
WENTZEL–KRAMERS–BRILLOUIN (WKB) APPROXIMATION

Consider semiclassical motion of a quantum particle in 1 space dimension. Classically,

the particle has time-dependent position xcl(t) and pcl(t) which obey equations of motion

m
dxcl
dt

= pcl ,
dpcl
dt

= −dV

dx
@xcl . (1)

The best quantum description of this classical motion is a Gaussian wave packet with central

position at xcl(t) and central momentum at pcl(t). The wave-function of this packet has

general form

Ψ(x, t) = C(t)× exp

(

ipcl(t)
(

x− xcl(t)
)

− iEclt

h̄

)

× exp

(

− ǫ2m2

2h̄2p2cl(t)
×
(

x− xcl(t)
)2

)

,

(2)

where the pre-exponential real coefficient C(t) provides for a constant normalization of the

wave-packet state,

|C(t)|2 ×
√
πh̄|pcl(t)|
mǫ

≡ 1. (3)

In the ǫ → 0 limit, the wave packet (2) spreads out to fill the whole space and takes

general form

Ψ(x, t) =
√

ρ(x, t)× exp

(

i

h̄
W (x, t)

)

(4)

for some classical function W (x, t); in a moment we shall see that this W (x, t) is the Hamil-

ton’s principal function. But for the moment, all we need is W ≫ h̄, so the wave-function (4)

has a rapidly changing phase W/h̄ while the magnitude
√
ρ changes much more slowly. So

let’s plug this wave-function (4) into the time-dependent Schrödinger equation

ih̄Ψ(x, t) =
−h̄2

2m
Ψ′′(x, t) + V (x)Ψ(x, t) (5)

where dot denotes a time derivative and a prime denotes an x derivative. The derivatives of

the wave-function (4) are

ih̄Ψ = Ψ×
(

ih̄
ρ

2ρ
− W

)

, (6)
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−ih̄Ψ′ = Ψ×
(

−ih̄
ρ′

2ρ
+ W ′

)

, (7)

−h̄2Ψ′′ = Ψ×
(

−ih̄
ρ′

2ρ
+ W ′

)2

+ Ψ×
(

−h̄2
ρ′′ρ− ρ′2

2ρ2
− ih̄W ′′

)

, (8)

so plugging them into eq. (5) and dividing both sides by Ψ gives us

ih̄
ρ

2ρ
− W =

1

2m

(

−ih̄
ρ′

2ρ
+ W ′

)2

+
1

2m

(

−h̄2
ρ′′ρ− ρ′2

2ρ2
− ih̄W ′′

)

+ V (x). (9)

Now let’s re-organize the terms in this equation by the powers of h̄:

(

W ′2

2m
+ W + V (x)

)

− ih̄

2m

(

W ′ρ
′

ρ
+ W ′′ + m

ρ

ρ

)

− h̄2

2m

2ρ′′ρ− ρ′2

4ρ2
= 0. (10)

In particular, the real part of this complex equation is

W ′2

2m
+ Ẇ + V (x) =

h̄2

2m
× 2ρ′′ρ− ρ′2

4ρ2
(11)

where the LHS is expected to be of classical order of magnitude while the RHS of O(h̄2). In

the WKB approximation — named after Gregor Wentzel, Hendrik Anthony Kramers, and

Léon Brillouin who developed it in 1926 — we neglect the O(h̄2) RHS and let

W ′2(x, t)

2m
+ W (x, t) + V (x) = 0. (12)

In classical mechanics, eq. (12) is the Hamilton–Jacobi equation for the Hamilton’s principle

function W (x, t) for the 1d particle.

Aside: In classical mechanics of n dynamical variables q1(t), . . . , qn(t) — collectively described by Q(t) —

the Hamilton’s principal function W (Q; t) is defined as follows. Pick a fixed starting point Q0 at a fixed

stating time t0, and find a classical trajectory Q(t) leading from Q0 at time t0 to some desired Qf at time

tf ; then W (Qf , tf ) is the classical action of this trajectory,

W (Qf ; tf ) =

tf
∫

t0

L(Q,Q, t) dt. (13)

As a function of the end point (Qf , tf ) for a fixed starting point (Q0, t0), this action obeys the Hamilton–

Jacobi equation

∂

∂tf
W (Qf ; t) + H(Qf ;P f ; tf ) = 0 for pfi =

∂W

∂qfi
. (14)

In particular, for a 1d particle with classical Hamiltonian H(x, p) = V (x) + p2/2m, the Hamilton–Jacobi

equation becomes (12).
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Coming back to quantum mechanics and the WKB approximation, for a stationary state

Ψ(x, t) = Ψ(x)× e−iEt/h̄ =⇒ W (x, t) = W (x) − Et (15)

while W (x) obeys

1

2m
W ′2 − E + V (x) = 0. (16)

In other words,

dW

dx
= pcl(x) = ±

√

2m(E − V (x)) (17)

is the classical momentum of the particle of net energy E at the moment it happens to be

at the point x with potential V (x). Consequently,

W (x) = const ±
∫

dx
√

2m(E − V (x)) . (18)

Eq. (18) determines the phase of the wave function in the WKB approximation. As to

the magnitude
√
ρ, it follows from the imaginary part of eq. (10):

ih̄

2m

(

W ′ρ
′

ρ
+ W ′′ + m

ρ

ρ

)

= 0, (19)

hence

mρ = − W ′ρ′ − W ′′ρ = −(W ′ρ)′. (20)

Physically, we may interpret this equation as the continuity equation of a particle beam with

density ρ(x, t) = |Ψ(x, t)|2 and velocity v(x, t) = W ′(x, t)/m — cf. eq. (17), — hence flux

density F = ρv = ρW ′/m, thus

ρ + F ′ = 0 =⇒ ρ = − 1

m
(W ′ρ)′. (21)

For a stationary state ρ = 0, so eq. (20) becomes (W ′ρ)′ = 0 and hence

ρ(x) =
const

W ′(x)
=

const

|pcl(x)|
=

const
√

2mE − V (x)
. (22)
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To simplify future formulae, let

k(x) =
|pcl(x)|

h̄
= +

√

2m(E − V (x))

h̄
; (23)

then in the WKB approximation

W ′(x) = ±h̄k(x) =⇒ W (x)

h̄
= const ±

∫

k(x) dx (24)

while

ρ(x) =
const

k(x)
, (25)

thus

ΨWKB(x) =
const
√

k(x)
× exp



±i

x
∫

k(x′) dx′



 . (26)

Or if we allow motion in both directions,

ΨWKB(x) =
A

√

k(x)
× exp



+i

x
∫

k(x′) dx′



 +
B

√

k(x)
× exp



−i

x
∫

k(x′) dx′



 (27)

for some constants A and B.

Before we illustrate the WKB wave-functions (27) with specific examples, consider the

limits of applicability of the WKB approximation.

1. As written, eq. (27) applies only in the classically allowed ranges of x where V (x) < E.

However, it may be analytically continued to the classically forbidden regions, as we

shall see in a moment.

