
Introduction to Path Integrals

In the coordinate basis, motion of a quantum particle is described by the propagation am-

plitude

U(tB,xB; tA,xA) = 〈xB| e−i(tB−tA)Ĥ/h̄ |xA〉 (1)

for moving from point xA at time tA to point xB at time tB; this amplitude is also called the

evolution kernel. In the semi-classical regime, this kernel is given by the WKB approximation

U(B;A) ≈ prefactor× exp(iS[xcl(t)]/h̄) (2)

where

S[x(t)] =

tB∫
tA

L(x(t), ẋ(t)) dt (3)

is the action integral of the classical mechanics and xcl(t) is the classical path from A to B that

obeys the Euler–Lagrange equations of motion. In action terms, this path minimizes the the

functional S[x(t)] under conditions x(tA) = xA and x(tB) = xB. If there are several classical

paths from A to B, then S[x] has several local minima, they all contribute to the evolution kernel

with appropriate phases, and we get interference:

U(B;A) ≈
∑

classical
paths i

prefactori × exp(iS[xi(t)]/h̄). (4)

In the exact quantum mechanics, a sum (4) over classical paths becomes an integral over all

possible path from A to B,

U(B;A) =

x(tB)=xB∫∫∫
x(tA)=xA

D[x(t)] exp
(
iS[x(t)]/h̄

)
. (5)

However, unlike the sum (4), the integral here is not limited to the classical paths that obey

the Euler–Lagrange equations of motion. Instead, we integrate is over all differentiable paths

x(t) from A to B, and they do not obey any equations of motion except by accident. But in
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the semiclassical h̄ → 0 limit, the contributions of most paths to the integral is washed out by

interference with similar paths whose action differs by only O(h̄). The only survivors of this

wash-out are the stationary “points” of the functional S[x(t)], which are precisely the classical

paths from A to B. This is how the WKB approximation (4) — and eventually the classical

mechanics — emerge in the h̄→ 0 limit.

The problem with the path integral (5) is how to define the integration measure D[x(t)] for

paths. The basic method is to discretize the time: Slice the continuous time interval tA ≤ t ≤ tB

into a large but finite set of discrete times

(t0, t1, t2, . . . , tN−1, tN ), tn = tA + n∆t, ∆t =
tB − tA
N

, t0 = tA, tN = tB, (6)

but eventually take the N →∞ limit. This gives us

D[x(t)]
def
= lim

N→∞
d3x1 d

3x2 · · · d3xN−1 × normalization factor, where xn ≡ x(tn). (7)

Note that we do not integrate over the x0 ≡ x(tA) and xN ≡ x(tB) because they are fixed by

the boundary conditions in eq. (5).

The non-obvious part of eq. (7) is the normalization factor. We shall see later in these notes

that this factor depends on N , on the net time T = tB− tA, and even on the particle’s mass, and

the exact formula for this factor is not easy to guess. Fortunately, there is a different version of

path integration that does not suffer from such normalization factors.

Let’s consider paths in the phase space (x,p) rather than just the x-space. In other words,

let’s treat x(t) and p(t) as independent variables and write the action integral (3) in the Hamil-

tonian language

S[x(t),p(t)] =

B∫
A

[
p(t) · dx(t) − H(x(t),p(t)) dt

]
(8)

as a functional of both x(t) and p(t). A classical path is a minimax of this functional — a (local)

minimum with respect to variations of the x(t) but a (local) maximum with respect to variations

of the p(x). Also, the position x(t) is subject to boundary conditions at the start A and finish
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B, but there are no boundary conditions for the momentum p(t). In the quantum mechanics,

U(B;A) =

x(tB)=xB∫∫∫
x(tA)=xA

D′[x(t)]

∫∫∫
D[p(t)] exp

(
iS[x(t),p(t)]/h̄

)
(9)

where

D′[x(t)]×D[p(t)] = lim
N→∞

N−1∏
n=1

d3xn ×
N∏
n=1

d3pn
(2πh̄)3

. (10)

This time, there are no funny normalization factors: all we have is the d3p/(2πh̄)3 for each

momentum variable, and that’s standard convention in quantum mechanics. Note that for a

given N , we integrate over N momenta but only N − 1 positions because of the boundary

conditions on both ends; to make this difference explicit, I have marked the D′[x(t)] with a

prime.

