PHY-389K Homework set #10. Due November 2, 2023.

. This problem is about the orbital angular momentum L=%x p and the spherical harmon-
ics Yy (0, ¢) — the angular wave functions of quantum states with definite values of 1712 and
L,. In order to eliminate irrelevant degrees of freedom, let us consider a spinless particle
living on a sphere of radius R; its quantum state is completely described by the angular
wave function U(77) = W(6, ¢), while the net angular momentum J generating the rotational

symmetry of the sphere is simply the orbital angular momentum L.

(a) In the Cartesian coordinate basis, the L operator acts as L = —ifix x V. Show that in

the spherical coordinates, the EZ and Ei components of L become

. L : 0 0
Ly = Ly+il, = he®™ (i(‘?Q + icot 68—¢) (1)
Note the decoupling of these formulae from the radial coordinate r, hence the legitimacy

of restriction of particle motion to a sphere of fixed radius R.

(b) Show that for any integer m there is a unique wave function ¥ satisfying L,V = hm¥

and either LW = 0 (for m > 0) or L_¥ = 0 (for m < 0) or both (for m = 0).
Give explicit solution W(6, ¢), normalized to [[d?Q(6, ¢) ¥ (0, $)* = 1.

(c) Use general properties of the angular momentum operators to prove that the wave
functions you have just obtained belong to states |¢,m) with ¢ = |m|. Then use that
result to show that for all pairs of integers (¢, m) with ¢ > |m| there should be a unique

state |, m).

(d) Without performing any explicit calculations, argue that together Yy, (n) = (n|¢,m) (n
being a unit vector in some direction (6, ¢)) form a complete orthonormal basis for the

angular wave functions. In other words,

J[ Vi @Yon) = bt and 33 Vi @)¥i) = 6O (o) (2

{=0 m=—¢

Note: d?n(6, ¢) = d*Q(6, ¢) = sin # df d¢ and hence 6 (n—n’) = §(—0")5(p—¢')/ sinb.



(e) Applying general formulae for the matrix elements of the angular momentum operators

to the case of ZAL,, we have

Lojt,m) = b/ m)(l+1—m)|t,m—1). (3)

Use this formula recursively to show that

2+ 1 (-1 [(t4m)l | eme de=m oy
Yem(0:9) =\ = S \V ey ¥ sng < g ) (4)

r=cos

for any integer ¢ and m with |m| < £. In particular, for m = 0,

20+ 1
47

Yio(0,0) = X Py(cos 0) (5)

where Py(z) is the /" Legendre polynomial,

def 1 dﬁ 2

1€] 4
Py(z) = 25_6!@@ - 1) (6)
(f) Prove }/&—m(‘gv ¢) = (_1)m§/€i‘m(‘97 ¢)
Hint: prove and use
1 d(—m 1 d(-i—m
1 _ 2 é — _1 m 1 _ 2\m 1 _ 2 f
(0 —m)! dmé_m( %) (=1)™( )" % (£ +m)! dm”m( ) (7)

(g) Write down explicit formulae for the Y, (6, ¢) for £ = 0,1,2 and all allowed m for these

values of /.

(h) Finally, for extra credit, show that

l

Z YZm(nl)Yv&m<n2) =

m=—I

20+1

Py(ny -ny). (8)

Hint: First show that the left hand side is invariant under simultaneous rotations of nj
and ny and use this invariance to rotate n; into the north pole of the sphere (6] = 0).

Then show that Yy, (0’ = 0) = 0 for m # 0 and use this fact to simplify the sum.



2. We have seen in class the the SO(3) rotation group has both single-valued and double-valued
representations, corresponding to integral and half-integral values of j, respectively. Both
kinds of representations become single-valued in terms of the Spin(3) group — the double

cover of the SO(3); as discussed in class, Spin(3) is isomorphic to SU(2).

The SU(2) picture of the spin group is also more convenient for deriving the explicit rotation

matrices
Dil(em) E (j.nd| Rig,m) lj,m) (9)
for all representations (j). In this problem, we are going to construct the Dfn)m matrix
elements as explicit polynomials of the matrix elements Uyg of the SU(2) matrix
U(p,n) = exp(—ipn-&) = cos$ — isingn-a. (10)

Our starting point is a system of two independent harmonic oscillators whose creation and

annihilation operators d];, d;, a1 and ag obey the canonical commutation relations
g, ag) = 0 = [af,al], (4,05 = dag, @B =12 (11)

and a trio of model angular momentum operators

where aé 5 are matrix elements of the Pauli matrices o'; this model was invented by Julian
Schwinger.

(a) Calculate the commutators [J?, d,] and [ji,dL].

(b) Verify that [.J?, .J7] = ihe¥ J¥; it is this relation that allows us to treat the .J* as model

angular momenta.

(c) Prove that

22 N [N R
J = : <2 +1> . where N = ala, + ala, . (13)
=2
Hmt First express J, and Ji explicitly in terms of @, 5 and aI o5 then compute J =

+ 3 )



(d) Show that for this model the states with definite values of j and m are precisely the

states with definite numbers of oscillator quanta n; and ny. Specifically,
4 . . . . —1/2 At At
Gom) = Iy =j+myng =j—m) = (G+m)(i—m)) @)y aky o), (14)

where |0) is the ground state of the two-oscillator system.
Consequently, the Hilbert space of the model comprises one and only one copy of each

allowed multiplet of the angular momentum algebra.

Now consider the rotation operators 7@(@,11) = exp(—ipn - J/ L) generated by the model

angular momentum operators (12).

(e) Show that for any such rotation R |0) = |0).
Hint: Prove and use J |0) = 0.

(f) Use commutation relations (a) and the Baker-Hausdorff lemma to show that
R(g,n)al, Ri(e,n) =) al Uya(p,m) (15)
gl

where Uy (¢, n) are the matrix elements of the matrix (10).

(g) Now comes the crucial step: Use the results of (d), (e) and (f) to show that for the
Schwinger’s model

+3 .
R(pn)|jm) = > |j.m'y DY) (¢,n) (16)

m/'=—j

where the coefficients D(j )

(@, 1) are polynomials of degree 2j in the matrix elements

Usa(p,n) of the SU(2) matrix (10). Write down explicit formulae for these polynomials.
Note: for j = 3, you should get |IDY/2)|| = U]

(h) Finally, explain why in any quantum system with a well-defined angular momentum,

rotation operators must act according to

+J

m/'=—j

j,m' n) DY) (o ) (17)

m’'m

with exactly the same rotation matrices HDU )(cp, n) H as you have just computed for the

Schwinger’s model.



