
PHY–389K Homework set #9. Due October 26, 2023.

1. This exercise is about the SO(3) group of rotations in three space dimensions.

(a) A vector v rotated through an infinitesimal angle dα around axis n becomes v′ =

v + (dα)n× v. Show that a rotation through a finite angle α results in

v′ = cosαv + sinαn× v + (1− cosα)n(n · v). (1)

Hint: n× n× v = −v + n(n · v) and hence n× n× n× v = −n× v.

(b) Re-express formula (1) as v′i = Rij(α,n)vj and write down the explicit form of the

rotation matrix Rij(n, α) and show that it is an SO(3) matrix — real, orthogonal 3× 3

matrix with determinant det(R) = +1. (Orthogonality is the real-number analogue of

unitarity: An orthogonal matrix satisfies RR> = R>R = 1.)

(c) Optional exercise: Show that any SO(3) matrix R is a rotation matrix R(α,n) for some

angle α and some axis n.

Hint: Show that an SO(3) matrix has eigenvalues (e+iα, e−iα,+1), then identify α as

the rotation angle and the eigenvector for the +1 eigenvalues as the axis of rotations.

In the SO(3) matrix language, the multiplication law for successive rotations is simply the

matrix product R3 = R2R1, or in index terms R
(3)
ik = R

(2)
ij R

(1)
jk . Thus, if we first rotate

through angle α1 around axis n1 and then rotate through angle α2 around axis n2, then the

net effect is the SO(3) matrix

R(α2,n2)R(α1,n1) = R3 = R(α3,n3) for some α3 and n3 , (2)

where the second equality follows from part (c). Alas, calculating the net rotation’s angle

α3 and axis n3 directly from this formula is painfully tedious.

Instead, there is a simpler Cayley–Klein method; originally, it involved quaternions, but later

was rephrased in terms of the SU(2) matrices, — i.e., complex unitary 2×2 matrices of unit

determinant. Here is how it works: For any rotation R(α,n), let’s define an SU(2) matrix

Q(α,n) = exp
(
−iα2 n · ~σ

)
= cos α2 − i sin α

2 n · ~σ. (3)

where σx, σy, σz are Pauli matrices, cf. homework set#3 (problem#1).
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(d) Show that

Q†(α,n)σiQ(α,n) = Rij(α,n)σj . (4)

(e) Now suppose the angles α1,2,3 and the unit vectors n1,2,3 satisfy the Cayley–Klein equa-

tion

Q(n3, α3) = Q(n2, α2)Q(n1, α1). (5)

Use eq. (4) to show that the corresponding 3× 3 rotation matrices satisfy eq. (2).

(f) Finally, solve the Cayley-Klein equation (5) for the (n3, α3) in terms of the (n2, α2) and

the (n1, α1).

2. In the Heisenberg picture of the rotational symmetries, a rotation through angle α around

axis n transforms an operator Â into

Â′ = R̂†(n, α) Â R̂(n, α). (6)

Consequently, a scalar operator Ŝ must be invariant under all rotations,

R̂†(n, α) Ŝ R̂(n, α) = Ŝ, (7)

while the 3 components (V̂x, V̂y, V̂z) of a vector operator V̂ transform into each other as

R̂†(n, α) V̂i R̂(n, α) = Rij(n, α) V̂j . (8)

If fact, eqs. (7) is a definition of a scalar operator while eq. (8) is a definition of a vector

operator.

These definitions of scalar and vector operators can be restated in terms of commutation

relations with the angular momentum operators Ĵx,y,z:

Ŝ is a scalar iff [Ŝ, Ĵi] = 0, (9)

V̂ is a vector iff [V̂i, Ĵj ] = ih̄εijkV̂k . (10)

(a) Show that eqs. (7) and (9) for a scalar operator are equivalent to each other: is Ŝ remains

invariant under all rotations as in eq. (7) then it must commute with the Ĵx,y,z, and

conversely if Ŝ commutes with all 3 Ĵx,y,z then it’s invariant under all rotations.
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For the vector operators, eqs. (8) and (10) are also equivalent to each other, but this takes

a bit more work to prove. In particular, we need the Baker–Hausdorff lemma: For any two

operators B̂ and Ĉ,

eB̂Ĉe−B̂ = Ĉ + [B̂, Ĉ] + 1
2 [B̂, [B̂, Ĉ]] + · · · + 1

n! [B̂, [B̂, . . . , [B̂, Ĉ] . . .]]n + · · · . (11)

(b) Prove this lemma. Hint: Let Ĉλ = eλB̂Ĉe−λB̂, show that d
dλĈλ = [B̂, Ĉλ], iterate for

the higher derivatives, and then expand into a series in powers of λ.

(c) Show that if the 3 components V̂i of a vector operator V̂ transform into each other under

space rotations according to eq. (8), then their commutation relations with the angular

momentum components should be as in eq. (10). Hint: consider infinitesimally small α

and work to the first order in α.

(d) Now, suppose three component operators V̂x,y,z satisfy the commutation relations (10).

Use the Baker-Hausdorff lemma to verify eq. (8) for any finite rotation.

Hint: R̂(n, α) = exp(−iαh̄n · Ĵ).

Note that for spin-half system with no other degrees of freedom, Ĵ is simply the spin Ŝ = h̄
2~σ

and hence R̂(n, α) = U(n, α) (cf. eq. (3)). Thus, eq. (4) is simply a special case of the

general formula (8).

(e) Next, consider the tensor operators. By definition, the component operators T̂i1,i2,...,in

form an n-index tensor operator if and only if for any rotation,

R̂†T̂i1,i2,...,inR̂ = Ri1j1Ri2j2 · · ·Rinjn T̂j1,j2,...,jn . (12)

Show that T̂i1,i2,...,in form a tensor if and only if[
T̂i1,i2,...,in , Ĵj

]
= ih̄εi1jkT̂k,i2,...,in + · · · + ih̄εinjkT̂i1,...,in−1,k . (13)

(f) Finally, use R>R = 1 and det(R) = 1 to show that for any two-index tensor operator

Âij , B̂ = tr(Â) = δijÂij is a scalar and Ĉi = εijkÂjk is a vector. Then use these facts to

show that for any two vector operators F̂ and Ĝ — regardless of whether they commute

with each other or not, — the dot product F̂ · Ĝ is a scalar operator and the cross

product F̂× Ĝ is a vector operator.
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