Deriving the Phase–Space Path Integral from the Hamiltonian QM

Let’s derive the phase-space path integral (9) from the conventional formulation of quantum

mechanics based on the Hamiltonian operator Ĥ. First, we need a couple of lemmas.

Lemma 1: for any operator Ŵ in the Hilbert space of Ψ(x), and for any integer N ≥ 2,

〈xB| ŴN |xA〉 =

∫
d3x1

∫
d3x2 · · ·

∫
d3xN−1

N∏
n=1

〈xn| Ŵ |xn−1〉 (11)

where we identify x0 = xA and xN = xB.

Proof: In the Hilbert space in question, the definite-position states |x〉 form a complete orthog-

onal basis, hence ∫
d3x |x〉 〈x| = 1̂. (12)

Therefore, for N = 2

〈xB = x2| Ŵ 2 |xA = x0〉 = 〈x2| Ŵ × 1̂× Ŵ |x0〉

= 〈x2| Ŵ ×
(∫

d3x1 |x1〉 〈x1|
)
× Ŵ |x0〉

=

∫ ∫
d3x1 〈x2| Ŵ |x1〉 × 〈x1| Ŵ |x0〉 ,

(13)

exactly as in eq. (11). As to the higher N > 2, the proof is by induction in N . We have the
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induction base for N = 2, so let’s prove that IF Lemma 1 holds for some N THEN it also holds

for N + 1. And indeed,

〈xN+1| ŴN+1 |x0〉 = 〈xN+1| Ŵ × 1̂× ŴN |x0〉

= 〈xN+1| Ŵ ×
(∫

d3xN |xN 〉 〈xN |
)
× ŴN |x0〉

=

∫
d2xN 〈xN+1| Ŵ |xN 〉 × |xN 〉 ŴN |x0〉

〈〈 by the induction assumption 〉〉

=

∫
d2xN 〈xN+1| Ŵ |xN 〉 ×

∫
d3x1

∫
d3x2 · · ·

∫
d3xN−1

N∏
n=1

〈xn| Ŵ |xn−1〉

=

∫
d3x1

∫
d3x2 · · ·

∫
d3xN−1

∫
d3xN

N+1∏
n=1

〈xn| Ŵ |xn−1〉 ,

(14)

exactly as in eq. (11) for N → N + 1. Quod erat demonstrandum.

Next, Lemma 2: for any two operators Ĉ and D̂ — regardless if they commute with each

other or do not commute, — in the large N limit one has

lim
N→∞

(
eĈ/N × eD̂/N

)N
= eĈ+D̂. (15)

Proof:

eĈ/N × eB̂/N = 1 +
Ĉ + D̂

N
+ O(1/N2), (16)

and

lim
N→∞

(
1 +

Ĉ + D̂

N
+ O(1/N2)

)N
= eĈ+D̂ (17)

regardless of the details of the O(1/N2) terms.

Now let’s go back to Quantum Mechanics of a particle living in 3 dimensions of space. For

simplicity, assume the particle’s Hamiltonian operator has form

Ĥ = K(p̂) + V (x̂) (18)

where the kinetic energy K̂ ≡ K(p̂) does not depend on the position x̂ and the potential energy

V̂ = V (x̂) does not depend on the momentum p̂. Using lemma 2 for Ĉ = −iV̂ (tB − tA)/h̄ and
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D̂ = −iK̂(tB − tA)/h̄, we have

lim
N→∞

(
e−iV̂∆t/h̄ × e−iK̂∆t/h̄

)N
〈〈where ∆t = (tB − tA)/N 〉〉

= lim
N→∞

(
eĈ/N × eD̂/N

)N
= eĈ+D̂

= exp

(
−i V̂ (tB − tA)

h̄
− i

K̂(tB − tA)

h̄
= −iĤ(tB − tA)

h̄

)
= Û(tB − tA), the evolution operator.

