
Quantizing Classical Mechanics

Lagrangian and Hamiltonian Classical Mechanics

Before I tell you how to quantize a classical mechanical system, let me remind you

how the classical mechanics works in the Lagrangian or the Hamiltonian formulations. For

simplicity, I’ll focus on systems without any friction or dissipative forces, so the energy

flows between the bodies we are interested in but does not get lost to heat or other non-

mechanical forms. For such systems, the Lagrangian or the Hamiltonian formulations of

mechanics are mathematically equivalent to the original Newtonian formulations, but they

are more convenient for describing constrained motion like a pendulum hanging from the

bottom of another pendulum, or a body sliding off another moving body. Indeed, the

Lagrangian or the Hamiltonian description of such systems allows non-Cartesian coordinates

which resolve all the constrains and yields the equations of motion for any such coordinates

without bothering to calculate the normal forces between the bodies in contact. OOH, the

Newtonian description is designed for the Cartesian coordinates of all the bodies and involve

calculating all the forces, including the normal forces.

Lagrangian formulation

Consider a system described by some N independent dynamical variables (q1, . . . , qN ),

for example 3 coordinates (x, y, z) of some moving particle, or 3n coordinates of n interacting

particles. The Lagrangian description starts with the Lagrangian function

L(q1, . . . , qN ; q̇1, . . . , q̇N ) (1)

of all the dynamical variables qi and their time derivatives (velocities) q̇i = dqi/dt. Typically

L = Ekinetic − Epotential

such as L =
n∑

i=1

mi

2
ẋ2i − V (x1, . . . ,xn).

(2)

Then for any conceivable path
(
q1(t), . . . , qN (t)

)
through the coordinate space, we define the
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action integral

S[all qi(t) at all t] =

tfinish∫
tstart

dt L
(
q1(t), . . . , qN (t); q̇1(t), . . . , q̇N (t)

)
. (3)

Note: while the Lagrangian is an ordinary function of 2N arguments, the action is a func-

tional of the entire history of motion, i.e. of N whole functions qi(t) rather than of their

values at some particular point of time.

The action functional (3) is defined for any path
(
q1(t), . . . , qN (t)

)
, regardless of whether

it obeys the Newton laws or does not bother; even a completely random drunkard’s walk has

a well-defined action. But the least action principle states that the path
(
q1(t), . . . , qN (t)

)
which obeys the Laws of Motion has the least action among all differentiable paths starting at

the same point (q1, . . . , qN )1 at the initial time t1 and finishing at the same point (q1, . . . , qN )2

at the final time t2.

Formally, minimizing the action functional is the matter of variational calculus: We allow

for infinitesimal variations qi(t) → qi(t) + δqi(t) and then demand that the first variation

δS must vanish for all δqi(t), which eventually translates to the differential equations for

the qi(t). Let me skip this step and simply present you with the resulting Euler–Lagrange

equations

∀i = 1, . . . , N :
d

dt

(
∂L

∂q̇i
@t

)
=

∂L

∂qi
@t. (4)

For example, for a single particle with the Lagrangian

L =
m

2
ẋ2 − V (x) (5)

we have

∂L

∂ẋi
= mẋi ,

∂L

∂xi
= −∂V

∂xi
, (6)

so the Euler–Lagrange equation (4) becomes

d

dt
(mẋi) = −∂V

∂xi
, (7)
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or in vector notations

d

dt
(mẋ) = −∇V (x) = F(x). (8)

The last formula here is the good old Second Law of Newton for the potential force F = −∇V ,

and that’s why we have started with the Lagrangian (5) in the first place.

Hamiltonian formulation

In the Lagrangian formulation, the Euler–Lagrange equations are second-order differen-

tial equations, and there is one such equation for each independent coordinate qi(t). The

Hamiltonian formulation doubles the number of variables: besides the N position variables

qi(t) there are also N canonical momenta pi(t), and all these 2N variables are subject to 2N

first-order differential equations. Here is how this works:

1. Given N position variables (q1, . . . , qN ) and the Lagrangian L(q1, . . . , qN ; q̇1, . . . , q̇N ),

we start by defining the canonical momentum pi for each position qi according to

pi
def
=

∂L

∂q̇i
〈〈 at fixed qj and q̇j 6=i 〉〉. (9)

2. Second, we calculate the net energy of the system H as

H =
N∑
i=1

piq̇i − L. (10)

3. Third, we change independent variables from the velocities to the momenta. Thus, we

treat eq. (9) as equations for the velocities q̇i in terms of the given momenta pi, and

solve these equations. This gives us the velocities q̇i as functions of the momenta pi

(and perhaps also of the coordinates qi).

