
WAVE MECHANICS IN ONE DIMENSION

Solving the Schrödinger Equation

Consider a particle moving in one space dimension through the potential V (x), so its

Hamiltonian is

Ĥ =
p̂2

2M
+ V (x̂). (1)

In the wave-function formalism, the Schrödinger equation Ĥ |ψ〉 = E |ψ〉 for a stationary

state |ψ〉 becomes

− h̄2

2M

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x), (2)

or equivalently

ψ′′(x) =
2M

h̄2
(

V (x)−E
)

× ψ(x). (3)

This is a linear second-order differential equation, so for any energy E it has 2 independent

solutions. But any such solution could be physical or unphysical, depending on its asymptotic

behavior at x→ ±∞.

To clarify this point, consider the behavior of the 2 solutions of (3) at x→ +∞ depending

on V (+∞)
def
= limx→+∞ V (x):

• V (+∞) > E.

First, consider a finite V (+∞) which happens to be larger than the energy E. In this

case, eq. (3) for x→ +∞ becomes

ψ′′(x) = +κ2ψ(x) for κ =
1

h̄

√

2M(V (+∞)− E), (4)

so its two solutions behave as

ψ1(x) = const× e−κx and ψ2(x) = const× e+κx. (5)

But physically, only the ψ1 ∝ e−κx is a good, normalizable solution with 〈ψ|ψ〉 =
∫

|ψ|2dx < ∞. OOH, the ψ2 ∝ e+κx solution is not only un-normalizable, but it does

not even obtain as a sensible limit of normalizable wavefunctions, so it is completely

unphysical.
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Likewise, for V (+∞) = +∞ (which is of course larger than E), the two solutions of

the Schrödinger equation have form

ψ1(x) ≈ const× e−S(x) and ψ2(x) ≈ const× e+S(x) (6)

where

S(x) ≈
∫

√

2M(V (x)− E)

h̄
dx, (7)

which grows with x in a faster-than-linear fashion. Again, the ψ1(x) is a good, nor-

malizable solution while the ψ2(x) solution is unphysical.

⋆ In general, any solution which grows with x→ +∞ as e+κx or even faster is completely

unphysical.

• V (+∞) < E.

For finite V (+∞) which happens to be smaller than the energy E, eq. (3) for x→ +∞
becomes

ψ′′(x) = −k2ψ(x) for k =
1

h̄

√

2M(E − V (+∞)), (8)

so its two solutions behave as

ψ1(x) = const× e+ikx and ψ2(x) = const× e−ikx. (9)

This time both solutions are un-normalizable but physical, as they obtain from sensible

limits of normalizable wavefunctions.

Likewise, for V (+∞) = −∞ (which is of course smaller that E), we have two rapidly

oscillating solutions, and both solutions look physical as they obtain from sensible

limits of normalizable wavefunctions. However, the whole Hamiltonian with V (±∞) =

−∞ is a but unphysical, as we shall see in a moment.

Clearly, the same dependence of the wave function asymptotics at x→ +∞ on the sign

of V (+∞)− E also applies to at the other end x → −∞ of the one-dimensional space. So

when we take both ends into account we get one of the following situations:
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1. At both ends x→ ±∞ the potential is higher than the energy, V (+∞), V (−∞) > E.

In this case, each end selects a unique linear combination of the two Schrödinger

equation’s solutions which happens to asymptotically shrink rather than blow up at

that end. However, for a general value of the energy E, the linear combination which

shrinks for x → −∞ differs from the linear combination which shrinks for x → +∞,

and there is no combination that behaves physically at both ends x → ±∞.

However, for some discrete values of the energy, the same linear combination of the two

solutions happens to shrink for both x → −∞ and x → +∞, so it behaves physically

at both ends. Thus, in this energy range, the Hamiltonian’s spectrum is discrete and

non-degenerate (a unique eigenstate for each eigenvalue). Also, the eigenstates for

these discrete energies are normalizable,

〈ψ|ψ〉 =

+∞
∫

−∞

|ψ(x)|2 dx < ∞. (10)

2. The potentials at the two ends are different, and the energy lies between them,

V (−∞) < E < V (+∞) or V (−∞) > E > V (+∞).

