
PHY–389K Homework set #4. Due September 21, 2023.

1. Let’s start with a problem about unitarity of integral operators. Specifically, consider the

evolution operator Û(t, t0) of a quantum particle and its matrix elements — or rather its

kernel —

U(x1, t1;x0, t0) = 〈x1| Û(t1, t0) |x0〉 (1)

in the position basis. This kernel is called the evolution kernel or the propagation amplitude:

Physically, it’s the amplitude of the particle which was located at point x0 at tome t0 to

be found at point x1 at a later time t1; and it also describes the time evolution (in the

Schrödinger picture) of the particle’s wave-function in the time t1 − t0 according to

ψ(x1, t1) =

∫
d3x0 U(x1, t1;x0, t0)× ψ(x0, t0). (2)

For simplicity, consider the free non-relativistic spinless particle with Hamiltonian

Ĥ =
p̂2

2M
. (3)

(a) The evolution operator for this free particle is diagonal in the momentum basis. Trans-

late it to the position basis and show that

U(x1, t1;x0, t0) =

(
M

2πih̄(t1 − t0)

)3/2

× exp

(
i

h̄

m(x1 − x0)
2

2(t1 − t0)

)
. (4)

(b) Spell out the unitarity conditions Û †Û = Û Û † = 1 in terms of the evolution kernel (1),

specifically in terms of integrals of the form
∫
d3xU∗(· · ·)U(· · ·).

(c) Now verify these conditions for the kernel (4) by explicit integration.
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2. Next, a refresher of the undergraduate-level theory of the orbital angular momentum operator

L̂
def
= x̂× p̂, i . e., L̂i

def
= εijkx̂j p̂k . (5)

It is also a good drill for the use of the canonical commutation relations

[x̂i, x̂j ] = 0, [p̂i, p̂j ] = 0, [x̂i, p̂j ] = ih̄δij (6)

and in 3D index notations.

In this problem you should not use any wave-functions or the way the position and momen-

tum operators act on them. Instead, threat the x̂i and p̂j as abstract Hermitian operators

obeying the commutation relations (6), while the L̂i operators are as defined in eq. (5). Show

that eqs. (5) and (6) lead to:

(a) [x̂i, L̂j ] = ih̄εijkx̂k ;

(b) [p̂i, L̂j ] = ih̄εijkp̂k ;

(c) [L̂i, L̂j ] = ih̄εijkL̂k and therefore L̂× L̂ = ih̄L̂;

(d) [p̂2, L̂] = 0 = [f(r̂), L̂] for any function f of the radius r̂ = (x̂2)1/2;

(e) [L̂, L̂2] = 0;

(f) p̂2 = p̂2r + r̂−2L̂2, where p̂r
def
= 1

2{
x̂i

r , p̂i} (note: p̂r so defined is hermitian).

3. Now, let’s continue the story of the orbital angular momentum L̂ but switch to the wave-

function formalism. In the Cartesian coordinate basis |x, y, z〉, the x̂ and the p̂ operators

act in the usual way on the Ψ(x, y, z). But for some of the operators you have seen in the

previous problem, it’s more convenient to use the spherical coordinate basis |r, θ, φ〉 and

hence wave-functions Ψ(r, θ, φ).

(a) Show that in the spherical coordinate basis, the p̂r operators from the problem 2(f) acts

as

p̂rΨ(r, θ, φ) = −ih̄
(
∂

∂r
+

1

r

)
Ψ(r, θ, φ), (7)

and spell out the action of the p̂2r operator in the same basis.
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(b) In the same basis, spell out the action of the L̂2 operator on the Ψ(r, θ, φ).

Hint: in any coordinate basis p̂2 acts as −h̄2∇2, and any E&M textbook will tell you

how the Laplacian ∇2 acts in the spherical coordinates. Then use the results of the

parts 2(f) and 3(a).

Now let’s apply this knowledge to a spinless particle moving in a central potential V (r). Its

Hamiltonian

Ĥ =
p̂2

2M
+ V (r̂) (8)

commutes with all 3 components L̂i of the angular momentum, but the L̂x, L̂y, L̂z operators

do not commute with each other. As we saw in the previous homework set, this means the

Hamiltonian (8) must have degenerate spectrum. Let’s see how this works in more detail.

