients on the second line here, their magnitudes obtain from

∥

∥

∥
Ĵ± |α, j,m〉

∥

∥

∥

2
= 〈α, j,m| Ĵ∓Ĵ± |α, j,m〉 = h̄2(j2 + j −m2 ∓m), (195)

while their phases can be set to zero by adjusting the overall phases of the basis |α, j,m〉
states. This gives us

Ĵ± |α, j,m〉 = h̄
√

j2 + j −m2 ∓m× |α, j,m± 1〉 . (196)

and hence matrix elements

〈

α′, j′, m′
∣

∣ Ĵz |α, j,m〉 = δα′,αδj′,j × δm′,m × h̄m,
〈

α′, j′, m′
∣

∣ Ĵ+ |α, j,m〉 = δα′,αδj′,j × δm′,m+1 × h̄
√

j2 + j −m2 −m,
〈

α′, j′, m′
∣

∣ Ĵ− |α, j,m〉 = δα′,αδj′,j × δm′,m−1 × h̄
√

j2 + j −m2 +m.

(197)

Note that all the matrix elements here are block-diagonal: they are diagonal WRT α and j,

but not m. Thus, the diagonal blocks of states with the same α and j but different m form

multiplet of the angular momentum algebra, each multiplet comprising (2j + 1) states for

m = −j, . . . ,+j. In other words, the quantum numbers α and j label different multiplets of

the angular momentum algebra, while m labels the states within the (α, j) multiplet.
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Furthermore, the matrix elements (197) do not depend on α. Thus, all the multiplets

(α, j) with the same j but different α’s are of the same multiplet type. In other words, j

specifies the multiplet type while α labels different multiplets of states of the same type j.

From the Lie algebra point of view, this means that j — but not α — labels different

irreducible representations of the angular momentum algebra.

Specifically, for each integer or half integer j ≥ 0, the representation (j) comprises three

(2j + 1)× (2j + 1) matrices whose elements follow from eqs. (197):

(

J
(j)
z

)

m′,m
= δm′,m × h̄m,

(

J
(j)
+

)

m′,m
= δm′,m+1 × h̄

√

j2 + j −m2 −m,
(

J
(j)
−

)

m′,m
= δm′,m−1 × h̄

√

j2 + j −m2 +m,

(198)

and hence
(

J
(j)
x

)

m′,m
= 1

2

(

J
(j)
+

)

m′,m
+ 1

2

(

J
(j)
−

)

m′,m
,

(

J
(j)
y

)

m′,m
= − i

2

(

J
(j)
+

)

m′,m
+ i

2

(

J
(j)
−

)

m′,m
.

(199)

In terms of these matrices, the matrix elements (197) of the angular momentum operators

can be summarized as

〈

α′, j′, m′
∣

∣ Ĵi |α, j,m〉 = δα′,αδj′,j ×
(

J
(j)
i

)

m′,m
for i = x, y, z. (200)

Consequently, the finite (2j + 1)× (2j + 1) matrices J
(j)
i are Hermitian and obey the same

commutation relations as the angular momentum operators,

[

J
(j)
i , J

(j)
k

]

= ih̄ǫijℓJ
(j)
ℓ , (201)

which confirm that they indeed represent the angular momentum algebra.

Moreover, since we have obtained the spectrum of j andm and the matrix elements (197)

for a completely general angular momentum generating rotations of a most general quantum

system, it follows that the representations (j) for j = 0, 12 , 1,
3
2 , 2, . . . comprise a complete

list of all finite irreducible representations of the angular momenta algebra.
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But for any particular quantum system, its Hilbert space may contain multiplets in some

representations (j) but not in other representations. Likewise, the spectrum of multiplets

(α, j) for each allowed representation (j) depends on the specifics of the system in question.

For example, for a spinless particle in a central potential the only allowed values of j = ℓ

are integers ℓ = 0, 1, 2, 3, . . ., but for each ℓ there can be infinitely many multiplets (nr, ℓ)

distinguished by their radial quantum numbers nr. On the other hand, the spin states of

an elementary particle form a single irreducible multiplet (j = s), but the spin value s can

be integer or half-integer; for example, the electrons, the protons, and the neutrons all have

s = 1
2 . The only hard rule which applies to all quantum systems with a rotational symmetry

is that every existing (α, j) multiplet must have all of the 2j + 1 states |α, j,m〉 for all

m = −j, . . . ,+j.

