
PHY–389K Homework set #5. Due October 5, 2021.

1. Consider a spinless charged particle in a uniform magnetic field B. For simplicity, assume

the particle moves freely in the xy plane but cannot move at all in the z direction, while

the magnetic field is directed along the z axis. As we saw in the previous homework (set#4,

problem 4), the Hamiltonian operator for this particle is

Ĥ =
π̂2
x + π̂2

y

2M
(1)

where

[x̂, ŷ] = 0,

[x̂i, π̂i] = ih̄δij (for i, j = x, y),

[π̂x, π̂y] = i
QBh̄

c
.

(2)

(a) Let

â =

√
c

2h̄|QB|
(
π̂x + i sign(QB) π̂y) (3)

and show that this non-Hermitian operator obeys [â, â†] = 1.

(b) Rewrite the Hamiltonian (1) in terms of the â and â† operators, then show that its

spectrum consists of discrete Landau levels

En = h̄Ω(n+ 1
2), n = 0, 1, 2, . . . (4)

where

Ω =
|QB|
Mc

(5)

is the classical cyclotron frequency of the particle moving in a Larmor circle in the

magnetic field.
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(c) Show that for a classical particle moving in a Larmor circle, the circle’s center is located

at

xc = x +
c

QB
πy , yc = y − c

QB
πx . (6)

(d) Show that the quantum analogues x̂c and ŷc of the center’s coordinate commute with

both π̂x and π̂y and hence with the Hamiltonian Ĥ. In other words, both x̂c and ŷc are

conserved operators.

(e) Show that the x̂c and ŷc do not commute with each other; instead

[x̂c, ŷc] =
−ih̄c
QB

. (7)

(f) Use the commutator (7) to show that each Landau energy level is infinitely degenerate.

Hint: build Harmonic-oscillator-like operators b̂ and b̂† with [b̂, b̂†] = 1 from x̂c and

ŷc, then show that an entire infinite tower of oscillator-like states must exist at every

Landau level.

2. Now let’s learn about the coherent states of a harmonic oscillator.

(a) First, a lemma about functions of â or â† operators. Let f(ξ) be any analytic function

of a complex number ξ and f ′(x) = df/dξ its derivative. Show that

[â, f(â†)] = f ′(â†) and [â†, f(â)] = −f ′(â). (8)

Next, for any complex number ξ we define the coherent state |ξ〉 as

|ξ〉 def
= e−|ξ|

2/2 exp
(
ξâ†
)
|0〉 (9)

where |0〉 = |n = 0〉 is the oscillator’s ground state.

(b) Calculate 〈n|ξ〉 for all n = 0, 1, 2. . . ., then show that the state (9) is normalized, i.e.

〈ξ|ξ〉 = 1.
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The operators â and â† cannot be diagonalized. However, â has an eigen-ket for any complex

eigenvalue while â† has an eigen-bra for any complex eigenvalue. On the other hand, â† has

no eigen-kets at all, while â has no eigen-bras.

(c) Show that the coherent state |ξ〉 is the eigen-ket of â for the eigenvalue ξ; likewise, 〈ξ|
is an eigen-bra of â† for the eigenvalue ξ∗:

â |ξ〉 = ξ |ξ〉 , 〈ξ| â† = ξ∗ 〈ξ| . (10)

Hint: use part (a) to show that â exp(ξâ†) = exp(ξâ†)(â + ξ), then apply both sides of

this equation to |0〉.

(d) Show that â† has no eigen-kets for any complex eigenvalues while â has no eigen-bras.

Hint: show that if â† |ψ〉 = λ |ψ〉 then |ψ〉 is un-normalizable because |〈n|ψ〉|2 increases

with n.

Coming back to the coherent states, in any coherent state ξ, the expectation value of any

normal-ordered product of raising and lowering operators — i.e., a product (â†)m(â)n in

which all raising operators are to the left of all the lowering operators — is simply

〈ξ| (â†)m(â)n |ξ〉 = ξ∗mξn. (11)

(e) Prove this.