In the undergraduate school you should have learned that while you cannot simultaneously

diagonalize all the angular momenta operators, you may simultaneously diagonalize the L̂2

and the L̂z. The common eigenstates of these 2 operators have wave-functions of general

form

Ψ(r, θ, φ) = ψr(r)× Y`,m(θ, φ) (9)

where the radial wave function ψr(r) may be any function of the radius while Y`,m(θ, φ) is a

spherical harmonic; the corresponding eigenvalues are

L2 = h̄2`(`+ 1), Lz = h̄m, (10)

and their spectrum corresponds to integer ` = 0, 1, 2, 3, . . . and

integer m = −`, (1− `), . . . , (`− 1), `.

(c) Argue that the Hamiltonian (8) is block-diagonal in the |r, `,m〉 basis: it’s diagonal

WRT ` and m but not WRT r. On in the wave-function terms, when Ĥ act on the

wave-function of the form (9), it yields

ĤΨ(r, θ, φ) = Y`,m(θ, φ)× Ĥrad(block `,m)ψr(r). (11)

Also, argue that that the radial Hamiltonian Ĥrad for a diagonal block of given ` and m

depends on the ` but not on the m. Hint: use [Ĥ, L̂x] = [Ĥ, L̂y] = 0.
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(d) Finally, show that

Ĥrad(`)ψr(r) = − h̄2

2M

(
d2ψr

dr2
+

2

r

dψr

dr

)
+

(
`(`+ 1)h̄2

2Mr2
+ V (r)

)
ψr(r). (12)

4. In the next homework set#5 you shall learn how to apply the Harmonic oscillator formalism

to the Landau levels of a charged particle moving in a magnetic field. But before we go that

far, we need to learn about the quantum charged particles subject to magnetic fields, and

maybe both magnetic and electric fields. That’s what this problem is about.

A classical charged particle in a magnetic field has canonical momentum

p = mv +
Q

c
A(xparticle) (13)

which is quite different from the usual kinematic momentum ~π = mv, and its classical

Hamiltonian is

H(x,p) =
~π2

2m
=

1

2m

(
p − Q

c
A(x)

)2

. (14)

In quantum mechanics, it’s the canonical momentum operators p̂i (i = x, y, z) which obeys

the usual commutation relations

[x̂i, x̂j ] = 0, [p̂i, p̂j ] = 0, [x̂i, p̂j ] = ih̄δij (15)

so in the coordinate basis they act as p̂iψ(x) = −ih̄(∂/∂xi)ψ(x). On the other hand, the

kinematic momenta

π̂i
def
= p̂i −

Q

c
Ai(x̂, ŷ, ẑ) (16)

act in a more complicated fashion and obey more complicated commutation relations

[x̂i, x̂j ] = 0, [x̂i, π̂j ] = ih̄δij , [π̂i, π̂j ] =
ih̄Q

c
εijkBk(x̂, ŷ, ẑ). (17)

Finally, the Hamiltonian operator Ĥ follows from the classical Hamiltonian (14) as

Ĥ =
~̂π
2

2m
=

1

2m

(
p̂ − Q

c
A(x̂)

)2

. (18)
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(a) Unless you have attended my extra lecture on September 8, read the parts of my notes

on classical mechanics and canonical quantization where I explain eqs. (13) through (18).

Specifically, pages 5–7 where I explain the classical mechanics of a charged particle, and

pages 8–9 where I explain the commutation relations.

(b) Use the commutation relations (17) to derive the Ehrenfest equations for the quantum

charged particle. Specifically, show that

d

dt
〈x̂〉 =

1

m

〈
~̂π
〉

and
d

dt

〈
~̂π
〉

=
Q

2mc

〈
~̂π × B̂− B̂× ~̂π

〉
(19)

where B̂
def
= B(x̂, ŷ, ẑ).

(c) Now let’s subject the particle to both electric and magnetic fields and allow both fields

to be time-dependent, thus time-dependent Hamiltonian

Ĥ(t) = QΦ(x̂, t) +
1

2m
(p̂ − A(x̂, t))2 (20)

Show that in this case, the Ehrenfest equations become

d

dt
〈x̂〉 =

1

m

〈
~̂π
〉

and
d

dt

〈
~̂π
〉

= Q
〈
Ê
〉

+
Q

2mc

〈
~̂π × B̂− B̂× ~̂π

〉
. (21)

Hint: use Heisenberg–Dirac equations for the time-dependent operators, and remember

that in a time-dependent vector potential A(x, t), the kinematic momentum opera-

tor (16) becomes explicitly time-dependent,

∂

∂t
~̂π = −Q

c

∂A

∂t
(x̂, t). (22)
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