Now let’s go back to the general quantum system and the abstract representations of the

angular momentum. A few sections above, we have learned that a representation of the Lie

algebra is a representation of the corresponding Lie group and vice verse. In particular, an

irreducible representation of the angular momentum algebra is an irreducible representation

of the rotation group SO(3) according to

D(j)
m′,m(n, φ) =

(

matrix exp

(−iφ
h̄

n · J(j)
))

m′,m

. (202)

These ‖D(j)(n, φ)‖ are unitary (2j+1)× (2j+1) matrices, and their matrix products follow

the group product of the rotation symmetries: For any 2 rotations R1 and R2 and their

product R1R2 = R3,

‖D(j)(R1)‖ × ‖D(j)(R2)‖ = ‖D(j)(R3)‖, (203)

or in terms of matrix elements

∑

m′

D(j)
m′′,m′(R1)D(j)

m′,m(R2) = D(j)
m′′,m(R3). (204)

In the quantum mechanical context, the representations (202) are the diagonal blocks of the

rotation operators R̂(n, α) in the |α, j,m〉 basis:

R̂(n, φ) |α, j,m〉 =
∑

m′

∣

∣α, j,m′
〉

×D(j)
m′,m(n, φ). (205)
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Let’s take a closer look at the rotation matrices (202) for j = 0, j = 1
2 , and j = 1. For

j = 0, the generator matrices J
(0)
i are 1 × 1, so they are simply numbers; moreover, these

numbers happen to be zero for all 3 generators, cf. eqs. (198). Consequently, the rotation

matrices D(0)(R) are also 1 × 1, so they are simply numbers, and for all rotations R these

numbers amount to exp(0) = 1. Thus, the j = 0 representation of the rotation group is

trivial:

‖D(0)(R)‖ ≡ 1 ∀R, (206)

and the rotations have no effect whatsoever. Consequently, quantum states |α, j = 0, m = 0〉
are invariant under all space rotations.

The simplest non-trivial representation of the rotation group obtains for j = 1
2 . In

this case, the generator matrices (198), (199) and the rotation matrices (202) are 2 × 2.

Specifically,

‖J(1/2)x ‖ =
h̄

2

(

0 1

1 0

)

, ‖J(1/2)y ‖ =
h̄

2

(

0 −i

+i 0

)

, ‖J(1/2)z ‖ =
h̄

2

(

+1 0

0 −1

)

, (207)

or in terms of the Pauli matrices

‖J (1/2)
i ‖ =

h̄

2
σi , (208)

hence

‖D(1/2)(n, φ)‖ = exp
(

− i
2φn · ~σ

)

= cos φ
2 12×2 − i sin φ

2 niσi . (209)

As you should have seen in homework set#9, problem 1(d–f), these matrices indeed form

a representation of the rotation symmetry. Moreover, this representation gives rise to the

Cayley–Klein formula for calculating a product of two rotations: it is easier to multiply the

2× 2 matrices (209) that the SO(3) matrices Rij(n, φ) themselves.

Finally, in the j = 1 representation, the 3× 3 rotation matrices D(1)
m′,m(R) are equivalent
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to the SO(3) rotations R themselves, but written in terms of the complex coordinates

ξ+1 =
−x− iy√

2
,

ξ0 = z,

ξ−1 =
+x− iy√

2
,

(210)

instead of the usual (x, y, z) coordinates. Thus, for any rotation R(n, φ)

x′i =
∑

j

Rij(n, φ)× xj ⇐⇒ ξ′m′ =
∑

m

ξm ×D(1)
m,m′(n, φ). (211)

To how this works, note that the SO(3) matrices Rij(n, φ) themselves are generated by the

(

J̃k
)

ij
= ih̄ǫikj , (212)

or in explicit matrix form

‖J̃x‖ = h̄





0 0 0

0 0 −i

0 +i 0



 , ‖J̃y‖ = h̄





0 0 +i

0 0 0

−i 0 0



 , ‖J̃z‖ = h̄





0 −i 0

+i 0 0

0 0 0



 , (213)

thus

Rij(n, φ) =

(

exp

(−iφ
h̄

n · ˜̂J
))

ij

. (214)