A coherent state |ξ〉 does not have a definite energy (except for ξ = 0). However, for the

highly excited coherent state with 〈E〉 � h̄ω, the relative energy uncertainty becomes small,

∆E � 〈E〉.

(f) Calculate 〈E〉 and ∆E in a coherent state ξ.

Hint: prove and use n̂2 = (â†)2(â)2 + n̂, then use eq. (11).

Since the operator â is not Hermitian, its eigen-kets are not orthogonal to each other. Nev-

ertheless, the overlap between 2 coherent states |ξ〉 and |η〉 becomes exponentially small for

large |ξ − η|.

(g) Calculate the overlap and show that |〈η|ξ〉|2 = exp
(
− |ξ − η|2

)
.
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(h) Finally, show that the set of all the coherent states |ξ〉 (for all complex ξ) forms an

over-complete basis of the harmonic oscillator’s Hilbert space,

∫
d2ξ

π
|ξ〉 〈ξ| = 1̂ (12)

where d2ξ = d(<ξ)d(=ξ) = |ξ| d(|ξ|)d(arg ξ).

Hint: calculate the matrix elements 〈m| integral (12) |n〉.

3. Finally, consider the dynamics of coherent states. If the initial state of a harmonic oscillator

is coherent, then it remain a coherent state at all future times, but for a time-dependent

ξ(t), namely

ξ(t) = ξ0 × e−iωt. (13)

(a) Show that the state

|ψ〉 (t) = e−iωt/2 |ξ(t)〉 (14)

where ξ(t) evolves according to eq. (13) obeys the Schrödinger equation

ih̄
d

dt
|ψ〉 (t) = Ĥ |ψ〉 (t). (15)

(b) Calculate the expectation values 〈q̂〉 and 〈p̂〉 of the position and momentum in a coherent

state ξ. Then show that when ξ(t) evolves according to eq. (13), these expectation values

obey the classical equations of motion.

(c) Calculate the uncertainties ∆q and ∆p in a coherent state and show that ∆q×∆p = 1
2 h̄,

the minimum allowed by the Heisenberg’s uncertainty principle.

In an earlier homework set#1 we saw that that the Heisenberg bound is saturated by the

Gaussian wave packets (with real coefficients of −x2 in the exponent). The coherent state

also saturate this bound because they are Gaussian wave packets of this kind.
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(d) Solve the equation (â− ξ) |ψ〉 = 0 in the coordinate basis, and show that the solution is

indeed the Gaussian wave packet

ψ(q) = C × exp

(
−mω

2h̄
× (q − q̄)2 +

ip̄

h̄
× q
)

(16)

where q̄ = 〈ξ| q̂ |ξ〉, p̄ = 〈ξ| p̂ |ξ〉, and C is a constant overall factor.

Note: the magnitude of the constant C obtains from the normalization condition 〈ψ|ψ〉 =

1, but determining the phase of C takes extra information, for example requiring |ψ〉 =

|ξ〉 having exactly the same overall phase as in eq. (9). The correct answer is

C = 4

√
mω

πh̄
× e−ip̄q̄/2h̄, (17)

but deriving this formula is not a part of this homework assignment.

The bottom line is, the best way to see the near-classical oscillations in quantum mechanics

is to look at the coherent states |ξ〉 with ξ(t) = ξ0e
iωt. These states provide for minimal

uncertainties ∆q and δp while the expectation values 〈q〉 (t) and 〈p〉 (t) oscillate in a classical

manner. Also, while the coherent states do not have definite energies, the relative energy

uncertainty becomes small for the highly excited states (cf. problem 2(e)).

By comparison, the stationary states |n〉 do not show any classical-like motion. Indeed, not

only there is no motion at all in a stationary state, but also

〈n| q̂ |n〉 = 〈n| p̂ |n〉 = 0 (18)

while the uncertainties grow with n:

(∆q)2 =
h̄

2mω
×(2n+1), (∆p)2 =

h̄ωm

2
×(2n+1) =⇒ ∆q×∆p = h̄×(1

2 +n). (19)

(e) Verify all these formulae.

5