4. Fourth, we plug these functions into eq. (10) and rewrite the energy H as a function

H(q, p) of positions and canonical momenta rather than positions and velocities. This

function is called the Hamiltonian.
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5. Given the Hamiltonian function H(q1, . . . , qN ; p1, . . . pN ), the time-dependence of all

the positions and all the momenta is governed by the first-order Hamilton equations

∀i = 1, . . . , N :
dqi
dt

= +
∂H(q, p)

∂pi
,

dpi
dt

= −∂H(q, p)

∂qi
. (11)

As a simple example, let’s go back to the single 3d particle in the potential V (x),

L =
m

2
v̇2 − V (x) for v

def
= ẋ =

dx

dt
. (5)

For this system, the canonical momentum p is the usual momentum mv, indeed

pi =
∂L

∂vi
= mvi =⇒ p = mv, (12)

hence

H = p · v − L = mv · v − mv2

2
+ V (x) = +

mv2

2
+ V (x), (13)

or in terms of positions and momenta

H(x,p) = V (x) +
p2

2m
. (14)

Consequently, the Hamilton equations (11) become

dx

dt
= +

∂H

∂p
=

p

m
,

dp

dt
= −∂H

∂x
= −∇V (x) = +F(x),

(15)

which together reproduce the good old Second Law of Newton.
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Charged particle example

As a more interesting example, consider a charged particle in electric and magnetic fields.

For simplicity, let’s assume a non-relativistic particle of charge Q without any build-in spin

or magnetic moment. Then its Lagrangian is

L(x,v) =
mv2

2
− QΦ(x) +

Q

c
v ·A(x) (16)

where Φ(x) is the scalar electric potential, A(x) is the vector magnetic potential (in Gauss

units), and both potentials are evaluated at the particle’s location x. Note that the third

term here — the magnetic term — depends on both the velocity and the position of the

particle.

Let me skip the Euler–Lagrange equation for the charged particle and go directly to the

Hamiltonian formulation. First of all, the canonical momentum p of the charged particle is

different from its usual kinematic momentum ~π = mv! Instead,

p
def
=

∂L

∂v
= mv +

Q

c
A(x). (17)

Next, the energy of the charged particle is

H = p · v − L

= mv · v +
Q

c
A(x) · v − mv2

2
+ QΦ(x) − Q

c
A(x) · v

= +
mv2

2
+ QΦ(x).

(18)

At first blush this energy seems to be independent of the vector potential A and hence of the

magnetic field. However, when we re-express this energy in terms of the canonical momentum

p rather than velocity or the kinematic momentum ~π, we end up with a Hamiltonian which

does depend on A. Specifically,

H = +
~π2

2m
+ QΦ(x) =

1

2m

(
p − Q

c
A(x)

)2

+ QΦ(x). (19)
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Consequently, the Hamilton equations for the charged particle are

dx

dt
= +

∂H

∂p
=

1

m

(
p − Q

c
A(x)

)
=

~π

m
(20)

and

dp

dt
= −∂H

∂x
= −Q∇Φ(x) +

Q

mc

(
pj −

Q

c
Aj(x)

)
∇Aj(x). (21)

To make physical sense of of this equation, let’s restate it in terms of the kinematic momen-

tum

~π = mv = p − Q

c
A(x) (cf. eq. (20)). (22)

In terms of ~π(t), eq. (21) becomes

d

dt

(
~π(t) +

Q

c
A(x(t))

)
= −Q∇Φ(x) +

Q

mc
πj∇Aj(x). (23)

On the LHS here, the vector potential A(x(t)) is evaluated at the position x(t) of the moving

particle, so it depends on time due to dx/dt even in a static magnetic field,

d

dt
A(x(t)) = vj

∂A

∂xj
. (24)

And in a time-dependent magnetic field, we get an extra term due to time-dependence of A

at a fixed location, thus

d

dt
A(x(t), t) =

∂A

∂t
+ vj

∂A

∂xj
. (25)