2. The WKB approximation presumes that the phase W (x)/h̄ changes with x much more

rapidly then the magnitude ρ(x) — that’s how we are able to neglect the O(h̄2) terms
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in eq. (10). Thus, we need

k(x) ≫ |ρ′(x)|
ρ(x)

=
|k′(x)|
k(x)

, (28)

or in terms of the potential V (x),

√

2m(E − V (x))

h̄
≫ |V ′(x)|

E − V (x)
=⇒

√
2m
(

E−V (x)
)3/2 ≫ h̄|V ′(x)| = h̄|F (x)|

(29)

where F (x) = −V ′(x) is the force acting on the particle. Any discontinuity of the

potential V (x) — such as at the ends of a square well or a square barrier — leads

to enormous forces F (x) ∼ δ(x − xdisc) which break the limit (29). Thus, the WKB

approximation works only for continuous potentials.

On the other hand, for a continuous potential V (x), the inequality (29) holds almost

everywhere in the classically allowed region, except very close to the classical turning

points xt where V (xt) = E. At microscopically short O(h̄2/3) distances from the

classical turning points the inequality (29) fails, and the WKB approximation becomes

invalid. Specifically, let F (xt) be the force acting on a particle at a turning point xt.

Then, microscopically close to this turning point,

F (x) ≈ F (xt), E − V (x) ≈ F (xt)× (x− xt), (30)

so the limit (29) becomes

√
2m|F (xt)|3/2|x− xt|3/2 ≫ h̄|F (xt)| =⇒ |x− xt| ≫ h̄2/3

3

√

2m|F (xt)|
. (31)

• The bottom line is, the WKB approximation (27) is valid for a continuous potential

V (x) in the classically allowed region V (x) < E, but not too close to the classical

turning points, cf. eq. (31).
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Forbidden Regions

The WKB wave-function allowed can be analytically continued from the classically

allowed to the classically forbidden regions of space. In the forbidden regions of V (x) > E,

k =

√

2m(E − V (x))

h̄
(32)

becomes imaginary,

k = iκ for κ = +

√

2m(V (x)− E)

h̄
, (33)

so the WKB wave-function becomes

ΨWKB(x) =
C

√

κ(x)
× exp



−
x
∫

κ(x′) dx′



 +
D

√

κ(x)
× exp



+

x
∫

κ(x′) dx′



 (34)

for some constants C and D.

Unlike the WKB approximation for the classically allowed region, in the classically for-

bidden region we cannot justify the wave-functions (34) via semiclassical analysis of wave-

packets. Instead, we may simply check that the forbidden-region WKB wave-functions (34)

obey the time-independent Schrödinger equation up to terms of relative order O(h̄2). For

simplicity, let’s focus on a single exponential

ΨWKB(x) =
const
√

κ(x)
× exp



±
x
∫

κ(x′) dx′



 , (35)

hence

Ψ′
WKB(x) = ΨWKB(x)×

(

− κ′(x)

2κ(x)
± κ(x)

)

, (36)

Ψ′′
WKB(x) = ΨWKB(x)×

(

− κ′(x)

2κ(x)
± κ(x)

)2

+ ΨWKB(x)×
(

− κ′(x)

2κ(x)
± κ(x)

)′

,(37)
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and therefore

Ψ′′
WKB

ΨWKB
=

(

− κ′

2κ
± κ

)2

+

(

− κ′

2κ
± κ

)′

= κ2 ∓ κ′ +
κ′2

4κ2
± κ′ − κ′′κ− κ′2

2κ2

= κ2 +

(

3κ′2 − 2κ′′κ

4κ2
=

√
κ

(

1√
κ

)′′
)

=
2m(V − E)

h̄2
+

4
√
V − E

(

1
4
√
V − E

)′′

(38)

where the first term on the bottom line is O(1/h̄2) because of the implicit depencence of

ΨWKB on the h̄ while the second term is O(1). In the context of the Schrödinger equation,

−h̄2

2m

Ψ′′
WKB(x)

ΨWKB(x)
+ V (x) − E =

−h̄2

2m
× 4

√
V − E

(

1
4
√
V − E

)′′

= O(h̄2) ≈ 0, (39)

which makes the wave-functions ΨWKB(x, t) approximately obey the Schrödinger equation.

The approximation here is similar to what we have used in the WKB approximation for

the classically allowed regions, and that’s why we call these wave-functions (34) the WKB-

approximate wave-functions for the classically forbidden region(s).

Similarly to the classically allowed case, the WKB approximation for the classically

forbidden regions breaks down when the pre-exponential factor 1/
√
κ changes faster than

the exponent. For a continuous potential V (x) this happens only in the microscopic vicinity

of a classical turning point xt where V (xt) = E. The detailed analysis closely parallels the

classically-allowed case, so let me simply state the result: The WKB approximate wave-

functions (34) work for V (x) > E and not too close to the turning points, specifically

|x− xt| ≫ h̄2/3

3

√

2m|F (xt)|
(31)

where F (x) = −V ′(x) is the potential force on the particle.
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Boundary Layers

Consider the neighborhood of a classical turning point xt:

allowed

region forbidden

regionb
ou

n
d
ar
y

la
ye
r

x

V

E

xt

(40)

We have WKB approximations for the wave-functions in both classically allowed and classi-

cally forbidden regions, but both of these approximations break down in the narrow boundary

layer around the classical turning point xt. To solve for the wave-function in the boundary

layer, we need a different approximation based on the narrow O(h̄2/3) width of this layer,

cf. eq. (31). For a classical-scale potential V (x), we may treat the force F (x) = −V ′(x) as

approximately constant withing the boundary layer, hence approximately linear potential

V (x) ≈ V (xt) − F (xt)× (x− xt) = E − F (xt)× (x− xt). (41)

For this potential, the Schrödinger equation becomes

− h̄2

2m

d2Ψ

dx2
= F (xt)× (x− xt)×Ψ(x), (42)

which becomes the Airy equation

d2Ψ

dz2
= z ×Ψ(z) (43)

after a linear change of variable

z = − sign(F (xt))× 3

√

2m|F (xt)|
h̄2

× (x− xt) (44)

In terms of z:
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— the allowed region lies at large negative z;

— the forbidden region lies at large positive z;

— the boundary layer spans small and moderate z of either sign.

The Airy equations and its 2 independent solutions — called the regular Airy function

Ai(z) and the irregular Airy function Bi(z) — are explained in detail in my notes on Airy

functions. For the moment, let me simply plot the two functions:

-10 -8 -6 -4 -2 2

-0.5

0.5

1.0

1.5

For positive z, the regular Airy function Ai (blue) rapidly decreases to zero while the irregular

Airy function Bi (red) blow up to +∞. On the other hand, for negative z, both Airy functions

oscillate with a slowly decreasing amplitude as z → 0. Asymptotically, for z → +∞

Ai(z) ≈ 1

2
√
π z1/4

× exp
(

−2
3z

3/2
)

, (45)

Bi(z) ≈ 1√
π z1/4

× exp
(

+2
3z

3/2
)

, (46)

while for z → −∞

Ai(z) ≈ 1√
π |z|1/4

× sin
(

π
4 + 2

3 |z|
3/2
)

, (47)

Bi(z) ≈ 1√
π |z|1/4

× cos
(

π
4 + 2

3 |z|
3/2
)

. (48)

All of these asymptotics are in perfect agreement with the WKB approximate wave

functions on the forbidden and allowed sides of a turning point for a linear potential V =