At the same time, eqs. (198) and (199) for the j = 1 representation of the angular momenta

give us

‖J(1)x ‖ =
h̄√
2





0 1 0

1 0 1

0 1 0



 , ‖J(1)y ‖ =
h̄√
2





0 +i 0

−i 0 +i

0 −i 0



 , ‖J(1)z ‖ = h̄





+1 0 0

0 0 0

0 0 −1



 ,

(215)

and with a bit of tedious algebra one can show that for each of these 3 matrices

‖J (1)
k ‖ = ‖W‖ × ‖J̃k‖ × ‖W‖−1 (216)

— or in index notations

(

J
(1)
k

)

m′,m
=
∑

i,j

Wm′,i

(

J̃k
)

ij

(

W−1
)

j,m
(217)

— where ‖W‖ is the matrix which translates from the real coordinates (x, y, z) to the complex
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coordinates (ξ+1, ξ0, ξ−1). Consequently,

‖D(1)(n, φ)‖ = exp

(−iφ
h̄

n ·
(

‖J(1)‖ = ‖W‖ ‖J̃‖ ‖W‖−1
)

)

= ‖W‖ exp

(−iφ
h̄

n · ‖J̃‖
)

‖W‖−1

= ‖W‖ ‖R(n, φ)‖ ‖W‖−1,

(218)

which means that the (j = 1) representation matrices ‖D(1)(n, φ)‖ are indeed equivalent to

the SO(3) rotation matrices ‖R(n, φ)‖ translated to the complex coordinates ξm. Therefore,

the (j = 1) representation itself is said to be equivalent to the vector representation of the

3D rotation group.

In a similar manner, for any integer j the (j) representation is equivalent to a tensor

representation of the rotation group; specifically, to the representation by j-index tensors

which are totally symmetric in all j indices and have zero ‘traces’,

Ti1,i2,...,ij = +Tany permutation of i1,i2,...,ij ,
∑

k

Tk,k,i3,...ij = 0 ∀i3, . . . ij . (219)

Indeed, such tensors have (2j+1) independent components, so all the Ti1,...,ii can be written

as linear combinations of the spherical tensor components Tm (for m = −j, . . . ,+j) which

transform under the rotation symmetries as

T ′
m′ =

∑

m

Tm ×D(j)
m,m′. (220)

I shall return to such spherical tensor components later in class, as they play important role

in the Wigner–Echard theorem.
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Rotation Groups SO(3) and Spin(3)

As far as the particle positions and other space degrees of freedom are concerned, a

rotation through angle 2π around any axis brings everything back to the initial configuration.

And indeed, the SO(3) matrix for any 2π rotation is a unit matrix:

Rij(n, φ) = cosφδij + sin φnkǫikj + (1− cosφ)ninj −→ δij for φ = 2π. (221)

However, when we look at various (j) representations of the rotation group, we find that

D(j)
m′,m(n, 2π) = δm′,m × (−1)2j , (222)

or in other words

‖D(j)(n, 2π)‖ = +1(2j+1)×(2j+1) for integer j,

‖D(j)(n, 2π)‖ = −1(2j+1)×(2j+1) for half-integer j.
(223)

For example, for j = 1
2

‖D(1/2)(n, 2π)‖ = exp

(−2πi

2
n · ~σ

)

= −12×2 (224)

because for any axis n, the matrix n · ~σ has eigenvalues ±1 and exp(∓πi) = −1.

To verify eqs. (222) and (223), let’s start with a 2π rotation around the z axis:

D(j)
m′,m(z axis, 2π) =

(

exp

(−2πi

h̄
J
(j)
z

))

m′,m

〈〈 since the J
(j)
z matrix is diagonal in the |j,m〉 basis 〉〉

= δm′,m × exp

(−2πi

h̄
× h̄m

)

= δm′,m × exp(−2πim),

(225)

where for integer or half-integer m

exp(2πim) = (−1)2m = (−1)2j , (226)
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hence

‖D(j)(z axis, 2π)‖ = (−1)2j × unit matrix. (227)

For rotations around other axes n, we use

R(n, φ) = R̃−1 × R(z axis, φ)× R̃

where R̃ is the rotation which turns n into (0, 0, 1).
(228)

Consequently,

‖D(j)(n, 2π)‖ = ‖D(j)(R̃)‖−1 × ‖D(j)(z axis, 2π)‖ × ‖D(j)(R̃)‖

= ‖D(j)(R̃)‖−1 × (−1)2j × 1× ‖D(j)(R̃)‖

= (−1)2j × 1,

(229)

just like for the 2π rotation around the z axis. The bottom line is: For integer j, the rotation

by 2π act trivially, but for half-integer j they are represented by the non-trivial −1 matrices.

