
PHY–389K Homework set #2. Due September 7, 2023.

The same infinite-dimensional Hilbert space can have both discrete and continuous bases.

For example, the Hilbert space of a quantum particle moving in one space dimension has a

continuous position basis {|x〉} and an equally continuous momentum basis {|p〉}. However,

it also may have discrete bases, and the purpose of this homework is to explicitly construct

a discrete basis {|n〉} (n = 0, 1, . . .) for this Hilbert space.

The most common way to construct a basis of a Hilbert space involves eigenstates of some

hermitian operator. In this homework we shall use the Hamiltonian operator of a one-

dimensional harmonic oscillator:

Ĥ =
1

2m
P̂ 2 +

mω2

2
X̂2 (1)

where P̂ and X̂ are respectively the momentum and the position operators.

1. Let’s start by solving the eigenvalue equation Ĥ |n〉 = En |n〉 and writing down the position-

basis wave-functions ψn(x) of the eigenstates |n〉. Our goal in this problem is to show that

En = h̄ω(n+ 1
2) for n = 0, 1, 2, . . . (2)

while

〈x|n〉 = ψn(x) = CnHn(αx) exp(−1
2α

2x2) (3)

where

α =

√
mω

h̄
, (4)

Cn is some normalization factor keeping 〈n|n〉 = 1, and Hn is the nth Hermite polynomial,

to be explained below.

(a) Spell out the eigenvalue equation Ĥ |n〉 = En |n〉 in the coordinate basis, i.e. in terms

of the wave-function ψn(x).

Then verify that the the ground state — with ψ0(x) = C0 exp(−1
2α

2x2) since H0 ≡ 1

— indeed obeys the eigenvalue equation for E0 = 1
2 h̄ω.
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The Hermite polynomials Hn(ξ) are defined as

Hn(ξ)
def
= (−1)ne+ξ

2

× dn

dξn
e−ξ

2

. (5)

Each Hn(ξ) is a polynomial of degree n, and it can be recursively constructed using

Hn(ξ) = 1, Hn+1(ξ) = 2ξ ×Hn(ξ) − d

dξ
Hn(ξ). (6)

(b) Verify this recursion relation. Also, let

f (n)(ξ) = (−1)ne−ξ
2

×Hn(x) =
dn

dξn
e−ξ

2

(7)

and prove another recursion relation

f (n+2)(ξ) + 2ξf (n+1)(ξ) + 2(n+ 1)f (n)(ξ) = 0 (8)

by induction in n.

(c) Verify that the wave-functions (3) are indeed eigenfunctions of the Hamiltonian (1) for

the eigenvalues En = h̄ω(n+ 1
2).

Hint: write the wave-functions ψn(x) in terms of f (n)(ξ = αx), rewrite the eigenvalue

equation as a differential equation for the f (n)(ξ), and use the recursion relation (8).

2. Eigenstates of any hermitian operator that corresponds to different eigenvalues are guaran-

teed to be orthogonal to each other (this is a theorem).

(a) Verify that the quantum states |n〉 described by the wave functions (3) are indeed

orthogonal to each other:

〈n|m〉 ≡
∫
dxΨ∗n(x) Ψm(x) = 0 for any n 6= m. (9)

Hint: Use eq. (5) and the fact that Hn is a polynomial of degree n, so for m > n the

mth derivative of the Hn must vanish.
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(b) Show that the states |n〉 are normalized, i.e. 〈n|n〉 = 1, provided we set

C2
n =

1

2nn!
× α√

π
. (10)

Altogether, the quantum states |n〉, n = 0, 1, . . . form an orthonormal set:

〈n|m〉 ≡
∫
dxΨ∗n(x) Ψm(x) = δn,m , n,m = 0, 1, 2, . . . . (11)

3. As discussed in class, an infinite orthonormal set of vectors in a Hilbert space H does not

necessary make a complete basis. The purpose of this problem is to verify that the basis

{|n〉} constructed in the first problem is indeed complete, that is, that any vector of H is a

linear combination of the |n〉.

(a) Prove the Lemma:

Ψn(x) = Cn ×
(−i)n

√
π

αn+1
× exp

(
+1

2α
2x2
)
×

+∞∫
−∞

dk

2π
kn × exp

(
ixk − k2

4α2

)
. (12)

(b) Use the Lemma (12) to show that

∞∑
n=0

Ψ∗n(x′)Ψn(x′′) = δ(x′ − x′′). (13)

Hints: Use eq. (12) for both Ψ∗n(x′) and Ψn(x′′) and sum the series before taking the

integrals. The sum should have an exponential form, so combine all the exponents

together. The net exponent should have form E(k′, k′′) = E1(k′ − k′′) + E2(k′′), so

changing the integration variable k′ to q = k′ − k′′ should factorize the double integral

into a product of
∫
dq and

∫
dk′′.
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(c) Finally, show that the formula (13) implies that for any wave-function Φ(x),

∑
n

〈n|Φ〉 Ψn(x) = Φ(x) (14)

and hence for any vector |Φ〉 ∈ H,

∑
n

|n〉 〈n|Φ〉 = |Φ〉 . (15)

In other words, eq. (13) implies that the set {|n〉} (for n = 0, 1, . . .) is a complete basis

of the Hilbert space.
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