9
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E − F (x − xt). Indeed, let F < 0 as on the diagram (40); then on the forbidden side

x > xt, z > 0 we have

κ(x) =

√

2m|F |(x− xt)

h̄
=⇒

x
∫

xt

κ(x′) dx′ =
2

3

√

2m|F |
h̄

× (x−xt)
3/2 =

2

3
z3/2, (49)

hence

ΨWKB(z) ∝ 1

z1/4
× exp

(

±2
3z

3/2
)

, (50)

in perfect agreement with eqs. (45) and (46) for the Airy functions of z → +∞. Likewise,

on the allowed side x < xt, z < 0 of the turning point,

k(x) =

√

2m|F |(xt − x)

h̄
=⇒

xt
∫

x

k(x′) dx′ =
2

3

√

2m|F |
h̄

×(zt−x)3/2 =
2

3
|z|3/2, (51)

hence

ΨWKB(z) ∝ 1

|z|1/4
× exp

(

±i× 2
3 |z|

3/2
)

, (52)

thus two linear combinations of these WKB solutions

1

|z|1/4 × sin
(

π
4 + |z|3/2

)

and
1

|z|1/4 × cos
(

π
4 + |z|3/2

)

(53)

are in perfect agreement with eqs. (47) and (48) for the Airy functions of z → −∞.

Now consider the Schrödinger equation for a more general potential, so the linear po-

tential approximation V (x)− E ≈ −F (x− xt) is valid only within the thin boundary later

around the turning point xt. However, let’s assume that this boundary layer is thick enough

to include large positive z ≫ 1 on the forbidden side of the layer and large negative z on

the allowed side. In this setup, the Airy-function solutions within the boundary layer tell us

how to connect a specific combination of the two WKB wave-functions on the allowed side

of the turning point with a specific combinations of the two WKB wave functions on the

10



forbidden side. Indeed, take the regular Airy function solution for the boundary layer,

Ψ1(z) = C1

(

π3h̄2

2M |F |

)1/6

× Ai(z) (54)

for some overall coefficient C1. Then for large positive z (but for x within the boundary

layer)

Ψ1(x) ≈ C1

(

h̄2

2M |F |

)1/6

× 1

2z1/4
exp
(

−2
3z

3/2
)

=
C1

2
√

κ(x)
exp



−
x
∫

xt

κ(x′)dx′



 , (55)

which then analytically continues to x in the forbidden zone beyond the boundary layer as

the specific WKB solution

Ψ1(x) ≈ C1

2
√

κ(x)
exp



−
x
∫

xt

κ(x′)dx′



 . (56)

At the same time, for large negative z (but x within the boundary later), the same regular

Airy function solution becomes

Ψ1(x) ≈ C1

(

h̄2

2M |F |

)1/6

× 1

|z|1/4 sin
(

π
4 + 2

3 |z|
3/2
)

=
C1

√

k(x)
exp





π

4
+

xt
∫

x

k(x′)dx′



 ,

(57)

which then analytically continues to x in the allowed zone beyond the boundary layer as the

specific WKB solution

Ψ1(x) ≈ C1
√

k(x)
sin





π

4
+

xt
∫

x

k(x′)dx′



 . (58)

Note the same coefficient C1 in eqs. (56) and (58).
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Likewise, take the irregular Airy function solution for the boundary layer

Ψ2(z) = C2

(

π3h̄2

2M |F |

)1/6

× Bi(z) (59)

for some other overall coefficient C2. For a large positive z (but x within the boundary

layer), this solution becomes

Ψ2(x) ≈ C2

(

h̄2

2M |F |

)1/6

× 1

z1/4
exp
(

+2
3z

3/2
)

=
C2

√

κ(x)
exp



+

x
∫

xt

κ(x′)dx′



 , (60)

which then analytically continues to x in the forbidden zone beyond the boundary layer as

a different WKB solution from (56), namely

Ψ2(x) ≈ C1
√

κ(x)
exp



+

x
∫

xt

κ(x′)dx′



 . (61)

At the same time, for large negative z (but x within the boundary later), the same irregular

Airy function solution becomes

Ψ2(x) ≈ C2

(

h̄2

2M |F |

)1/6

× 1

|z|1/4 cos
(

π
4+

2
3 |z|

3/2
)

=
C2

√

k(x)
cos





π

4
+

xt
∫

x

k(x′)dx′



 , (62)

which then analytically continues to x in the allowed zone beyond the boundary layer as the

WKB solution

Ψ2(x) ≈ C2
√

k(x)
cos





π

4
+

xt
∫

x

k(x′)dx′



 . (63)

Again, we have the same coefficient C2 in eqs. (61) and (63).

Altogether, between eqs. (56), (58), (61), and (63), we see which WKB solution on the

classically forbidden side come with which WKB solutions on the classically allowed side and
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vice verse:

on the forbidden side x > xt

ΨWKB(x) =
C1

2
√

κ(x)
exp



−
x
∫

xt

κ(x′)dx′



 +
C2

√

κ(x)
exp



+

x
∫

xt

κ(x′)dx′



 ,

on the allowed side x < xt

ΨWKB(x) =
C1

√

k(x)
sin





π

4
+

xt
∫

x

k(x′)dx′



 +
C2

√

k(x)
cos





π

4
+

xt
∫

x

k(x′)dx′



 ,

for the same WKB solution ΨWKB(x).

(64)

Note that although we have derived eq. (64) from the Airy functions and their asymptotic

behavior at z → ±∞, we do not need the airy functions to use this formula! Instead, we

may use some Physics considerations to choose a specific WKB solution on one side of the

turning point, and then eq. (64) will pick the right WKB solution on the other side. We

shall specific examples of such choices in the following sections of these notes in the context

of bound states of potential wells and quantum tunneling through potential barriers.

Potential Wells

Next, consider a bound state of a particle in a potential well. Classically, there is an

allowed region inside the well bounded by two turning points x1 and x2, and the particle

bounces back and forth between these turning points; the regions to the left of the x1 or to

the right of the x2 are classically forbidden. In quantum mechanics, we have the following

situation:

forbidden
region

b
o
u
n
d
a
ry

la
y
er allowed

region

b
o
u
n
d
a
ry

la
y
er

forbidden
region

x1 x2

x

V

E
(65)
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Let’s assume that the well is deep and wide enough to use the WKB approximation, and that

the two forbidden regions extend all the way to infinity. Consequently, the wave-function

in the left forbidden region must die out for x → −∞ and in the right forbidden region for

x → +∞. Consequently, in the WKB approximation

for x < x1 − O(h̄2/3) :

Ψ(x) =
C1

√

κ(x)
× exp



−
x1
∫

x

κ(x′) dx′



 ,

for x > x2 + O(h̄2/3) :