Plugging this time derivative into eq. (23), we get

d~π

dt
+

Q

c

∂A

∂t
+

Q

c
vj
∂A

∂xj
= −Q∇Φ +

Q

c

(πj
m

= vj

)
∇Aj , (26)

and hence

d~π

dt
= Q

(
−∇Φ − 1

c

∂A

∂t

)
+

Q

c

(
vj∇Aj − vj∇jA

)
. (27)

On the RHS here, the first term is the electric force QE, indeed

−∇Φ(x, t) − 1

c

∂A(x, t)

∂t
= E(x, t) (28)

is the electric field. As to the second term in eq. (27), the expression inside (· · ·) amounts
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to v ×B, indeed(
vj∇Aj − vj∇jA

)
i

= vj
(
∇iAj − ∇jAi

)
= vj

(
δi`δjm − δimδj`)∇`Am = vj εijkεk`m∇`Am

= vj εijk

(
εk`m∇`Am =

(
∇×A

)
k

= Bk

)
= εijkvjBk = (v ×B)i ,

(29)

so the second term in (27) is the Lorentz force

FL =
Q

c
v ×B(x, t). (30)

Altogether, eq. (27) amounts to

d~π

dt
= QE(x, t) +

Q

c
v ×B(x, t). (31)

In other words, the two Hamilton equations (20) and (21) amount to the Newton Law for

the charged particle subject to the electric an magnetic forces,

d

dt
(mv) = FEM = QE(x, t) +

Q

c
v ×B(x, t). (32)

Experimentally, we know that the equation of motion (32) is correct. And that’s how

we know that we have started with the correct Lagrangian (16) and Hamiltonian (19).

Quantization

There are two ways of turning a classical mechanical system into a quantum system or

a classical field theory into a quantum field theory:

1. The canonical quantization. One starts with the Hamiltonian formulation of the

classical system in terms ‘position’ variables qi(t), the canonical momenta pi(t), and the

Hamilton function H(q, p). Then one turns the positions and the momenta into linear

operators q̂i and p̂i in some Hilbert space and constructs the Hamiltonian operator

Ĥ = H(q̂, p̂) which governs the time evolution of the system.
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2. The functional quantization also known as the path integral method. In this method

one skips over the operators and calculates the quantum evolution amplitudes from

the classical action functional by integrating over all differentiable trajectories from

the initial point to the final point,

U(q1@t1 → q2@t2) =

q(t2)=q2∫∫∫
q(t1)=q1

D[q(t)] exp(iS[q(t)]/h̄). (33)

In this class we shall focus on the canonical quantization. But I shall spend a lecture or

two — or more likely an extra lecture or two – introducing the path integrals.

Canonical Quantization of Mechanics

In Quantum Mechanics, the classical position and momentum variables qi(t) and pi(t)

become linear operators q̂i and p̂i in some Hilbert space. For systems of only a few degrees of

freedom this Hilbert space is usually defined in terms of wave functions ψ(q1, . . . , qN ) obeying

suitable integrability conditions, but for our purposes we do not care about the gory details

of this Hilbert space. Instead, let’s focus on the canonical commutation relations between

the position and the momentum operators: however you realize those operators, they must

obey

[q̂i, q̂j ] = 0, [p̂i, p̂j ] = 0, [q̂i, p̂j ] = ih̄δij . (34)

Note that the momentum operators in these relations are the canonical momenta whose

classical counterparts obtain from eq. (9), and for other kinds of momenta the commutation

relations might be different. For example, consider the kinematic momentum ~π = mv of a

charged particle; defining its quantum counterpart as

~̂π
def
= p̂ − Q

c
A(x̂), (35)

we get

[x̂i, x̂j ] = 0 and [x̂i, π̂j ] = ih̄δij (36)
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but

[π̂i, π̂j ] =
ih̄Q

c
εijkBk(x̂) 6= 0. (37)

Indeed,

[π̂i, π̂j ] = −Q
c

[Ai(x̂), π̂j ] −
Q

c
[π̂i, Aj(x̂)]

= −ih̄Q
c

(∇jAi(x̂)) +
ih̄Q

c
(∇iAj(x̂))

