
PHY–389K Homework set #10. Due November 2, 2023.

1. This problem is about the orbital angular momentum L̂ = x̂× p̂ and the spherical harmon-

ics Y`m(θ, φ) — the angular wave functions of quantum states with definite values of
~̂
L
2

and

L̂z. In order to eliminate irrelevant degrees of freedom, let us consider a spinless particle

living on a sphere of radius R; its quantum state is completely described by the angular

wave function Ψ(~n) ≡ Ψ(θ, φ), while the net angular momentum Ĵ generating the rotational

symmetry of the sphere is simply the orbital angular momentum L̂.

(a) In the Cartesian coordinate basis, the L̂ operator acts as L̂ = −ih̄x×∇. Show that in

the spherical coordinates, the L̂z and L̂± components of L̂ become

L̂z = −ih̄ ∂
∂φ

, L̂± ≡ L̂x ± iL̂y = h̄e±iφ
(
± ∂

∂θ
+ i cot θ

∂

∂φ

)
. (1)

Note the decoupling of these formulae from the radial coordinate r, hence the legitimacy

of restriction of particle motion to a sphere of fixed radius R.

(b) Show that for any integer m there is a unique wave function Ψ satisfying L̂zΨ = h̄mΨ

and either L̂+Ψ = 0 (for m > 0) or L̂−Ψ = 0 (for m < 0) or both (for m = 0).

Give explicit solution Ψ(θ, φ), normalized to
∫∫
d2Ω(θ, φ) |Ψ(θ, φ)|2 = 1.

(c) Use general properties of the angular momentum operators to prove that the wave

functions you have just obtained belong to states |`,m〉 with ` = |m|. Then use that

result to show that for all pairs of integers (`,m) with ` ≥ |m| there should be a unique

state |`,m〉.

(d) Without performing any explicit calculations, argue that together Y`m(n) ≡ 〈n|`,m〉 (n

being a unit vector in some direction (θ, φ)) form a complete orthonormal basis for the

angular wave functions. In other words,

∫∫
d2nY ∗`m(n)Y`′m′(n) = δ``′δmm′ and

∞∑
`=0

+∑̀
m=−`

Y`m(n)Y ∗`m(n′) = δ(2)(n−n′) (2)

Note: d2n(θ, φ) = d2Ω(θ, φ) = sin θ dθ dφ and hence δ(2)(n−n′) = δ(θ−θ′)δ(φ−φ′)/ sin θ.
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(e) Applying general formulae for the matrix elements of the angular momentum operators

to the case of L̂−, we have

L̂− |`,m〉 = h̄
√

(`+m)(`+ 1−m) |`,m− 1〉 . (3)

Use this formula recursively to show that

Y`,m(θ, φ) =

√
2`+ 1

4π

(−1)`

2` `!

√
(`+m)!

(`−m)!
× eimφ

sinm θ
×
[
d`−m

dx`−m
(1− x2)`

]
x=cos θ

(4)

for any integer ` and m with |m| ≤ `. In particular, for m = 0,

Y`,0(θ, φ) =

√
2`+ 1

4π
× P`(cos θ) (5)

where P`(x) is the `th Legendre polynomial,

P`(x)
def
=

1

2` `!

d`

dx`
(x2 − 1)`. (6)

(f) Prove Y`,−m(θ, φ) = (−1)mY ∗`,m(θ, φ).

Hint: prove and use

1

(`−m)!

d`−m

dx`−m
(1− x2)` = (−1)m(1− x2)m × 1

(`+m)!

d`+m

dx`+m
(1− x2)`. (7)

(g) Write down explicit formulae for the Y`,m(θ, φ) for ` = 0, 1, 2 and all allowed m for these

values of `.

(h) Finally, for extra credit, show that

l∑
m=−l

Y ∗`,m(n1)Y`,m(n2) =
2l + 1

4π
P`(n1 · n2) . (8)

Hint: First show that the left hand side is invariant under simultaneous rotations of n1

and n2 and use this invariance to rotate n1 into the north pole of the sphere (θ′1 = 0).