Ψ(x) =
C2

√

κ(x)
× exp



−
x
∫

x2

κ(x′) dx′



 ,

〈〈 note limits of the two integrals! 〉〉

(66)

for some coefficients C1 and C2. At the same time, for the allowed region inside the well,

the WKB approximation gives us

Ψ(x) =
A1

√

k(x)
× exp



+i

x
∫

x1

k(x′)dx′



 +
B1

√

k(x)
× exp



−i

x
∫

x1

k(x′)dx′





=
A2

√

k(x)
× exp



−i

x2
∫

x

k(x′)dx′



 +
B2

√

k(x)
× exp



+i

x2
∫

x

k(x′)dx′





(67)

for some coefficients A1 and B1, or equivalently A2 and B2. To relate all these coefficients to

each other, we use the Airy function matching conditions (64) at the turning points x1 and

x2. Specifically, for the wave functions (66) in the forbidden regions, the matching condition

at x1 tells us that in the allowed region we must have

Ψ(x) =
2C1
√

k(x)
× sin





π

4
+

x
∫

x1

k(x′) dx′



 , (68)

while the matching condition at the x2 tells us that in the same allowed region we must have

Ψ(x) =
2C2
√

k(x)
× sin





π

4
+

x2
∫

x

k(x′) dx′



 . (69)
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To make these two solutions agree with each other, we need C1 = ±C2 while

sin





π

4
+

x
∫

x1

k(x′) dx′



 = ± sin





π

4
+

x2
∫

x

k(x′) dx′



 ∀x. (70)

In general

sinα = ± sin β if and only if α ± β = π × integer, (71)

so the sine condition (70) amounts to either

π

2
+

x
∫

x1

k(x′) dx′ +

x2
∫

x

k(x′) dx′ = π × integer ∀x (72)

or
x
∫

x1

k(x′) dx′ −
x2
∫

x

k(x′) dx′ = π × integer ∀x. (73)

Clearly, eq. (73) cannot be sustained for all x inside the allowed region, but eq. (72) is

actually x independent since

x
∫

x1

k(x′) dx′ +

x2
∫

x

k(x′) dx′ =

x2
∫

x1

k(x′) dx′, (74)

so in order to have the same solution in the allowed region match physical solutions in both

forbidden regions we need

π

2
+

x2
∫

x1

k(x′) dx′ = π × integer. (75)

And since the integral here is positive, we need

x2
∫

x1

k(x′) dx′ = π(n + 1
2) for integer n ≥ 0, i. e., n = 0, 1, 2, 3, . . . , (76)
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or equivalently

x2
∫

x1

√

2m(E − V (x)) dx = πh̄(n+ 1
2) for n = 0, 1, 2, . . . . (77)

In terms of the classical particle motion, the LHS here — or rather twice the LHS — is the

action integral over one complete period of the particle’s motion,

S =

∮

p(t) dx(t) =

x2
∫

x1

(

p = +
√

2m(E − V (x))
)

dx +

x1
∫

x2

(

p = −
√

2m(E − V (x))
)

dx

= 2×
x2
∫

x1

√

2m(E − V (x)) dx

(78)

sometimes called the bounce action for bouncing back and forth. In terms of this bounce

action, eq. (77) becomes the (corrected) Bohr–Sommerfeld quantization rule

∮

p dx = 2πh̄× (n+ 1
2) for n = 0, 1, 2, . . . . (79)

Historically, Niels Bohr and Arnold Sommerfeld came up with this ad hoc quantization

rule in 1913 to explain the discrete energy levels of a harmonic oscillator or a hydrogen atom.

This rule — originally written down as

∮

p dx = h× integer, (80)

— was a major part of the Old quantum theory, used until the modern quantum theory was

developed in 1925.

For a harmonic oscillator, the Bohr–Sommerfeld quantization rule (79) happens to give

exactly right energy levels. Indeed, for a classical harmonic oscillator

p2 + ω2m2x2 = 2mE, (81)

so in the (x, p) phase space the oscillations are ellipses with semi-axes
√
2mE and

√
2mE/mω.
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Consequently,

∮

p dx = ellipse’s area = π ×
√
2mE ×

√
2mE

mω
=

2πmE

mω
=

2πE

ω
, (82)

so the Bohr–Sommerfeld quantization rule (79) tells us that

2πE

ω
= 2πh̄(n+ 1

2) =⇒ E = h̄ω(n+ 1
2). (83)

For most other quantum systems, the Bohr–Sommerfeld rule is in-exact. However, for

most systems with an infinite (or at least very large) numbers of bound states, the Bohr–

Sommerfeld rule becomes a good approximation for the energies En of the highly excited

states n ≫ 1, or at least for the energy differences En+1−En. Indeed, for the highly excited

states the particle’s motion becomes semiclassical, so we may use the WKB approximation

for its wave function. And that’s how we derived the Bohr–Sommerfeld equation (79) for

the energy levels of the bound states.

Unbound Motion and Tunneling

Our next subject is the WKB approximation for the un-bound motion of a 1d particle

over (or through) some potential barrier:

x1 x2

x

V

E

E

(84)

The green line here describes a particle with energy higher than the top of the barrier.

Classically, such particle keeps flying in the same direction without stopping, and the WKB
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approximation to the quantum particle gives the same result: forward motion — say, to the

right, — without any left-moving component due to reflection,

ΨWKB(x) =
const
√

k(x)
× exp



+i

x
∫

k(x′) dx′



 + nothing else. (85)

Beyond the WKB approximation there is a bit of reflection, but as long as
∣

∣

∣

∣

dk

dx

∣

∣

∣

∣

≪ k2(x) ∀ x, (86)

the WKB approximation is valid and the reflection is very weak. On the other hand, any

abrupt discontinuity of the potential V (x) — or a very rapid change for which |k′| >∼ k2 —

would break the WKB approximation and cause a substantial reflection, cf. discussion of the

step potential in class and of the square barrier/well in homework set#6.

The blue line on the diagram (84) describes a particle with energy lower than the barrier’s

top. Classically, such a particle stops at the turning point x1 and bounces back, so there is

100% reflection and no chance of getting through to the other side. In quantum mechanics,

the particle is most likely reflected back, but it has a small chance of getting through the

barrier; this is called tunneling under the barrier. To see how it works, we are going to use

the WKB approximation for the wave function in the classically allowed regions x < x1 and

x > x2, and in the classically forbidden region x1 < x < x2, and then use the Airy function

matching across the boundary layers around the classical stopping points x1 and x2.

Let’s start with the right allowed region x > x2. Assuming initial particles come in from

the left side, on the right side of the barrier the motion should be purely to the right, thus

in the WKB approximation

Ψright(x) =
eiπ/4A2
√

k(x)
× exp



+i

x
∫

x2

k(x′) dx′





〈〈where the eiπ/4 extra overall phase is for future convenience 〉〉

=
A2

√

k(x)
× cos





π

4
+

x
∫

x2

k(x′) dx′



 + i
A2

√

k(x)
× sin





π

4
+

x
∫

x2

k(x′) dx′



 .

(87)

In the boundary layer around x2, the first term on the bottom line becomes the irregular Airy
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function Bi while the second term becomes the regular Airy function Ai. To the left of x2,

these Airy functions become respectively the growing and the shrinking WKB wave-functions

for the forbidden region, specifically

Ψmiddle(x) =
A2

√

κ(x)
× exp



+

x2
∫

x

κ(x′) dx′



 +
i

2
× A2
√

κ(x)
× exp



−
x2
∫

x

κ(x′) dx′



 . (88)

Next, let’s re-express the integrals of κ(x′) from x to x2 in terms of similar integrals from

x1 to x,

x2
∫

x

κ(x′) dx′ = w −
x
∫

x1

κ(x′) dx′, (89)

where w =

x2
∫

x1

κ(x′) dx′, same ∀x. (90)

A point of notation: the little w is not the same as the big W (x) I have used earlier in these

notes; in particular, w is dimensionless while W has dimensionality of the classical action S

or of the Planck constant h̄.