However, the rotations through 4π around any axis act trivially for all j because

‖D(j)(n, 4π)‖ = ‖D(j)(n, 2π)‖2 = (−1)4j × 1, (230)

and (−1)4j = +1 for any integer or half-integer j.

From the SO(3) group’s point of view, this means that for the half-integer j represen-

tations, the same SO(3) matrix Rij(n, φ) = Rij(n, φ + 2π) is represented by two distinct

(2j + 1)× (2j + 1) matrices which differ in the overall sign

‖D(j)(n, φ)‖ and ‖D(j)(n, φ+ 2π)‖ = −‖D(j)(n, φ)‖ (231)

because

‖D(j)(n, φ+ 2π)‖ = ‖D(j)(n, 2π)‖ × ‖D(j)(n, φ)‖ = (−1)2j‖D(j)(n, φ)‖ (232)

where (−1)2j = −1. In other words, the representations with half-integer j are double-

valued representations of the SO(3) rotation group. On the other hand, in representations

with integer j and hence (−1)2j = +1, we have

‖D(j)(n, φ+ 2π)‖ = +‖D(j)(n, φ)‖ (233)

so these are single-valued representations of the SO(3).
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This is an example of a general problem for many Lie groups: A representation of the Lie

Algebra always generates a representation of the corresponding Lie group, but some of these

representations may be multi-valued rather than single-valued. And the general solution to

this problem is to replace the original Lie group G with its universal covering group G′ such

that the map between G and G′ preserves the group product but several elements of G′

corresponds to the same element of G, and all the multi-valued representations of G become

single-valued in terms of the G′.

In particular, for the rotations in 3D we need to replace the SO(3) group with its double

covering group called Spin(3). Thus, every SO(3) matrix Rij corresponds to two distinct

elements ±M(R) of the Spin(3) group, but the map in the other direction is single valued

±M(R) → same Rij . (234)

In rotation terms, ±M(n, φ) distinguish between rotations through angles φ and φ+ 2π:

M(n, φ + 2π) = −M(n, φ). (235)

In particular, a rotation by 2π around any axis corresponds toM = −1 rather thanM = +1,

but a rotation by 4π is trivial and corresponds to M = +1.

As a group, Spin(3) is isomorphic to the SU(2) — the group of 2 × 2 unitary matrices

of unit determinant. Indeed, any SU(2) matrix can be written in the form

M =

(

a− ibz −ibx − by

−ibx + by a + ibz

)

for real a, bx, by, bz, a2 + b2x + b2y + b2z = 1. (236)

Equivalently, we may identify

a = cos φ
2 , b = sin φ

2 n (237)

for a real phase φ defined modulo 4π (but not modulo 2π) and a real unit vector n. In terms

of these parameters,

M(n, φ) = cos φ
2 − i sin φ

2 n · ~σ = exp
(

−iφ2 n · ~σ). (238)

Conversely, for any unit vector n and any phase φ eq. (238) defines an SU(2) matrix. As

you should have seen in homework set#9, every such SU(2) matrix M maps to an SO(3)
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rotation matrix Rij(M) according to

M†σiM = Rij(M)σj , (239)

and this map is 2 → 1: both +M and −M map to the same Rij(M). Moreover, for M(n, φ)

as in eq. (238),

Rij(M(n, φ)) = rotation matrix Rij(n, φ). (240)

so the SU(2) matrices indeed provide the double cover of the SO(3) rotation group, thus

Spin(3) ∼= SU(2).