In this case, the end with the potential higher than the energy selects the unique linear

combination of the two solutions (which shrinks rather than blows up at that end).

At the other end, the same combination oscillates rather than shrinks or blows up

(because both solutions oscillate rather than shrink or blow up at that end), so it’s

physical albeit un-normalizable.

Consequently, in this energy range, the Hamiltonian’s spectrum is continuous and

non-degenerate. Also, the eigenstates for such continuous-spectrum energies are un-

normalizable, 〈ψ|ψ〉 = ∞.

3. At both ends x→ ±∞ the potential is lower than the energy, V (+∞), V (−∞) < E.

In this case, any linear combinations of the two solutions oscillates at both ends, which

makes its physical albeit unnormalizable.

Thus, in this energy range, the Hamiltonian’s spectrum is continuous and doubly-

degenerate (two independent eigenstates for each eigenvalue), and all the eigenstates

are un-normalizable.
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Note that if the potential asymptotes to −∞ at either end — or both ends — then the

continuous spectrum of the Hamiltonian stretches all the way to E = −∞. For a particle

that’s utterly isolated from the rest of the Universe, this may seem OK. But any kind of

an interaction — however weak — between such a particle and anything else would make

it seek a lower energy level, and without a bottom to its energy spectrum, it would keep

losing energy forever. In the classical limit, this corresponds to the particle falling of an

infinite potential hill and accelerating while it runs away to x = ±∞, while the energy loss

corresponds to a small friction force.

In any case, the classical potential hill with V → −∞ for x → ±∞ is quite unphysical,

and its quantum analogues — Hamiltonians with energy spectra without finite lower limits

— are similarly unphysical. So from now on in this class, we shall assume that at each end

x → ±∞ either has a finite limit or asymptotes to +∞ (as in the harmonic oscillator) but

never to −∞.

Bound and Unbound States

Physically, the the eigenstates for the discrete energy eigenvalues correspond to the bound

motion of the particle while the eigenstates for the continuous energy eigenvalues correspond

to the un-bound motion.

Indeed, consider the wave-function ψ(x) for a discrete energy eigenvalue E < V (±∞).

This is a normalizable wave-function which decreases exponentially (or faster) for both x→
+∞ and x → −∞, so the probability of finding the particle outside of some finite range

x1 < x < x2 is very small, and shrinks as we extend the range. In the classical limit, this

corresponds to the particle bouncing back and force between x1 and x2 but never exiting

this range, thus bound motion:
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x

V (x)

E

classical range

ψ(x)

Since the bound state has a normalizable wave-function, it has a well-defined expectation

value of the position 〈x〉 = 〈ψ| x̂ |ψ〉. However, since |ψ〉 is a stationary state, the classical

meaning of this expectation value is the time-averaged value of the position over the period

of motion rather than the actual position at any particular time. Also, by the Ehrenfest

equation,

〈ψ| p̂ |ψ〉 = m
d

dt
〈ψ| x̂ |ψ〉 = 0 〈〈 in a stationary state 〉〉. (11)

Now consider the un-normalizable wave function for E ∈ continuous spectrum. In the

non-degenerate case of V (−∞) < E < V (+∞) (or vice verse), the wave function which

shrinks at the high end of V but oscillates at the low end, describes the un-bound motion:

the particle flies in from the low end, slows down, turns around near the classical turning

point where V (x) = E, and flies back to the low end. In the degenerate case of V (±∞) < E,

we have a more general kind of un-bound motion: the particle can fly in from either end

and continue moving in the same direction until it flies out to the other end, or it may turn

around and fly back to the same end it came from.

In any case, all the continuous-spectrum eigenstates correspond to un-bound motion,
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and all such states are unnormalizable,

〈ψ|ψ〉 =

+∞
∫

−∞

|ψ(x)|2 dx = ∞, (12)

which makes for ill-defined expectation values of the position

〈x〉 =
〈ψ| x̂ |ψ〉
〈ψ|ψ〉 =

∫

dx |ψ(x)|2 × x
∫

dx |ψ(x)|2 = ???. (13)

Consequently, despite the Ehrenfest equation (11), and un-bound state may have a non-zero

expectation value of the momentum, 〈p〉 6= 0.

