
PHY–389K Homework set #13. Due November 30, 2023.

1. The Stark effect I have explained in class is the quadratic Start effect: it obtains in the second

order of the perturbation theory, so the energy shift δE is quadratic in the electric field E ,

δE ∝ E2. However, some quantum systems exhibit a linear Stark effect where δE ∝ |E|,
which obtains in the first-order of the degenerate perturbation theory when the un-perturbed

Hamiltonian Ĥ0 has degenerate eigenstates with a non-zero matrix element of the electric

dipole operator between them:

Ĥ0 |1〉 = E0 |1〉 , Ĥ0 |2〉 = E0 |2〉 for the same E0, 〈1| d̂ |2〉 6= 0. (1)

A good example of this behavior is the Hydrogen atom (or a hydrogen-like ion) without

relativistic corrections: it has degenerate 2s and 2p quantum states (where 2 denotes n = 2

while s denotes ` = 0 and p denotes ` = 1) with 〈2s| d̂ |2p〉 6= 0. Similarly, the 3s, 3p,

and 3d states are all degenerate while 〈3s| d̂ |3p〉 6= 0 and 〈3p| d̂ |3d〉 6= 0, and likewise for

n = 4, 5, . . ..

Let’s focus on the n = 2 energy level. For simplicity, let’s ignore the electron’s spin and

focus on the coordinate-space wave functions, so there are four states at play, one 2s state

and three 2p states.

(a) Consider the 4 × 4 matrix elements of δĤ between these 4 states. Show that for the

electric field pointing in the z direction, 14 out of 16 matrix elements vanish, with the

only 2 non-vanishing matrix elements being

〈2s| δĤ |2p,m = 0〉 and 〈2p,m = 0| δĤ |2s〉 . (2)

(b) Calculate these 2 matrix elements. For your convenience, eqs. (22) through (25) at the

end of this homework set spell out the normalized wave-functions of the hydrogen atom’s

1s, 2s, and 2p states.

(c) Calculate the energies of the four n = 2 states — or their linear combinations — to the

first order in the electric field.
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(d) What happens to these energies when the electric field has a different direction?

In real life, the 2s and 2p state of the hydrogen atom are not exactly degenerate, and the

electron’s spin interacts with the orbital angular momentum. Taking the spin into account,

we have 4× 2 = 8 states at the n = 2 level, and in the absence of the electric field they have

3 sligthly different energy levels for different ` and j. Specifically,

E(2p, j = 3
2) − E(2p, j = 1

2) = ∆Efine structure ≈ 45 µeV,

E(2s, j = 1
2) − E(2p, j = 1

2) = ∆ELamb shift ≈ 4.37 µeV.
(3)

Consequently, the linear Stark effect is truly linear only when it yields energy differences

much bigger than the fine structure or the Lamb shift,

δE(Stark) � δE(fine structure) > δE(Lamb shift). (4)

Otherwise, we need to treat the electric field, the fine structure, and the Lamb shift as

comparable perturbations comprising

δĤnet = δĤfine structure + δĤLamb shift − ~E · d̂, (5)

and then diagonalize the 8× 8 matrix of this δĤnet between the eight n = 2 states.

(e) Show that this 8 × 8 matrix is block diagonal with two trivial 1 × 1 blocks and two

non-trivial 3× 3 blocks. Spell out the 3× 3 blocks, and argue that their eigenvalues are

non-linear functions of the electric field except in the strong-field regime (4). But don’t

try to diagonalize the 3× 3 blocks, that would take too much work.

Hint: for simplicity, assume the electric field pointing in the z direction.

Numerically, the eigenvalues become approximately linear functions of the electric field E —

and thus the linear Stark effect becomes truly linear — for

δE(Stark) >∼ δE(fine structure). (6)

(f) Translate this limit — and your result from part (c) — into MKSA units for the electric

field. Would such a field be easily obtainable in a lab?
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2. Consider 2 atoms or molecules separated by distance R that’s much large than the atom’s or

molecule’s sizes. The leading interaction between such atoms or molecules comes from the

electric dipole-dipole potential

δV =
(d1 · d2) − 3(d1 · n)(d2 · n)

R3
(7)

where n is the unit vector in the direction of the line between the two atoms or molecules.

Now suppose neither atom/molecule has an electric dipole moment in its ground state |gr〉,

〈gr1| d̂1 |gr1〉 = 〈gr2| d̂2 |gr2〉 = 0. (8)

In this case, the leading force between the two atoms/molecules (each being in its ground

state) is the attractive van der Waals force

FvdW(R) = −An
R7

(9)

for some coefficient R.

In quantum mechanics, the van der Waals force — or rather the effective potential

VvdW = − A

6R6
(10)

— arises as the second-order correction to the ground state energy of two atoms/molecules

in the perturbation theory where δĤ is the dipole-dipole potential (7). Although both

atoms/molecules have zero expectation values of the electric dipole moment in their ground

states — and hence δEground = 0 in the first order of the perturbation theory, — there are

non-zero off-diagonal matrix elements

〈exc1| d̂1 |gr1〉 6= 0, 〈exc2| d̂2 |gr2〉 6= 0, (11)

for some excited states |exc1〉 and |exc2〉, which leads to the negative energy shift δEground

in the second order of the perturbation theory.
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In the perturbation theory, the unperturbed Hamiltonian Ĥ0 = Ĥ1 + Ĥ2 where Ĥ1 is the

Hamiltonian for the standalone first atom or molecule and likewise Ĥ2 is the Hamiltonian

of the standalone second atom/molecule, so the eigenstates of the Ĥ0 have general form

|state1; state2〉. The interactions between the two atoms/molecules comes from the pertur-

bation by δH = δVdipole−dipole as in eq. (7).