Anyway, in light of eq. (89), we may rewrite the wave-function (88) for the forbidden

region between x1 and x2 as

Ψmiddle(x) =
A2

√

κ(x)
× exp(+w)× exp



−
x
∫

x1

κ(x′) dx′





+
A2

√

κ(x)
× i

2
× exp(−w)× exp



+

x
∫

x1

κ(x′) dx′



 .

(91)

Looking from the left turning point x1, now its the first term in this formula which shrinks

as we move into the forbidden region while the second term blows us, so in the boundary

layer around the x1 the first term turns into the regular Airy function Ai while the second

term turns into the irregular Airy function Bi. In the allowed region to the left of the x1,
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both Airy functions become oscillating WKB solutions but with different phases, specifically

Ψleft(x) =
A2

√

k(x)
× exp(+w)× 2 sin





π

4
+

x1
∫

x

k(x′) dx′





+
A2

√

k(x)
× i

2
exp(−w)× cos





π

4
+

x1
∫

x

k(x′) dx′



 .

(92)

Now let

Φ(x)
def
=

π

4
+

x1
∫

x

k(x′) dx′ = Φ0 −
x
∫

k(x′) dx′, (93)

for some integration constant Φ0, then

Ψleft(x) =
A2

√

k(x)
× exp(+w)× 2 sinΦ(x) +

A2
√

k(x)
× i

4
exp(−w)× 2 cosΦ(x)

=
A2

√

k(x)
× exp(+w)×

(

−i exp(+iΦ(x)) + i exp(−iΦ(x))
)

+
A2

√

k(x)
× i

4
exp(−w)×

(

exp(+iΦ(x)) + exp(−iΦ(x))
)

=
−iB1
√

k(x)
× exp(+iΦ(x)) +

iA1
√

k(x)
× exp(−iΦ(x))

(94)

for

B1 = A2 ×
(

e+w − 1
4e

−w
)

and A1 = A2 ×
(

e+w + 1
4e

−w
)

. (95)

Finally, spelling out the Φ(x) on the bottom line of eq. (94) we get

Ψleft(x) =
−iB1
√

k(x)
× exp



iΦ0 − i

x
∫

k(x′) dx′



 +
+iA1
√

k(x)
× exp



−iΦ0 + i

x
∫

k(x′) dx′



 .

(96)

Thus, up to overall phases, A1 is the amplitude of the right-moving wave while B2 is ampli-

tude of the left-moving wave, both on the left side of the barrier, while A2 is the amplitude of

the right-moving wave on the right side of the barrier. In other words, A1 is the incident am-

plitude, B1 is the reflected amplitude, and A2 is the transmitted amplitude. Consequently,
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the reflection probability is

R =

∣

∣

∣

∣

B1

A1

∣

∣

∣

∣

2

=

(

e+w − 1
4e

−w

e+w + 1
4e

−w

)2

=

(

4− e−2w

4 + e−2w

)2

, (97)

cf. eq. (95), while the transmission probability is

T =

∣

∣

∣

∣

A2

A1

∣

∣

∣

∣

2

=
1

(

e+w + 1
4e

−w
)2 =

16e−2w

(4 + e−2w)2
. (98)

Physically, 2w is the bounce action S (in units of h̄) in the inverted potential

Vinv(x) = 2E − V (x) =⇒ (V −E)inv = −(V − E). (99)

The inverse potential has the same turning points x1 and x2 as the original potential V (x),

but the classically allowed and the classically forbidden regions swap their places:

x1 x2

x
Vorig

Vinv

E

original
allowed

original
allowed

original
forbidden

inverse
forbidden

inverse
forbidden

inverse
allowed

(100)

The barrier of the original potential becomes the well of the inverse potential, and inside

this barrier/well region

kinv(x) = κorig(x). (101)

Consequently,

w =

x2
∫

x1

κorig(x) dx =

x2
∫

x1

kinv(x) dx =
1

h̄

x2
∫

x1

pinv(x) dx =
1

2h̄







∮

1 period

p(t) dx(t)







well of

Vinv(x)

, (102)

or in other words, Sb = 2h̄w is the bounce action of a particle bound in the well of the
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inverse potential Vinv(x). For classically thick and/or wide barriers, this bounce action is

much larger than h̄, hence

e−2w = e−Sb/h̄ ≪ 1, (103)

so we may approximate the transmission and the reflection coefficients for the barrier as

T =
e−2w

(1 + 1
4e

−2w)2
≈ e−2w = exp(−Sb/h̄) ≪ 1, (104)

while

R = 1 − T ≈ 1 − exp(−Sb/h̄) ≃ 1. (105)

Thus, a classically high and thick barrier is almost completely reflective, but there is a small

probability of tunneling, namely

T ≈ exp(−Sb/h̄) ≪ 1. (106)

To be precise, we have derived eqs. (98) and hence (106) for a smooth potential V (x)

which allows the WKB approximation inside the barrier and the Airy function matching

across the barrier’s ends x1 and x2. For the non-smooth potentials V (x) — for example, for

the square barrier of homework#6 (problem 2), — we generally have

T = C × exp(−Sb/h̄) = C × exp(−2w) (107)

where Sb = 2h̄w is the bounce action in the inverse potential, exactly as for a smooth V (x),

while C is an O(1) pre-exponential factor depending on the discontinuities of the V (x). For

example, for the square barrier of the homework#6 we have

T =
4E(Vb − E)

4E(Vb − E) + V 2
b sinh2(κL)

, (108)

cf. eq. (S.47) of the solutions to homework#6. For a square barrier w = κL, so for κL ≫ 1
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we may approximate

sinh(κL) ≈ 1
2 exp(κL), sinh2 κL ≈ 1

4 exp(2κL) = 1
4 exp(2w), (109)

and hence

T ≈ 4E(E − Vb)
1
4V

2
b

× exp(−2w), (110)

in perfect agreement with eq. (107) for

C =
16E(Vb − E)

V 2
b

= O(1). (111)

Tunneling Examples

For a simple example of tunneling, consider the electrons pulled out from a metal cathode

by the electric field E . (Which we assume to be directed towards the cathode so the Coulomb

force F = −eE pulls the electrons out.) The effective potential for an electron is constant

inside the metal, rapidly rises at the metal edge, and then slowly decreases due to the electric

field:

x

V

E

x1 = 0 x2

V (x)−E = V0 − eE × x

(112)

where V0 is the metal’s work function, i.e. the energy needed to pull an electron (of initial

energy E at metal’s Fermi level) out from the metal.
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Classically, an electron does not have enough energy to simply fly out over the potential

barrier, but in the quantum theory it can tunnel out. Specifically, the tunneling starts at

the metal edge x1 = 0 and ends at the point x2 = V0/eE where the potential drops below

the electron’s energy E. Between these points

κ(x) =

√

2m(V (x)− E)

h̄
=

√

2m(V0 − eEx)
h̄

, (113)

hence

2w = 2

x2
∫

x1

κ(x) dx = 2

V0/eE
∫

0

√

2m(V0 − eEx)
h̄

dx (114)