Wave Packets for the Unbound Motion

Consider the asymptotic behavior of the un-bound state’s wave function ψ(x) for x →
+∞ or x→ −∞ where V (x) ≈ const < E. In this region,

ψ(x) ≈ A× e+ikx + B × e−ikx (14)

for some constants A and B and h̄k =
√

2M(E − V (∞)). To understand the motion

described by this wave function, we need to step away from the exactly stationary states and

consider the wave packets with a small but finite energy uncertainty ǫ≪ E. Thus, consider

the wave functions of the form

ψwp(x) =

∫

dE F (E)× ψE(x), (15)

where ψE(x) is the wave-function of the stationary state of energy E while F (E) is some

function of the energy which has a narrow peak near E = E0, for example a Gaussian peak

F (E) =
1√
2π ǫ

exp
(

−(E − E0)
2/2ǫ2

)

, ǫ≪ E − V (∞). (16)

Most generally, the stationary state’s wavefunction at x→ ∞ is

ψE(x, t) = A(E)×e+ikx−iωt + B(E)×e−ikx−iωt, ω =
E

h̄
, k =

√

2M(E − V (∞))

h̄
,

(17)

but for ǫ ≪ E − V (∞) the wave packet (15) is dominated by the energies very close to the
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E0, so we can make the following approximations:

k(E) ≈ k0 +
E − E0

h̄u
(18)

where u = h̄k/M is the particle’s speed, and also

A(E) ≈ A(E0), which we shall call simply A,

B(E) ≈ B(E0), which we shall call simply B.
(19)

Consequently, the wave-packet’s time-dependent wave-function becomes

ψwp(x, t) =

∫

dE√
2πǫ

(

Ae+ikx +Be−ikx
)

× e−iEt/h̄ × e−(E−E2

0)/2ǫ
2

= Ae+ik0xe−iω0t ×
∫

dE√
2πǫ

exp

(

+ix
E −E0

h̄u
− it

E −E0

h̄
− (E − E0)

2

2ǫ2

)

+Be−ik0xe−iω0 ×
∫

dE√
2πǫ

exp

(

−ixE − E0

h̄u
− it

E − E0

h̄
− (E − E0)

2

2ǫ2

)

,

(20)

where the net exponents in the two integrands amount to

E = ±ixE − E0

h̄u
− it

E − E0

h̄
− (E −E0)

2

2ǫ2

= −(E −E0)
2

2ǫ2
− i

(

t∓ x

u

)

× E − E0

h̄

= − 1

2ǫ2

(

E − E0 +
iǫ2

h̄

(

t∓ x

u

)

)2

− ǫ2

2h̄2

(

t∓ x

u

)2
,

(21)

hence

∫

dE√
2πǫ

exp(E) = exp

(

− ǫ2

2h̄2

(

t∓ x

u

)2
)

×
∫

dE√
2πǫ

exp

(

− 1

2ǫ2
(E + const)2

)

= exp

(

− ǫ2

2h̄2

(

t∓ x

u

)2
)

× 1

= exp

(

−(x∓ ut)2

2(uh̄/ǫ)2

)

.

(22)
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Altogether, this gives us

ψwp(x, t) = A× e+ik0x−iω0t × exp

(

−(x− ut)2

2(uh̄/ǫ)2

)

+ B × e−ik0x−iω0t × exp

(

−(x+ ut)2

2(uh̄/ǫ)2

)

.

(23)

which is a superposition of two Gaussian wave packets:

• First wave packet of amplitude A is centered at x = +ut, so it travels right at velocity

v = +u;

• Second wave packet of amplitude B is centered at x = −ut, so it travels left at velocity

v = −u.