=
ih̄Q

c

(
∇iAj −∇jAi

)
(38)

where

∇iAj − ∇jAi = εijkεk`m∇`Am

= εijk
(
∇×A

)
k

= εijkBk(x̂). (39)

In the Hamiltonian formalism, the kinematic momentum ~π is an example of a dependent

variable, i.e., a function of the positions and the canonical momentum. In general, a classical

system may have all kinds of interesting dependent variables

F (t) = F(q1, . . . , qN ; p1, . . . , pN )@(time = t), (40)

and in the quantum system all such variables become operators in the Hilbert space con-

structed as

F̂ = F(q̂1, . . . , q̂N ; p̂1, . . . , p̂N ) (41)

modulo operator ordering. That is, if the same term in F involves both position and mo-

mentum operators, the order of their product is ambiguous; it has to be second-guessed or

determined experimentally. More generally,

F̂ = F(q̂1, . . . , q̂N ; p̂1, . . . , p̂N ) + O(h̄) (42)

where the order–h̄ correction cannot be determined from the classical theory alone.
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The most important dependent variable of any classical system is the Hamiltonian

H(q, p); like the other dependent variables, its quantum counterpart is the Hamiltonian

operator

Ĥ = H(q̂, p̂) + O(h̄) (43)

where the O(h̄) correction stems from the ordering ambiguities of a function of both position

and momentum operators. For the simple classical Hamiltonians like

H(q, p) = V (q) + K(p), (44)

their quantum counterparts are

Ĥ = V̂ + K̂ = V (q̂) + K(p̂) (45)

without any quantum ambiguities (and hence without the O(h̄) corrections), but in more

general cases there are terms involving both positions and momenta so we must resolve the

ordering ambiguity. There are no standard recipes this resolution, but there is a general

rule: Whatever you do, the Hamiltonian operator Ĥ you build must be Hermitian.

The Hamiltonian operator determines the time evolution of the quantum system, but the

specific nature of this time evolution is different in different pictures of Quantum Mechanics.

In the Schrödinger picture the operators are time independent. That is, they act on a wave

function in the same way at all times, for example

x̂ψ(x) = xψ(x) and p̂ψ(x) = −ih̄∇̄ψ(x). (46)

On the other hand, the quantum states evolve with time according to the Schrödinger equa-

tion

ih̄
d

dt
|ψ〉 = Ĥ |ψ〉 . (47)

In the Heisenberg picture, it’s the states which are time independent, same |ψ〉 (t) at all t;
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on the other hand, the operators evolve with time according to the Heisenberg equation

ih̄
d

dt
F̂ (t) = [F̂ , Ĥ] = F̂ Ĥ − ĤF̂ . (48)

Fortunately, the expectation values of the operators have the same time dependence in all

pictures; specifically, they obey the Heisenberg–Dirac equations

ih̄
d

dt
〈ψ| F̂ |ψ〉 = 〈ψ| [F̂ , Ĥ] |ψ〉 . (49)

In the Schrödinger picture the canonical commutation relations (34) between position and

momentum operators are time independent, but in the Heisenberg picture those commutation

relations work only at equal times:

for t = t′ : [q̂i(t), q̂j(t
′)] = 0, [p̂i(t), p̂j(t

′)] = 0, [q̂i(t), p̂j(t
′)] = ih̄δij , (50)

but for t 6= t′ [q̂i(t), q̂j(t
′)] = ??, [p̂i(t), p̂j(t

′)] = ??, [q̂i(t), p̂j(t
′)] = ?? . (51)

For example, for a harmonic oscillator solving the Heisenberg equations gives us

q̂(t) = q̂(0)×cos(ωt) +
p̂(0)

mω
×sin(ωt), p̂(t) = p̂(0)×cos(ωt) − mωq̂(0)×sin(ωt), (52)

and therefore

[q̂(t1), q̂(t2)] =
ih̄

mω
× sin(ω∆t),

[p̂(t1), p̂(t2)] = ih̄mω × sin(ω∆t),

[q̂(t1), p̂(t2)] = ih̄× cos(ω∆t).