Then show that Y`m(θ′ = 0) = 0 for m 6= 0 and use this fact to simplify the sum.
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2. We have seen in class the the SO(3) rotation group has both single-valued and double-valued

representations, corresponding to integral and half-integral values of j, respectively. Both

kinds of representations become single-valued in terms of the Spin(3) group — the double

cover of the SO(3); as discussed in class, Spin(3) is isomorphic to SU(2).

The SU(2) picture of the spin group is also more convenient for deriving the explicit rotation

matrices

D(j)
m′m(ϕ,n)

def
=
〈
j,m′

∣∣ R̂(ϕ,n) |j,m〉 (9)

for all representations (j). In this problem, we are going to construct the D(j)
m′m matrix

elements as explicit polynomials of the matrix elements Uαβ of the SU(2) matrix

U(ϕ,n) = exp
(
− i

2ϕn · ~σ
)

= cos ϕ2 − i sin ϕ
2 n · ~σ. (10)

Our starting point is a system of two independent harmonic oscillators whose creation and

annihilation operators â†1, â
†
2, â1 and â2 obey the canonical commutation relations

[âα, âβ] = 0 = [â†α, â
†
β] , [âα, â

†
β] = δαβ , α, β = 1, 2, (11)

and a trio of model angular momentum operators

Ĵ i =
h̄

2

∑
α,β

σiαβ â
†
αâβ , (12)

where σiαβ are matrix elements of the Pauli matrices σi; this model was invented by Julian

Schwinger.

(a) Calculate the commutators [Ĵ i, âα] and [Ĵ i, â†α].

(b) Verify that [Ĵ i, Ĵj ] = ih̄εijkĴk; it is this relation that allows us to treat the Ĵ i as model

angular momenta.

(c) Prove that

~̂
J
2

= h̄2
N̂

2

(
N̂

2
+ 1

)
, where N̂ ≡ â†1â1 + â†2â2 . (13)

Hint: First express Ĵz and Ĵ± explicitly in terms of â1,2 and â†1,2; then compute
~̂
J
2

=

Ĵ2
z + 1

2{Ĵ+, Ĵ−}.
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(d) Show that for this model the states with definite values of j and m are precisely the

states with definite numbers of oscillator quanta n1 and n2. Specifically,

|j,m〉 = |n1 = j +m,n2 = j −m〉 =
(
(j+m)! (j−m)!

)−1/2
(â†1)

j+m(â†2)
j−m |0〉 , (14)

where |0〉 is the ground state of the two-oscillator system.

Consequently, the Hilbert space of the model comprises one and only one copy of each

allowed multiplet of the angular momentum algebra.

Now consider the rotation operators R̂(ϕ,n) = exp(−iϕn · Ĵ/h̄) generated by the model

angular momentum operators (12).

(e) Show that for any such rotation R̂ |0〉 = |0〉.
Hint: Prove and use Ĵ |0〉 = 0.

(f) Use commutation relations (a) and the Baker–Hausdorff lemma to show that

R̂(ϕ,n) â†α R̂†(ϕ,n) =
∑
γ

â†γ Uγα(ϕ,n) (15)

where Uγα(ϕ,n) are the matrix elements of the matrix (10).

(g) Now comes the crucial step: Use the results of (d), (e) and (f) to show that for the

Schwinger’s model

R̂(ϕ,n) |j,m〉 =

+j∑
m′=−j

∣∣j,m′〉D(j)
m′m(ϕ,n) (16)

where the coefficients D(j)
m′m(ϕ,n) are polynomials of degree 2j in the matrix elements

Uγα(ϕ,n) of the SU(2) matrix (10). Write down explicit formulae for these polynomials.

Note: for j = 1
2 , you should get ‖D(1/2)‖ = ‖U‖.

(h) Finally, explain why in any quantum system with a well-defined angular momentum,

rotation operators must act according to

R̂(ϕ,n) |j,m, n〉 =

+j∑
m′=−j

∣∣j,m′, n〉D(j)
m′m(ϕ,n) (17)

with exactly the same rotation matrices
∥∥∥D(j)(ϕ,n)

∥∥∥ as you have just computed for the

Schwinger’s model.
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