In the opposite direction Rij → M(R), the 2 × 2 matrix M can be identified with

the j = 1
2 representation ‖D(1/2)(R)‖. As we have seen a few pages above, the j = 1

2

representation is double valued in terms of R but becomes single-valued in terms of M :

‖D(1/2)(n, φ+ 2π)‖ = −‖D(1/2)(n, φ)‖ because M(n, φ+ 2π) = −M(n, φ). (241)

Likewise, all other representations of with half-integer j are double-valued representations

of the SO(3) group but become single-valued representations of its double cover SU(2),

∀M ∈ SU(2) ∃ unique ‖D(j)(M)‖ . (242)

And of course, all integer-j representations of the SO(3) group are also single-valued in terms

of the SU(2). Indeed, in the homework set#10 you shall see that all the matrix elements

of any representation j of the Spin(3) symmetry are polynomials of degree 2j of the SU(2)

matrix elements,

D(j)
m′,m(M) = polynomial[degree = 2j](M11,M12,M21,M22). (243)

Let me conclude this section with the geometries of the SO(2), SO(3), and Spin(3) group

manifolds. The manifold of the 2D rotation group SO(2) is a unit circle S1. To see that,

let’s identify the 2D plane (x, y) with the complex plane of z = x + iy. In terms of z, a

rotation through angle α acts by multiplication as

R(α) z = eiαz, (244)

where the unimodular complex numbers eiα span a unit circle.
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The manifold of the Spin(3) ∼= SU(2) rotation group is S3, a unit 3D sphere spanned by

unit vectors in a 4D space. To see that, note that

∀ unit 4-vector (a, bx, by, bz), a2 + b2x + b2y + b2z = 1,

M =

(

a− ibz −ibx − by

−ibx + by a + ibz

)

is an SU(2) matrix, (245)

and conversely, any SU(2) matrix can be written in this form for a unique unit 4-vector

(a, bx, by, bz). Treating these 4-vectors as radius vectors in some 4D space, we see that they

span a unit sphere S3, thus the group manifold of Spin(3) ∼= SU(2) is indeed S3.

The manifold of the SO(3) rotation group is more complicated. Every SO(3) matrix

Rij corresponds to a pair of SU(2) matrices ±M(R) which differ in overall sign. In terms

of the SU(2) group manifold, this means that every SO(3) matrix corresponds to a pair

of diametrically opposed points on the 3-sphere S3. However, both of these points — but

no other point on the S3 — lie on the same straight line through the center of the sphere.

Thus, the space of the SO(3) matrices is isomorphic to the space of straight lines in 4D going

through the center.

In projective geometry, straight lines through a fixed center are used to project a 3D

object onto a 2D plane. And in order to accommodate the lines that are parallel to the

projection plane, the 2D plane is augmented with an extra semi-circle of points at infinity.

Such augmented plane is called the projective plane RP2.

This construction can be generalized to higher dimensions. In particular, in 4D the

straight lines through the center project a 4D object onto a 3D hyperplane. Again, to

accommodate the lines parallel to that hyperplane, we augment it with a 2D hemisphere

of extra points at infinite distance, and such augmented 3D hyperplane becomes the 3D

projective space RP3. And this 3D projective space RP3 is our best description of the

SO(3) group manifold.

Geometries of the rotations groups Spin(d) and SO(d) in higher space dimensions d > 3

are much more complicated; in particular, they are not higher-dimensional spheres or pro-

jective spaces. But fortunately, we do not need their geometries for this class.
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Orbital Angular Momentum and Spin

A few pages above I stated that for any rotationally symmetric quantum system, any

(α, j) multiplet of the symmetry must have all of the (2j +1) states for all m = −j, . . . ,+j;
but the spectrum of the multiplets (α, j) depends on a particular quantum system. Most

generally, j must a a non-negative integer or a positive half-integer, but it does not have

to take all of these values; instead, a particular system may have a must more restricted

spectrum of j. In this section we shall see two examples of such restricted spectrum of j:

the orbital angular momentum, and the spin.

Orbital Angular Momentum

For simplicity, consider a single spinless particle in a central potential,

Ĥ =
p̂2

2M
+ V (r̂). (246)

This system has a rotational symmetry generated by the orbital angular momentum Ĵ =

L̂ = x̂× p̂. For this orbital angular momentum, the only allowed values of j = ℓ are integers;

the half-integral ℓ are forbidden. On the other hand, all integral values of ℓ = 0, 1, 2, 3 . . . are

allowed, and for each such ℓ there are infinitely many distinct multiplets of states |nr, ℓ,m〉
distinguished by their radial quantum numbers nr.