Now let’s focus on the motion unbound in both directions — thus, the doubly-degenerate

spectrum of E, — and consider the asymptotic behavior of a general stationary wave-function

ψE(x) at both ends x → ∓∞. In general, we have

for x→ −∞ : ψE(x) = A1 × e+ik1x + B1 × e−ik1x, (24)

for x→ +∞ : ψE(x) = A2 × e+ik2x + B2 × e−ik2x, (25)

where

k1 =

√

2M(E − V (−∞))

h̄
, k2 =

√

2M(E − V (+∞))

h̄
, (26)

and there are 2 linear relations between the 4 coefficients A1, B1, A2, B2. Consequently, when

we replace the exactly stationary states with the wave packets (23), we end up with

for x→ −∞ : ψwp(x, t) = A1 × exp(+ik1x− iωt)× exp

(

−(x− u1t)
2

2(u1h̄/ǫ)2

)

+ B1 × exp(−ik1x− iωt)× exp

(

−(x+ u1t)
2

2(u1h̄/ǫ)2

)

, (27)

for x→ +∞ : ψwp(x, t) = A2 × exp(+ik2x− iωt)× exp

(

−(x− u2t)
2

2(u2h̄/ǫ)2

)

+ B2 × exp(−ik2x− iωt)× exp

(

−(x+ u2t)
2

2(u2h̄/ǫ)2

)

. (28)

8



Altogether, this seems like 2 wave packets in each asymptotic region, but but actually each

such wave packet shows up in the appropriate asymptotic region only for the very early or

very late time. Specifically:

the wave packet centered at x = +u1t is the x→ −∞ region only for t→ −∞ ,

the wave packet centered at x = −u1t is the x→ −∞ region only for t→ +∞ ,

the wave packet centered at x = +u2t is the x→ +∞ region only for t→ +∞ ,

the wave packet centered at x = −u2t is the x→ +∞ region only for t→ −∞ .

(29)

Reorganizing this info by t rather than by x, we have:

• At the very early times t → −∞, we have two incoming wave packets: a packet

of amplitude A1 at the left end and moving right at velocity +u1, and a packet of

amplitude B2 at the right and moving left at velocity −u2:

A1 B2 (30)

• At the very late times t → +∞, we have two outgoing wave packets: a packet of

amplitude B1 at the left end and moving further left at velocity −u1, and a packet of

amplitude A2 at the right end and moving further right at velocity +u2:

B1 A2 (31)

Physically, a particle initially coming from the left side can either be reflected back to the

left or continue moving to the right. Likewise, a particle initially coming from the right can

either be reflected back to the right or continue moving to the left. And a generic solution

to the Schrödinger equation allows for an arbitrary superposition of these two scenarios,

although in most setups the initial particles come from one side only, usually from the left.
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In such a set up,

A1 = amplitude of the incident wave packet,

B1 = amplitude of the reflected wave packet,

A2 = amplitude of the transmitted wave packet,

B2 = 0.

(32)

Consequently, an incident particle coming from the left is reflected back to the left with

probability

R =
〈refl|refl〉
〈inc|inc〉 =

|B1|2
|A1|2

(33)

or is transmitted to the right with probability

T =
〈trans|trans〉
〈inc|inc〉 =

k2
k1

× |A2|2
|A1|2

, (34)

where the k2/k1 factor comes from the different widths of the incident and the transmitted

wave packets. Indeed, for a wave packet of the form

ψ(x, t) = C × exp(±ikx − iωt)× exp

(

−(x∓ ut)2

2(uh̄/ǫ)2

)

(35)

we have

〈wp|wp〉 =

∫

dx |ψ|2 = |C|2×
∫

dx exp

(

−(x∓ ut)2

(uh̄/ǫ)2

)

= |C|2×
√
π
uh̄

ǫ
=

√
πh̄2

M
×k×|C|2,

(36)

hence

〈trans|trans〉
〈inc|inc〉 =

k2|A2|2
k1|A1|2

. (37)

At this point, we have learned how to interpret the wave-packet solutions in terms of the

reflection and transmission probabilities, AKA reflection and transmission coefficients. But

the amplitudes A1, . . . ultimately come from the stationary-state solutions ψE(x), so let’s

learn how to calculate them. The basic algorithm is as follows:
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1. Write a general solution ψE(x) of the Schrödinger equation for E > V (−∞), V (+∞)

and spell them out at all x.