(19)

In other words,

Û(tB − tA) = lim
N→∞

ŴN

where Ŵ = e−iV̂∆t/h̄ × e−iK̂∆t/h̄,

which implicitly depends on N via ∆t = (tB − tA)/N .

(20)

Now let’s apply Lemma 1 to the coordinate-space matrix elements of this evolution operator:

〈xB| Û(tB − tA) |xA〉 = lim
N→∞

〈xB| ŴN |xA〉

= lim
N→∞

∫
d3x1 · · ·

∫
d3xN−1

N∏
n=1

〈xn| Ŵ |xn−1〉 ,
(21)

where we have identified x0 ≡ xA and xN ≡ xB. Furthermore, each Dirac bracket in this product

evaluates to

〈xn| Ŵ |xn−1〉 = 〈xn| e−iV̂∆t/h̄ × e−iK̂∆t/h̄ |xn−1〉

〈〈 since xn is an eigenstate of V̂ and hence of e−iV̂∆t/h̄ 〉〉

= e−iV (xn)∆t/h̄ × 〈xn| e−iK̂∆t/h̄ |xn−1〉

= e−iV (xn)∆t/h̄ ×
∫

d3pn
(2πh̄)3

〈xn|pn〉 e−iK(pn)∆t/h̄ 〈pn|xn−1〉

=

∫
d3pn

(2πh̄)3
e−iV (xn)∆t/h̄ × eixn·pn/h̄ × e−iK(pn)∆t/h̄ × e−ixn−1·pn/h̄

=

∫
d3pn

(2πh̄)3
exp

[
i

h̄

(
pn · (xn − xn−1) − V (xn)∆t − K(pn)∆t

)]
.

(22)
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Plugging this formula back into eq. (21) and combining all the exponentials, we arrive at

U(B;A) = lim
N→∞

∫
d3x1 · · ·

∫
d3xN−1

∫
d3p1

(2πh̄)3
· · ·
∫
d3pN
(2πh̄)3

exp
(
iS/h̄

)
, (23)

where

S =
N∑
n=1

pn · (xn − xn−1) − ∆t×
N∑
n=1

(
V (xn) + K(pn)

)
(24)

is the discretized action for a discretized path. Indeed, in the large N limit

N∑
n=1

[
pn · (xn − xn−1) − (V (xn) +K(pn))×∆t

]
−−−→
N→∞

B∫
A

(
p(t) · dx(t) − H(x(t),p(t)) dt

)
≡ S[x(t),p(t)].

(25)

Consequently, we should interpret the product of coordinate and momentum integrals in eq. (23)

as the discretized integral over the paths in the momentum space,∫
d3x1 · · ·

∫
d3xN−1

∫
d3p1

(2πh̄)3
· · ·
∫
d3pN
(2πh̄)3

−−−→
N→∞

∫∫∫
D′[x(t)]

∫∫∫
D[p(t)] (26)

in perfect agreement with eq. (10). And eq. (23) itself is the proof of the path-integral formula

U(B;A) =

x(tB)=xB∫∫∫
x(tA)=xA

D′[x(t)]

∫∫∫
D[p(t)] exp

(
iS[x(t),p(t)]/h̄

)
. (9)

A note on discretization. Interpreting the sum
∑

n pn ·(xn−xn−1) as the discretized integral∫
p · dx calls for assigning the momenta pn to mid-point discrete times with respect to the

coordinates xn:

xn ≡ x(t = tA + n∆t) but pn ≡ p(t = tA + (n− 1
2)∆t). (27)

As long as the Hamiltonian can be split into separate kinetic and potential energies according to

eq. (18), such different discrete times for the xn and pn are OK because∫
H(x,p) dt =

∫
V (x) dt +

∫
K(p) dt → ∆t

N∑
n=1

V (xn) + ∆t
N∑
n=1

K(pn) (28)

and the details of the discretization do not matter in the large N limit. However, when the

classical Hamiltonian is more complicated than a sum of kinetic and potential energies, the path
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integral formalism suffers from the discretization ambiguity. For example, for