= 2×
√
2mV0
h̄

× V0
eE ×

1
∫

0

√

1− ξ dξ 〈〈where x = (V0/eE)× ξ 〉〉

=
2
√

mV 3
0

h̄eE × 2

3
=

const

E . (114)

Consequently, the probability of an electron hitting the cathode’s edge to tunnel out through

the potential barrier is

T = O(1)× exp

(

−const

E

)

, (115)

and therefore the electric current from the cathode depends on the electric field as

I ∝ exp

(

−const

E

)

(116)

⋆ ⋆ ⋆

For our second example, consider the centrifugal barrier keeping the radial motion of a

particle away from the center. Back in homework set#4 we saw that

p̂2 =
L̂2

r2
+ p̂2r (117)

where in the spherical coordinate basis

p̂r = −ih̄

(

∂

∂r
+

1

r

)

=
1

r
×
(

−ih̄
∂

∂r

)

× r. (118)
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A wave-function of the form

Ψ(r, θ, φ) = Ψr(r)× Yℓ,m(θ, φ) (119)

is an eigenstate of L̂2 with the eigenvalue ℓ(ℓ + 1)h̄2, so for a central potential V (r) and

energy E, the Schrödinger equation for this wave-function becomes

1

r

(

− h̄2

2m

∂2

∂r2
+

ℓ(ℓ+ 1)h̄2

2mr2
+ V (r) − E

)

(

rΨr(r)) = 0. (120)

In other words, the radial wave-function Ψr(r) — or rather r×Ψr(r) — obeys one-dimensional

Schrödinger equation for an effective potential

Veff(r) = V (r) +
L2 = ℓ(ℓ+ 1)h̄2

2mr2
. (121)

When the classical particle’s path misses the center — which it always does unless L = 0,

— from the radial motion point of view it looks like it approaches the center, slows down

due to the centrifugal potential, stops, turns around, and flies back away from the center.

And its closest approach to the center is the turning point rt in the effective potential (121).

Quantum mechanically, the wave function extends beyond the classical turning point rt, but

it rapidly decreases as one moves into the classically forbidden region r < rt. Let’s use the

WKB approximation to see how the radial function decreases with r for r → 0.

Assume ℓ 6= 0, then near the center

Veff(r) − E =
ℓ(ℓ+ 1)h̄2

2mr2
+ subleading terms for r → 0, (122)

hence

κ2(r) =
2m

h̄2
× (Veff(r)−E) ≈ ℓ(ℓ+ 1)

r2
=⇒ κ(r) ≈

√

ℓ(ℓ+ 1)

r
. (123)

The WKB approximation for a classically forbidden region is valid when

|κ′| ≪ κ2, (124)
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which for the κ(r) at hand becomes

√

ℓ(ℓ+ 1)

r2
≪ ℓ(ℓ+ 1)

r2
⇐⇒ ℓ ≫ 1. (125)

Thus, the WKB approximation should be good for large angular momenta ℓ ≫ 1 but may

break down for small ℓ like 1 or 2.

For large ℓ we may approximate

√

ℓ(ℓ+ 1) ≈ ℓ + 1
2 =⇒ κ(r) ≈ ℓ+ 1

2

r
. (126)

Consequently,

rt
∫

r

κ(r′) dr′ ≈ (ℓ+ 1
2)× log

rt
r

(127)

and

exp



∓
rt
∫

r

κ(r′) dr′



 ∼ exp
(

∓(ℓ+ 1
2) log

rt
r

)

=
(rt
r

)∓(ℓ+ 1

2
)
∝ r±(ℓ+ 1

2
). (128)

For the WKB radial wave-functions in the near-center forbidden region this means

r ×Ψr(r) = A
√
r × r+(ℓ+ 1

2
) + B

√
r × r−(ℓ+ 1

2
), (129)

where the
√
r factor on the RHS come from

1
√

κ(r)
=

√
r

√

ℓ+ 1
2

, (130)

while the LHS is r × Ψr(r) instead of Ψr(r) because it’s the r × Ψr(r) which appear in

the radial Schrödinger equation (120). For the radial wave-function Ψr(r) itself, eq. (129)
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becomes

Ψr(r) = A× r+ℓ + B × r−ℓ−1 when r → 0. (131)

Moreover, the second term here blows up un-physically at the center leading to an infinite

kinetic energy

〈Ψ| Ĥkinetic |Ψ〉 =
h̄2

2m

∫

d3x |∇Ψ|2 ≈
···
∫

0

dr r2 × B2(ℓ+ 1)2

r2ℓ+4
= +∞, (132)

so we must have B = 0 and therefore

for r → 0 : Ψr(r) ∝ rℓ. (133)

Note: we have derived eq. (133) using the WKB approximation, which is valid only

for ℓ ≫ 1 but become inaccurate for small ℓ. Nevertheless, the asymptotic behavior (133)

happens to be exact for all ℓ and even for ℓ = 0. One may prove this result using differential

equation techniques, but this goes beyond the scope of the present notes.

⋆ ⋆ ⋆

For our last example of tunneling, consider nuclear fusion. Before two nuclei can fuse,

they must approach each other within a distance of a few Fermi, but this cannot happens

classically because of the Coulomb repulsion between the nuclei. At typical star-center

temperatures — or even fusion bomb temperatures — the two initial nuclei do not have
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enough energy to cross the Coulomb barrier

r

V

E

V (r) =
Z1Z2e

2

r
+ Vnuclear(r)

rt

(134)

so they must tunnel towards each other under this barrier. The relative motion of the two

nuclei is governed by the reduced one-body Hamiltonian

Ĥred =
p̂2
red

2mred
+ V (r̂) (135)

for the reduced mass

mred =
m1m2

m1 +m2
. (136)

We are interested in the radial aspect of the relative motion described by the Ψr(r), and just

as we saw in the previous example it’s governed by the effective potential

Veff =
Z1Z2e

2

r
+ Vnuclear(r) +

ℓ(ℓ+ 1)h̄2

2mr2
. (137)

For ℓ 6= 0, the centrifugal term becomes very large and makes the wave function decrease as

rℓ. In terms of tunneling probability T , this means

T [ℓ 6= 0] ∼ T [ℓ = 0]×
(

rN
rc

)2ℓ

(138)

where rN is the nuclear radius while rc is the radius at which the centrifugal term in eq. (137)

becomes larger than the two other terms. Numerically, rN ∼ a few fm while rc ∼ a few tens

of fm, hence

T[ℓ 6= 0] ≪ T [ℓ = 0], (139)

so the fusion happens almost exclusively in the ℓ = 0 partial wave AKA the s-wave.
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Next, consider the nuclear potential Vnuclear and its effect on the tunneling. The nuclear

potential is strong but very short-ranged: its magnitude starts with VN ∼ a few MeV at

r → 0 but dies out for r >∼ a few fm. In this range

κ =

√

2m(V − E)

h̄
∼ a few

10 fm
, (140)

hence
few fm
∫

0

κ(x) dx <∼ 1, (141)

so the net effect of the nuclear potential term on the w =
∫

κ dx is O(1) or less. In other

words, if we compare the bounce actions Sb = 2h̄w in the true inverse potential (including

the Vnuclear term) versus purely Coulomb inverse potential, we get

∆w = wtrue − wCoulomb <∼ 1, (142)

hence net tunneling probability

T = Ctrue× exp(−2wtrue) = Ctrue× e−2∆w × exp(−2wCoulomb) = C ′× exp(−2wCoulomb)

(143)

for C ′ = Ctrue × e−2∆w = O(1).