To see how this works, note that the wave-function Ψ(x, y, z) of the particle in question

depends only on its space coordinates, and it must be a single-valued function of these

coordinates. Consequently, a rotation by 2π — which leaves the coordinates unchanged —

must act trivially on this weave-function, thus

R̂(n, 2π) |Ψ〉 = + |Ψ〉 , (247)

which immediately restricts the rotation multiplets (α,m) to the representations (j) where

R(2π) = +1 rather than −1. And that’s why ℓ should be integer rather than half-integer.

Next, let’s rewrite the Hamiltonian (246) as

Ĥ =
p̂2r
2M

+
L̂2

2Mr̂2
+ V (r̂) (248)

(cf. homework set#4, problem 2(f)) and seek its eigenstates using the separation of variables
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method in spherical coordinates. Thus, we look for eigenfunctions of the form

Ψ(r, θ, φ) = ψ(r)× Y (θ, φ) (249)

where

L̂2Y (θ, φ) = ℓ(ℓ+ 1)h̄2Y (θ, φ) (250)

and
(

− h̄2

2M

d2

dr2
+
ℓ(ℓ+ 1)h̄2

2Mr2
+ V (r)

)

(

rψ(r)
)

= E × rψ(r). (251)

As everybody learns in the undergraduate school, eq. (250) has 2ℓ+1 independent solutions

for each integer ℓ = 0, 1, 2, 3, . . ., and we may label these solutions by m = −ℓ, . . . ,+ℓ
according to the eigenstates h̄m of the L̂z operator. At the same time, for any given ℓ, the

radial equation (251) has infinitely many eigenstates labeled by the radial quantum number

nr. Depending on the potential’s behavior for r → 0 and for r → ∞, the energy spectrum

of radial Hamiltonian can be discrete, continuous, or mixed, but in light of the boundary

condition rψ(r) = 0 for r = 0, this spectrum (for a given ℓ) should be non-degenerate WRT

nr.

Going back to the full 3D Hamiltonian, we find it has a basis of eigenstates |nr, ℓ,m〉
with wave-functions

Ψnr,ℓ,m(r, θ, φ) = ψnr ,ℓ(r)× Yℓ,m(θ, φ) (252)

and energies E(nr, ℓ) which do not depend on m,

Ĥ |nr, ℓ,m〉 = E(nr, ℓ) |nr, ℓ,m〉 (253)

because m — unlike ℓ — does not enter the radial equation (251). Thus, each energy level

E(nr, ℓ) has (2ℓ+ 1)-fold degeneracy.

For most potentials V (r), the discrete part of the energy spectrum has no further de-

generacy — there are no coincidences between E(nr, ℓ) for different (nr, ℓ), except by ac-

cident. But for the Coulomb potential V (r) = −Ze2/r and for the harmonic potential

V (r) = (mω2/2)r2 the energies have much larger degeneracies:
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• For the Coulomb potential, the bound state energies depend only on the principle

quantum number N = nr+1+ ℓ = 1, 2, 3, . . ., regardless how it’s apportioned between

nr and ℓ,

E(nr, ℓ) = E(N only) = −Me4Z2

2h̄2
× 1

N2
. (254)

• For the harmonic potential, all states are bound, and their energies also depends on a

single combination of nr and ℓ, this time on N = 2nr + ℓ = 0, 1, 2, 3, . . .,

E(nr, ℓ) = E(N only) = h̄ω(32 +N). (255)

In both cases, the extra degeneracy is not an accident but a consequence of a larger symmetry

group G which contains the rotational symmetry as a subgroup: For the Coulomb potential

G = SU(2)× SU(2) ∼= Spin(4), while for the harmonic potential G = SU(3). I am going to

defer the analysis of the Coulomb case to the next homework set#11, while in these notes I

focus on the harmonic case.