(a) Show that in the second order of the perturbation theory

δEground = − A

6R6
(12)

for

A

6
=

∑
|exc1〉

∑
|exc2〉

∣∣∣〈exc1| d̂i1 |gr1〉 〈exc2| d̂j2 |gr2〉 (δij − 3ninj)
∣∣∣2

E(exc1) + E(exc2)− E(gr1)− E(gr2)
. (13)

Note: to keep my formulae from becoming unwieldy, I use
∑
|exc〉 to denote the discrete

sum over the bound excited states plus the integral over the un-bound states.

Next, suppose that the ground states of both atoms/molecules have L = 0.

(b) Show that in this case, the excited states with non-zero contributions to the sum (13)

must have L(exc1) = L(exc2) = 1 as well as S(exc1) = S(gr1) and S(exc2) = S(gr2).

For simplicity, let’s ignore the fine structure of the excited energy levels, so all the excited

states have definite mL and MS , and we may focus on the excited states with MS(exc) =

mS(gr) only. Also, without the fine structure, the energies E(exc1) and E(exc2) in the

denominators of each term in the sum (13) do not depend on the mL quantum numbers of

the excited states, and this allows us to sum over the mL(exc1) and mL(exc2) before we sum

over the rest of the exited states’ quantum numbers.

(c) Use Wigner–Eckart theorem to sum over the mL quantum numbers of the excited states

in the sum (13) as well as over the indices i, j of the dipole moment components and

show that

A

6
= 6

∑
|exc1〉∈set1

∑
|exc2〉∈set2

∣∣∣〈exc1| d̂z1 |gr1〉
∣∣∣2 × ∣∣∣〈exc2| d̂z2 |gr2〉

∣∣∣2
E(exc1) + E(exc2)− E(gr1)− E(gr2)

(14)
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where

set1 = {eigenstates of Ĥ1 with L = 1,mL = 0, S = S(gr1),mS = mS(gr1)},

set1 = {eigenstates of Ĥ2 with L = 1,mL = 0, S = S(gr2),mS = mS(gr2)}.
(15)

Hint: for atoms/molecules in the ground states with L = 0, A does not depend on the

direction n, so let it point in the z direction. Then use spherical components for the

electric dipole vectors d̂1 and d̂2, so that

n · d̂1 = d̂z1 = d̂0
1,

n · d̂2 = d̂z2 = d̂0
2,

d̂1 · d̂2 =
+1∑

µ=−1

(−1)µd̂+µ
1 d̂−µ2 = −d̂−1

1 d̂+1
2 + d̂0

1d̂
0
2 − d̂+1

1 d̂−1
2 .

(16)

Now let’s consider the van der Waals force between two hydrogen atoms. For simplicity,

let’s ignore the fine structure of the excited states, so we may use the |n, `,m`,ms〉 basis for

the bound states, and a similar basis for the unbound states with definite `, m`, and ms.

Moreover, the spin state ms does not affect the matrix elements of the dipole moment (as

long as we have the same ms on the bra side and the ket side), so we may ignore them in

our calculations. Thus, we label the excited states by n, `, and m = m` where by abuse of

notations n runs over both discrete values n = 2, 3, 4, . . . for the bound excited states as well

as some continuous values for the unbound states. In these notations,

set1 = set2 = {|n, `,m〉 with ` = 1, m = 0, and any n 6= 1}, (17)

so the sum (14) becomes

A

6
= 6

∑
n1 6=1

∑
n2 6=1

∣∣∣〈n1, 1, 0| d̂z |1, 0, 0〉
∣∣∣2 × ∣∣∣〈n2, 1, 0| d̂z |1, 0, 0〉

∣∣∣2
E(n1) + E(n2)− 2E(n = 1)

. (18)

(d) Put upper and lower bounds on the sum (18). Specifically, show that

Amin < A < Amax (19)
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for

Amin

6
=

3

E(n = 2)− E(n = 1)
×
∣∣∣〈2, 1, 0| d̂z |1, 0, 0〉∣∣∣4 , (20)

Amax

6
=

3

E(n = 2)− E(n = 1)
×
(
〈1, 0, 0|

(
d̂z
)2 |1, 0, 0〉)2

. (21)

(e) Finally, evaluate the matrix elements in eqs. (20) and (21), and calculate the upper

and lower bounds for the van der Waals coefficient A. For your convenience, eqs. (22)

through (25) below spell out the wave-functions of the relavant states of the hydrogen

atom.

? For your convenience, here are the wave functions of the 1s, 2s, and 2p states of the hydrogen

atom:

Ψ1s(x) =
1√
πa3
× exp(−r/a), (22)

Ψ2s(x) =
1√

32πa5
× exp(−r/2a)× (2a− r), (23)

Ψm=0
2p (x) =

1√
32πa5

× exp(−r/2a)× r cos θ, (24)

Ψm=±1
2p (x) =

1√
32πa5

× exp(−r/2a)× ∓1√
2
r sin θ exp(±iφ), (25)

where a is the Bohr radius

a =
h̄2

mee2
≈ 0.53 Å = 5.3 · 10−11 m. (26)
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