We are interested in the exponential factor in the tunneling probability (143), so let’s

calculate the tunneling rate for the purely Coulomb potential

Veff(r) = VCoulomb(r) + 0 =
Z1Z2e

2

r
. (144)

The tunneling here is inward from the classical turning radius

rt =
Z1Z2e

2

E
=⇒ V (r) = E (145)

all the way in to r = 0. In the classically forbidden region of 0 < r < rt, we have

κ(r) =
1

h̄

√

2mred

(

Z1Z1e2

r
− E

)

=
1

h̄

√

2mred

(

Z1Z1e2

r
− Z1Z2e2

rt

)

=

√

2mredZ1Z2e2

h̄
×
√

1

r
− 1

rt
,

(146)
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and consequently

2w = 2

rt
∫

0

κ(r) dr = 2

√

2mredZ1Z2e2

h̄
×

rt
∫

0

dr

√

1

r
− 1

rt
. (147)

To evaluate the integral here, we change the integration variable:

r = rt × sin2 φ for 0 ≤ φ ≤ π
2 , (148)

dr = 2rt sinφ cos φ dφ, (149)

1

r
− 1

rt
=

1

rt

(

1

sin2 φ
− 1

)

=
1

rt tan
2 φ

, (150)

hence

dr

√

1

r
− 1

rt
=

2rt sin φ cosφ dφ√
rt tanφ

=
√
rt × 2 cos2 φ dφ, (151)

rt
∫

0

dr

√

1

r
− 1

rt
=

√
rt ×

π/2
∫

0

2 cos2 φ dφ =
√
rt ×

π

2
, (152)

and therefore

2w = 2

√

2mredZ1Z2e2

h̄
× π

2

√
rt = π

√

2mredZ1Z2e2

h̄
×
√

Z1Z2e2

E
=

√

E0

E
(153)

for

E0 = 2mred ×
(

πZ1Z2e
2

h̄

)2

, (154)

or numerically

E0 = Z2
1Z

2
2

A1A2

A1 + A2
× 0.98 MeV (155)

where Z1,2 are the numbers of protons in each nucleus and A1,2 are the net numbers of

nucleons (protons+neutrons). Consequently, the tunneling probability — and hence the

fusion rate of nuclei — depends on their reduced energy E as

fusion rate(E) = F × e−2w = F × exp

(

−
√

E0

E

)

(156)

where the pre-exponential factor F depends on the nuclear aspects of the fusion reaction

rather than tunneling through the Coulomb barrier.
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For example, consider the proton-proton fusion reaction — or rather a cycle of fusion

reactions — which power most of the Sun’s luminosity:

p + p → D + e+ + ν, (157)

D + p → 3
He + γ, (158)

3
He +

3
He → 4

He + p + p. (159)

There are some alternative reaction chains to the direct fusion (159) of two helium-3 nuclei,

but they are not germane to the present discussion. In any case, the rate of the proton-

proton fusion cycle is limited by the first reaction (157): Unlike the other fusion reactions, it

involves weak interactions to turn one of the protons into a neutron in the deuterium nucleus

D, so it has a much smaller pre-exponential factor F than the other fusion reactions.

Besides a small pre-exponential factor, the reaction (157) also has a very small exponen-

tial factor for the average proton pair in the Sun. Indeed, the central region of the sun has

temperature T ≈ 15.5 · 106 K, so the average proton pair in that region has reduced thermal

energy 〈E〉 = 3
2kBT ≈ 2.0 keV while E0 = 0.49 MeV, thus

exp

(

−
√

E0

〈E〉

)

∼ 10−7. (160)

Because of this very small tunneling factor, the thermally-averaged proton pairs rarely fuse.

Instead, most fusion happens for the higher-energy protons at the tail end of the Boltzmann

energy distribution

N(E) ∝ exp(−E/kBT ), (161)

so the net fusion rate is proportional to

〈net rate〉 ∝
∞
∫

0

dE N(E)× rate(E) ∝
∞
∫

0

dE exp

(

− E

kBT
−
√

E0

E

)

. (162)

To estimate this integral, let’s change the integration variable from E to

ν =
E

E
1/3
0 (kbT )2/3

, (163)
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thus

E

kbT
+

√

E0

E
= 3

√

E0

kBT
× f(ν) for f(ν) = ν−1/2 + ν (164)

and therefore

〈net rate〉 ∝
∞
∫

0

dν exp

(

− 3

√

E0

kBT
× f(ν)

)

. (165)

For kBT ≪ E0, the integrand here becomes sharply peaked at the minimum of f(ν), hence

〈net fusion rate〉 = (pre-exponential factor A)× exp

(

− 3

√

E0

kBT
×min[f(ν)]

)

. (166)

Specifically,

df(ν)

dν
=

−1

2ν3/2
+ 1 which vanishes for ν = 2−2/3, (167)

hence

min[f(ν)] = f(ν = 2−2/3) = 2+1/3 + 2−2/3 =
3

22/3
, (168)

and therefore

〈net fusion rate〉 = A× exp

(

− 3

√

E0

kBT
× 3

22/3

)

= A× exp

(

− 3

√

T0
T

)

(169)

for

T0 =
27E0

4kB
≈ 76.7 · 109 K× Z2

1Z
2
2

A1A2

A1 + A2
. (170)

In particular, for the proton-proton fusion reaction (157) we have T0 = 38.6 ·109 K while

the temperature of the Sun’s center is only T = 15.5 · 106 K, thus

exp

(

− 3

√

T0
T

)

∼ 10−6. (171)

On top of this small factor, the pre-exponential factor A is also very small due to the weak
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interactions involved in the proton-proton fusion,

App ∼ 10−4 yr−1, (172)

thus

net fusion rate

per proton
∼ 10−10 yr−1, (173)

and that’s how the Sun is expected to keep shining for 1010 years.

Now consider the CNO fusion cycle which powers the stars heavier than the Sun:

12
C + p → 13

N + γ, (174)

13
N → 13

C + e+ + ν, (175)

13
C + p → 14

N + γ, (176)

14
N + p → 15

O + γ, (177)

15
O → 15

N + e+ + ν, (178)

15
N + p → 16

O∗ → 12
C +

4
He . (179)

For this cycle, the rate-limiting reaction is the nitrogen-proton fusion (177), for which

E0 = 45.1 MeV and T0 = 3.53 · 1012 K, (180)

so at the center-of-the Sun conditions the CNO cycle is suppressed by a much smaller expo-

nential factor

exp

(

− 3

√

T0
T

)

∼ 10−26.5 (181)

than the proton-proton cycle. On the other hand, in the CNO cycle the weak interaction

work through beta-decays after the fusion has already happened rather than during the

fusion itself, so its pre-exponential factor

ACNO ∼ 10+14.5 yr−1 (182)

is much larger than for the proton-proton cycle. Altogether, in the Sun

power produced by the CNO cycle

power produced by the proton-proton cycle
∼ 1

60
, (183)

In other stars, this pp to CNO ratio raises very rapidly with the central temperature of
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the star, which in turn increases with the star’s mass. Thus, a main-sequence star of mass

M = 1.3 M⊙ has Tc ≈ 18 · 106 K, at which temperature the pp cycle and the CNO cycle

provide similar fusion powers. And in still heavier main-sequence stars — which have even

higher central temperatures — it’s the CNO cycle which privides most of the fusion power.