2. Take the x→ ±∞ limit of this general solution: It should have form

for x→ −∞ : ψE(x) = A1 × e+ik1x + B1 × e−ik1x,

for x → +∞ : ψE(x) = A2 × e+ik2x + B2 × e−ik2x,
(38)

where the 4 coefficients A1, B1, A2, B2 are related by two linear equations. Spell out

these linear equations.

3. Add another linear equation B2 = 0 since the incident particles come only from the

left side. Then solve all these linear equations for the ratios A2/A1 and B1/A1.

4. Given these ratios, the reflection and the transmission probabilities are

R =
|B1|2
|A1|2

, T =
k2
k1

× |A2|2
|A1|2

. (39)

Make sure these 2 probabilities add up to R+ T = 1; if they do not, you have made a

mistake.

Example: Potential Step

For a simple example of calculating the transmission and the reflection probabilities,

consider the step potential

V1

V2

x

V

V (x) =

{

V1 for x < 0,

V2 for x > 0.
(40)

For E > V2 > V1, the exact solution ψE(x) of the Schrödinger equation has general form

∀x < 0 : ψE(x) = A1 × e+ik1x + B1 × e−ik1x,

∀x > 0 : ψE(x) = A2 × e+ik2x + B2 × e−ik2x,
(41)

11



for

k1,2 =
1

h̄

√

2M(E − V1,2) . (42)

For the step potential, the relations between the coefficients A1, B1 for x < 0 and A2, B2 for

x > 0 follow continuity rules for the wave functions:

• Rule 1: regardless of any discontinuities — or even singularities — of the potential

V (x), the wave-function ψ(x) is always a continuous function of x at all x.

• Rule 2: at all points where the potential V (x) is finite — even if it’s discontinuous, —

the first derivative ψ′(x) of the wave-function remains continuous.

Proof of the continuity rules:

First, any (normalizable) state with a finite expectation value of the kinetic energy must

have a continuous wave-function ψ(x). Indeed,

〈ψ| Ĥkin |ψ〉 =

∫

dxψ∗(x)× −h̄2
2M

ψ′′(x) = +
h̄2

2M

∫

dx |ψ′(x)|2, (43)

so to keep this (expectation value of) the kinetic energy finite, the derivative ψ′(x) may

not have any singularities worse than
√

δ(x− x0). In particular, it may not have δ(x− x0)

singularities which would obtain from any discontinuity of the wave-function ψ(x) itself.

If the state |ψ〉 is un-normalizable due to the behavior of its wave-function at x → ±∞
rather than any singularities at finite x, we should regulate the wave function’s behavior at

infinity — for example, by multiplying it by a exp(−αx2) factor with a small α — in a way

that does not affect its continuity or discontinuity at finite x. Again, a finite expectation

value of the kinetic energy requires a continuous wave-function.

Note that this argument does not care about the potential V (x), and it does not care

if the state |ψ〉 is a stationary state or not, all it care is the finite expectation value of the

kinetic energy. But any stationary state with a finite net energy must have a finite 〈Hkin〉,
so all such states have continuous wave-functions ψ(x), regardless of any discontinuities of

the potential V (x). This completes the proof of the continuity rule#1.
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The second continuity rule applies only to the stationary states, so let the wave-function

ψ(x) obey the Schrödinger equation

ψ′′(x) =
2M

h̄2
(

V (x)−E
)

× ψ(x). (44)

On the RHS here, the ψ(x) factor is finite at all x, so as long as the potential V (x) is

finite, the second derivative on the LHS must also be finite. Note: if V (x) is finite but

discontinuous at some point, then ψ′′(x) would also be discontinuous at that point, but as

long as the potential does not jump all the way to infinity, the second derivative would have

only a finite discontinuity. Consequently, the first derivative ψ′(x) must be differentiable —

and hence continuous — at all x. Quod erat demonstrandum.