(53)
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Poisson Brackets and Commutator Brackets

Both classical mechanics and quantum mechanics use bi-linear brackets of variables with

similar algebraic properties. In classical mechanics the variables are functions of the canonical

coordinates and momenta, and the Poisson bracket of two such variables A(q, p) and B(q, p)

are defined as

[A,B]P
def
=
∑
i

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
. (54)

In quantum mechanics the variables are linear operators in some Hilbert space, and the

commutator bracket of two operators is

[A,B]C
def
= AB − BA. (55)

Both types of brackets have similar algebraic properties:

1. Linearity: [α1A1+α2A2, B] = α1[A1, B]+α2[A2, B] and [A, β1B1+β2B2] = β1[A,B1]+

β2[A,B2].

2. Antisymmetry: [A,B] = −[B,A].

3. Leibniz rules: [AB,C] = A[B,C] + [A,C]B and [A,BC] = B[A,C] + [A,B]C.

4. Jacobi Identity: [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

Also, both types of brackets involving the Hamiltonian can be used to describe the time

dependence of the classical/quantum variables. In classical mechanics,

d

dt
A(q, p) =

∑
i

(
∂A

∂qi

dqi
dt

+
∂A

∂pi

dpi
dt

)
〈〈 by the Hamilton equations 〉〉

=
∑
i

(
∂A

∂qi

∂H

∂pi
− ∂A

∂pi

∂H

∂qi

)
≡ [A,H]P ,

(56)

while in quantum mechanics we have the Heisenberg–Dirac equation

ih̄
d

dt
〈ψ| Â |ψ〉 = 〈ψ| [Â, Ĥ]C |ψ〉 , (57)
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which in the Heisenberg picture of QM becomes simply

ih̄
d

dt
Â = [Â, Ĥ]C . (58)

The similarity between the classical Poisson brackets and the quantum commutator

brackets stems from the following theorem: Once we generalize the Poisson brackets to the

non-commuting variables of quantum mechanics, they become proportional to the commu-

tator brackets,

[Â, B̂]P =
ÂB̂ − B̂Â

ih̄
. (59)

Mathematically speaking: for any non-commutative but associative variables, any bracket

[A,B] with the algebraic properties 1–4 is proportional to the commutator bracket:

[A,B] = c(AB −BA) (60)

for a universal constant c (same c for all variables); in Physics c = 1/ih̄.

Proof: Take any 4 variables A,B, U, V and calculate [AU,BV ] using the Leibniz rules, first

for the AU and then for the BV :

[AU,BV ] = A[U,BV ] + [A,BV ]U

= AB[U, V ] + A[U,B]V + B[A, V ]U + [A,B]V U.
(61)

OOH, if we use the two Leibniz rules in the opposite order we get a different expression

[AU,BV ] = B[AU, V ] + [AU,B]V

= BA[U, V ] + B[A, V ]U + A[U,B]V + [A,B]UV.
(62)

To make sure the two expressions are equal to each other we need

AB[U, V ] + [A,B]V U = BA[U, V ] + [A,B]UV

‖
⇓

(AB −BA)[U, V ] = [A,B](UV − V U)

‖
⇓

[U, V ](UV − V U)−1 = (AB −BA)−1[A,B]

(63)

On the last line here, the LHS depends only on the U and V while the RHS depends only
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on the A and B, and the only way a relation like that can work for any unrelated variables

is if the ratios on both sides of equations are equal to the same universal constant c, thus

[A,B] = c(AB −BA) and [U, V ] = c(UV − V U). (64)

Quod erat demonstrandum.

Thanks to this theorem, we may quantize a classical theory described in terms of non-

canonical variables ξ1, . . . , ξ2N (instead of the canonical q1, . . . , qN and p1, . . . , pN ) as long

as we have a consistent algebra of Poisson brackets. (Their definition would be different

from eqs. (54), but they have to obey the algebraic rules 1–4.) Given the classical Poisson

algebra, the quantization maps it to the commutator algebra of operators in some Hilbert

space. That is, if classically [A,B]P = C, then the corresponding operators in quantum

mechanics should obey [Â, B̂] = ih̄Ĉ.

In particular, if we do have classical canonical variables qi and pi, then

[qi, qj ]P = 0, [pi, pj ]P = 0, [qi, pj ]P = δij , (65)

so the corresponding quantum operators should obey the canonical commutation relations

[q̂i, q̂j ]C = 0, [p̂i, p̂j ]C = 0, [q̂i, p̂j ]C = ih̄δij . (66)
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