A simple way to analyze the 3D harmonic oscillator is to realize that it’s equivalent to a

system of 3 independent 1D harmonic oscillators of the same frequency ω:

Ĥ =
p̂2

2M
+

Mω2

2
r̂2 =

∑

i=x,y,z

(

p̂2i
2M

+
Mω2

2
x̂2i

)

, (256)

and hence

Ĥ =
∑

i=x,y,z

h̄ω(12 + â†i âi) (257)

where

âi =
Mωx̂i + ip̂i√

2h̄ωM
and â†i =

Mωx̂i − ip̂i√
2h̄ωM

(258)

obey the commutation relations

[âi, âj ] = 0, [â†i , â
†
j] = 0, [âi, â

†
j] = δij . (259)

We have dealt with the multi-oscillator systems earlier in class, so let me simply summarize

the spectrum of the Hamiltonian (257): The eigenstates have form |nx, ny, nz〉 where each
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ni takes non-negative integer values regardless of the other nj ,

nx, ny, nz = 0, 1, 2, . . . , (260)

and the energies are given by a simple formula

E(nx, ny, nz) =
∑

i=x,y,z

h̄ω(12 + ni). (261)

And since all 3 oscillators have the same frequency omega, the energy depends only on the

net number of quanta in all 3 oscillators,

N = nx + ny + nz , (262)

E(N) = h̄ω(32 +N). (263)

Moreover, due to equal frequencies of all 3 oscillators, the 9 operators

T̂ij = â†i âj , i, j = x, y, z (264)

commute with the Hamiltonian and hence generate a rather large symmetry group. Actually,

one combination of the 9 operators (264) — the trace

tr(T̂ ) = T̂xx + T̂yy + T̂zz = N̂ (265)

— commutes with all the other operators (264), so it generates a separate abelian phase

symmetry. But the remaining 8 operators (or rather 8 independent combinations of the

operators (264)) generate a symmetry group isomorphic to SU(3) — the group of complex

3× 3 matrices which are unitary and have a unit determinant.

The representation theory of the SU(3) group is beyond the scope of this class, so let

me simply state how the SU(3) symmetry acts on the creation operators and the N -quanta
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states

|N : i1, . . . , iN 〉 ∝ â†i1 · · · â
†
iN

|ground〉 : (266)

An SU(3) matrix Wij is represented by the unitary operator Û(W ) such that

Û(W )â†i Û†(W ) =
∑

j

Wij â
†
j while Û(W ) |ground〉 = |ground〉 . (267)

Consequently,

Û(W )â†i1â
†
i2
· · · â†iN |ground〉 =

= Û â†i1Û
† × Û â†i2 Û

† × · · · × Û â†iN Û
† × Û |ground〉

=





∑

j1

Wi1,j1 â
†
j1



×





∑

j2

Wi2,j2 â
†
j2



× · · · ×





∑

jN

WiN ,jN â
†
jN



× |ground〉

=
∑

j1,j2,...,jN

Wi1,j1Wi2,j2 · · ·WiN ,jN × â†j1 â
†
j2
· · · â†nN

|ground〉 ,

(268)

and hence the N -quanta states transform as N -index symmetric tensors,

Û(W ) |N : i1, . . . , iN 〉 =
∑

j1,...,jN

Wi1,j1 · · ·WiN ,jN |N : j1, . . . , jN 〉 (269)

From the SU(3) point of view, the rotation symmetry is the SO(3) subgroup of the

SU(3) comprising the 3 × 3 matrices which happen to be real (and hence orthogonal); this

subgroup is generated by the

Ĵi = ih̄ǫijkT̂jk = ih̄ǫijk â
†
j âk . (270)

At each energy level E(N) of the 3D oscillator, there are 1
2(N +1)(N +2) ways to apportion

N between 3 non-negative integers nx, ny, and nz, hence
1
2(N +1)(N +2) degenerate states.

All these states form an irreducible multiplet of the SU(3) group, but it becomes reducible
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from the SO(3) subgroup point of view. For example:

For N = 0 there is 1 state in (ℓ = 0) multiplet of SO(3).

For N = 1 there are 3 states in (ℓ = 1) multiplet of SO(3).

For N = 2 there are 6 states in (ℓ = 2) and (ℓ = 0) multiplets of SO(3).

For N = 3 there are 10 states in (ℓ = 3) and (ℓ = 1) multiplets of SO(3).

For N = 4 there are 15 states in (ℓ = 4), (ℓ = 2), and (ℓ = 0) multiplets of SO(3).