Now let’s apply the continuity rules to the step potential. For the wave function (41),

the limits of the wave function and its derivative for x→ 0 from the left and from the right

are as follows:

for x→ −0 : ψ → A1 + B1, ψ′ → ik1A1 − ik1B1,

for x → +0 : ψ → A2 + B2, ψ′ → ik2A2 − ik2B2,
(45)

hence the the continuity rules at x = 0 impose 2 linear relations between the coefficients

A1, B1, A2, B2, namely

A1 + B1 = A2 + B2 ,

ik(A1 −B1) = ik2(A2 − B2).
(46)

Adding another linear equation B2 = 0 — the incident wave comes from the left — we get

A1 + B1 = A2 ,

A1 − B1 =
k2
k1

×A2 ,
(47)

hence adding and subtracting these 2 equations gives us

2A1 =

(

1 +
k2
k1

)

A2 , 2B1 =

(

1− k2
k1

)

A2 , (48)
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and therefore

A2

A1
=

2k1
k1 + k2

,
B1

A1
=

k1 − k2
k1 + k2

. (49)

Finally, the reflection coefficient obtains as

R =

∣

∣

∣

∣

B1

A1

∣

∣

∣

∣

2

=
(k1 − k2)

2

(k1 + k2)2
, (50)

while the transmission coefficient obtains as

T =
k2
k1

×
∣

∣

∣

∣

A2

A1

∣

∣

∣

∣

2

=
4k1k2

(k1 + k2)2
. (51)

By inspection,

R + T =
(k1 − k2)

2 + 4k1k2(k1 + k2)
2

(k1 + k2)2
= 1, (52)

so the net probability of reflection or transmission is indeed 1.

Total reflection

Finally, let’s consider the non-degenerate continuous spectrum of unbound states with

V < E at one end but V > E at the other end. For the sake of definiteness, let V (−∞) <

E < V (+∞). In this case, a general solution of the Schrödinger equation behaves at x → ±∞
as

for x→ −∞ : ψE(x) = A1 × e+ik1x + B1 × e−ik1x,

for x→ +∞ : ψE(x) = A2 × e−κx + B2 × e+κ2x,
(53)

where

h̄k1 =
√

2M(E − V (−∞)), h̄κ2 =
√

2M(V (+∞)− E), (54)

and again there are two linear relations between the coefficients A1, B1, A2, B2. But this time,

only the solutions with B2 = 0 are physical. Also, the A2 amplitude belongs to the evanescent

wave which decays for x → +∞ rather than to the transmitted wave. Consequently, an
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incident particle coming from the left must be reflected back to the left with probability = 1,

so we should have

R =

∣

∣

∣

∣

B1

A1

∣

∣

∣

∣

2

= 1. (55)

As a simple example, let’s go back to the step potential but now for energies V1 < E < V2.

This time, the exact solution ψE(x) of the Schrödinger equation has general form

∀x < 0 : ψE(x) = A1 × e+ik1x + B1 × e−ik1x,

∀x > 0 : ψE(x) = A2 × e−κ2x + B2 × e+κ2x,
(56)

for

h̄k1 =
√

2M(E − V1), h̄κ2 =
√

2M(V2 −E) . (57)

Clearly, this solution is the analytic continuation of the solution (41) from E > V2 to E < V2

by means of turning a real k2 into imaginary iκ2. Moreover, the continuity rules at x = 0

obtain by via the same analytic continuation to

A1 + B1 = A2 + B2 ,

ik1A1 − ik1B1 = −κ2A2 + κ2B2 ,
(58)

and the third linear constraint B2 = 0 also has the same form. Consequently, the solutions

to these linear equations also obtain by simply plugging iκ2 for the k2, thus

A2

A1
=

2k1
k1 + iκ2

,
B1

A1
=

k1 − iκ2
k1 + iκ2

. (59)

Finally, the reflection probability obtains as

R =

∣

∣

∣

∣

k1 − iκ2
k1 + iκ2

∣

∣

∣

∣

2

, (60)

which indeed evaluates to 1 for any real k1 and real κ2.
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