WKB in 3 Dimensions

In d > 1 dimensions, the WKB approximation is a lot less powerful than in 1 dimension:

it does not give us the whole wave-function, although it helps to find its phase. This is par-

ticularly useful when dealing with interference between 2 or more semi-classical trajectories

leading to the same places; for example, a 2-slit experiment with an electron beam.

To see how this works, let’s start with the WKB ansatz,

Ψ(x, t) =
√

ρ(x, t)× exp

(

i

h̄
W (x, t)

)

, (184)

plug this wave-function into the Schrödinger equation, and then neglect terms of relative

order O(h̄2). Proceeding exactly as we did in eqs. (4) through (20) for d = 1, we end up

with

W +
1

2m
(∇W )2 + V = 0, (185)

ρ +
1

m
∇ · (ρ∇W ) = 0, (186)

for a time-dependent state, or for a stationary state of energy E,

(∇W (x))2 = 2m(E − V (x)), (187)

∇ · (ρ∇W ) = 0. (188)

Similar to the 1d case, eq. (185) is the Hamilton–Jacobi equation for the classical principal

function W (x, t), so we may identify ∇W (x, t) with the classical momentum p(x, t) of a

particle which arrives to the point x at time t starting with some fixed place x0 at some
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fixed time t0. Alas, eq. (187) gives us the magnitude of this classical momentum,

|p(x)| =
√

2m(E − V (x)), (189)

but not its direction. Or in terms of the W (x), eq. (187) gives us the magnitude but not the

direction of the gradient ∇W (x), and that’s not enough information to find the W (x) itself.

Likewise, eq. (188) does not give us enough information to find the ρ(x).

However, eq. (185) for the phase of the wave-function Ψ(x, t) is not completely useless.

For a semi-classical motion, when we know the classical path x(t) from x(t1) = x1 to

x(t2) = x2, the phase W (x2, t2) obtains as a classical principal function

W (x2, t2) =

t2
∫

t1

L(x(t),x(t)) dt along the classical path, (190)

hence

phase(Ψ(x2, t2)) − phase(Ψ(x1, t1)) =
1

h̄

t2
∫

t1

L(x(t),x(t)) dt along the classical path.

(191)

For a motion of given energy E,

L(x,x) dt = p · dx − H(x,p) dt = p · dx − E dt, (192)

hence

W (x2, t2) =

∫

classical path
from x1 to x2

p(t) · dx(t) − E × (t2 − t1), (193)

so for a stationary-state limit

Ψ(x, t) = Ψ(x)× e−iEt/h̄ (194)

of semiclassical motion, we have

phase(Ψ(x2)) − phase(Ψ(x1)) =
1

h̄

x2
∫

x1

p(t) · dx(t) along the classical path. (195)

Now consider an interference experiment like a 2-slit experiment for the electrons. If
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there are two different semi-classical ways for a particle to get from the same point A to the

same point B, then

Ψnet(xB) = Ψ1(xB) + Ψ2(xB) (196)

and hence

|Ψnet|2 = ρ1 + ρ2 + 2
√
ρ1ρ2 × cos(∆φ)

for ∆φ = phase(Ψ1(xB)) − phase(Ψ2(xB)).
(197)

The WKB approximation in 3D does not give us the magnitudes ρ1 = |Ψ1|2 and ρ2 = |Ψ2|2

of the wave functions obtaining via each path, but it does gives us the phase difference ∆φ.

Indeed, evaluating eq. (195) for each classical path, we get

∆φ =
1

h̄







∫

path#1

p · dx −
∫

path#2

p · dx






. (198)

Gravitationally Induced Neutron Interference

As an example of WKB-bases eq. (198) for a 2-path interference, consider the 1975

experiment by Colella, Overhauser, and Werner which demonstrated gravitationally induced

neutron interference. Schematically, their experiment looked like this:

1 2

3 4

neutron

beam

detector

(199)

where the red lines indicate semi-transparent neutron mirrors. A neutron can reach the

detector along either of the two paths 124 and 134, hence interference with relative phase

∆φ =
1

h̄





∫

124

p · dx −
∫

134

p · dx



 . (200)

Together, the two paths form a parallelogram of size a (segments 12 and 34) by b (seg-

ments 13 and 24), and the whole experiment — the mirrors and the detector — is mounted
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on a tilting platform. As the platform tilts, the segments 12 and 34 remain horizontal but

have their elevations different by

∆z = b sinα× sin θtilt . (201)

On the other hand, the segments 13 and 24 are tilted but they are parallel to each other

and the separation between them is purely horizontal. Consequently, when we consider the

classical actions of a neutron flying along each path, the segments 13 and 24 yield equal

contributions to the two path’s actions,
∫

13

p · dx =

∫

24

p · dx, (202)

regardless of the platform tilt. Therefore,
∫

124

p · dx −
∫

134

p · dx =

∫

12

p · dx −
∫

34

p · dx = a× pcl(12) − a× pcl(34), (203)

where the second equality stems from the classical momentum staying constant along a

horizontal segment. However, pcl(12) 6= pcl(34) because the two horizontal segments have

slightly different gravitational potentials,

∆V = mng∆z (204)

and hence slightly different kinetic energies of neutrons flying along these segments. This

difference is very small compared to the kinetic energies themselves, hence

pcl(12) − pcl(34) ≈ ∆V

v
(205)

where v = p/m is the classical neutron’s velocity. Altogether, for the Colella, Overhauser,

and Werner setup,

∆φ =
a

h̄

(

pcl(12) − pcl(34)
)

=
a

h̄
× ∆V

v
=

a

h̄
× mng∆z

v

=
mng

h̄v
× a×∆z =

mng

h̄v
× a× b sinα× sin θtilt

=
mng

h̄v
× Area× sin θtilt .

(206)

To keep the interference pattern clear, Colella et al needed a beam of neutrons with

the same velocity v. They started with a beam of thermal neutrons from a nuclear reactor
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— which had a Maxwell distribution of velocities peaking between 2 and 3 km/s, — and

then used Bragg scattering off a crystal to produce a secondary beam of neutrons having a

specific De Broglie wavelength λ = 1.445 Å. This secondary beam had neutrons with uniform

velocities

v =
1

mn
× 2πh̄

λ
= 2737 m/s, (207)

hence

mng

h̄v
=

m2
ngλ

2πh̄2
= 9.05 cm−2. (208)

The interference region in the Colella et al experiment had area ab sinα ≈ 5 cm2, thus

∆Φ

2π
≈ 7.2× sin θtilt , (209)

so by slowly varying the tilt angle θtilt between −30◦ and +30◦ they saw 7 peaks and 8

troughs of the interference pattern. Here is the idealized plot:

sin θtilt

neutron flux

−30◦ +30◦

And were they able to tilt all the way from −90◦ to +90◦, they would have gotten

sin θtilt
−90◦ +90◦
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