For N = 5 there are 21 states in (ℓ = 5), (ℓ = 3), and (ℓ = 1) multiplets of SO(3).

etc., etc.
(271)

In general, for each N the values of ℓ run down by 2 from N to 0 or 1,

ℓ = N − 2k for integer k = 0, 1, 2, . . . up to the integer part of N
2 . (272)

Equivalently,

N = ℓ + 2k where k = 0, 1, 2, 3, . . . for each ℓ = 0, 1, 2, 3 . . . , (273)

and we may reorganize the basis of states of definite energies from |nx, ny, nz〉 to |k, ℓ,m〉
where

N = nx + ny + nz = ℓ + 2k and E = h̄ω(N + 3
2). (274)

Physically, this k is the radial quantum number nr, thus wavefunctions

Ψk,ℓ,m(r, θ, φ) = ψk,ℓ(r)× Yℓ,m(θ, φ). (275)

From the purely radial point of view, the the states with different k and ℓ but the same

N = ℓ + 2k have the same energies ‘by accident’. But from the 3-oscillator point of view,

this degeneracy is no accident by the consequence of an enhanced symmetry group, SU(3)

instead of SO(3).
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Spin

The spin degrees of freedom of an elementary particle usually comprise a single irreducible

multiplet of spin states |s,ms〉 for a fixed s = jspin while ms = −s, . . . ,+s. The value of s—
called the particle’s spin — depends on the particle species; for example, electrons, protons,

and neutrons all have s = 1
2 . Consequently, each of these particles have 2 spin states with

ms = ±1
2 , and the spinor angular momentum acts in this 2-state Hilbert space as Ĵ = h̄

2~σ

(where σx, σ2, σz are the Pauli matrices).

By the spin-statistics theorem, all integral spin particles are bosons while all half-integral

spin particles are fermion. Thus, electrons, protons, and neutrons are fermions. Also, we

have seen a rotation by 2π acts differently in representations of integer and half-integer j,

R̂(2π) = (−1)2j . (276)

Thus, for any boson, a rotation by 2π acts trivially, R̂(2π) = 1. But for a fermion R̂(2π) =

−1, so a rotation by 2π flips the overall phase of the particle’s wave-function.

By itself, the overall sign of the wave-function is not important. But it becomes im-

portant in the interference experiments where a particle may reach the same point via two

different routes: In such a setup, flipping the wave-function sign for 1 of the routes changes a

constructive interference into destructive and vice verse. For example, consider the neutron

interference experiment like this:

B

neutron

beam

detector

(277)

where the red lines denote semi-transparent neutron mirrors and the green cross-hatched

circle indicates the region between the poles of a magnet. The neutrons initially come from

a nuclear reactor, but the Bragg diffraction off a crystal produces a secondary beam where

all neutrons have the same speed. Consequently, all the neutrons take the same times t to

traverse the magnet.
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As a neutron flies by the magnet, the B field rotates its magnetic moment ~µN and hence

its spin state with frequency Ω ∝ B. Altogether, the neutron’s spin state is rotated through

the angle φ = Ωt, which is proportional to the magnetic field with a known coefficient.

Consequently, the experimentalists can directly control the value of the angle φ and measure

how the net flux at the detector as a function of φ. And what they observe is:

• constructive interference for φ = 0, 4π, 8π, . . .,

• but destructive interference for φ = 2π, 6π, 10π, . . ..

In particular, a rotation by φ = 2π — which classically should have no effect — actually

changes the interference from constructive to destructive and vice verse!

To conclude this section, let me say a few words about the net spin S of a composite

body such as a nucleus or an atom. In general, this net spin depends on a particular state

of the composite body. For example, the net spin of the three electrons in a lithium atom

is S = 1
2 in the ground state, but some excited states have S = 3

2 . However, there is one

general rule which applies to all states of any composite body: if the net number of fermionic

constituents of a body is even, then its net spin is always integer, and if the net number of

fermionic constituents is off then the net spin is half-integer, thus

R̂(2π) = (−1)2S = (−1)fermion
number. (278)

For example, the net spin of all 8 electrons in an oxygen atom is always integer, while the

net spin of all 7 electrons in a nitrogen atom is always half-integer. And if you include the

nuclear spin, then the integrality of the net spin depends on a particular isotope. Thus,

a helium-4 atom has integer net spin (S = 0 in the ground state) while a helium-3 atom

has a half-integer net spin (S = 1
2 in the ground state). Consequently, helium-4 atoms are

bosons while helium-3 atoms are fermions, and the low-temperature quantum effects in the

two isotopes of helium are very different!
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