H(x,p) =
p2

2M(x)
(29)

we could discretize the action as

S →
∑
n

pn · (xn − xn−1) − ∆t
∑
n

p2
n

2M(xn)
,

or→
∑
n

pn · (xn − xn−1) − ∆t
∑
n

p2
n

2M(xn−1)
,

or→
∑
n

pn · (xn − xn−1) − ∆t
∑
n

p
¯

2
n

M(xn) +M(xn−1)
,

or→ something else,

(30)

all these options lead to different evolution kernels, and there are no general rules how to resolve

such ambiguities. Instead, the discretization ambiguities of the path-integral formalism correspond

to the operator-ordering ambiguities of the Hilbert-space formalism of quantum mechanics. For

example, given the classical Hamiltonian of the form (29), we can take the quantum Hamiltonian

operators to be

Ĥ =
1

2M(x̂)
p̂2, or Ĥ = p̂2 1

2M(x̂)
, or Ĥ = p̂

1

2M(x̂)
p̂ , or

Ĥ =
1

2M(x̂)
p̂M(x̂)p̂

1

M(x̂)
, or something else.

(31)

The Lagrangian Path Integral

In this section, I shall reduce the Hamiltonian path integrals over both x(t) and p(t) to the

Lagrangian path integrals over the x(t) alone by integrating over the paths in momentum space.

This works only when the kinetic energy is quadratic in the momentum,

H(p,x) =
p2

2M
+ V (x) =⇒ Ĥ =

p̂2

2M
+ V (x̂). (32)
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For such Hamiltonians,

p · ẋ − H(p,x) = p · ẋ − p2

2M
− V (x) = −(p−M ẋ)2

2M
+

M ẋ2

2
− V (x)

= L(ẋ,x) − (p−M ẋ)2

2M

(33)

and consequently

SHam[x(t),p(t)] = SLagr[x(t)] − 1

2M

∫
dt (p−M ẋ)2 . (34)

Therefore, in the path integral formalism,

U(B;A) =

B∫∫∫
A

D′[x(t)]

∫∫∫
D[p(t)] exp

(
i

h̄
SHam[x(t),p(t)]

)

=

B∫∫∫
A

D′[x(t)] exp

(
i

h̄
SLagr[x(t)]

)
×
∫∫∫
D[p(t)] exp

(
−i

2Mh̄

∫
dt (p−M ẋ)2

)
.

(35)

On the second line here, we integrate over the coordinate-space paths x(t) after integrating

over the momentum-space paths p(t), so as far as
∫∫∫
D[p(t)] is concerned, we can treat the

coordinate-space path x(t) as a constant. Also, the path-integral measure is linear so we may

shift the integration variable by a constant, thus∫∫∫
D[p(t)] exp

(
−i

2Mh̄

∫
dt (p−M ẋ)2

)
=

∫∫∫
D[p(t)−M ẋ(t)] exp

(
−i

2Mh̄

∫
dt (p−M ẋ)2

)

=

∫∫∫
D[p′(t)] exp

(
−i

2Mh̄

∫
dtp′2(t)

)
= const.

(36)

Plugging this formula back into eq. (35) gives us the Lagrangian path integral

U(B;A) = const×
x(tB)=xB∫∫∫
x(tA)=xA

D′[x(t)] exp

(
i

h̄
SLagr[x(t)]

)
. (37)

In this formalism there is no independent momentum-space path p(t), we integrate only over the

coordinate-space path x(t), and the action is given by the Lagrangian formula (3). However, the

price of this simplification is the un-known overall constant multiplying the path integral (37).
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To calculate this constant we should first discretize the time and only then integrate out the

discrete momenta pn. For finite N , the discretized Hamiltonian-formalism action (24) can be

written as

SHam
discr (x0, . . . ,xN ;p1, . . . ,pN ) =

∑
n

pn · (xn − xn−1) − ∆t

2M

∑
n

p2
n − ∆t

∑
n

V (xn)

= − ∆t

2M

∑
n

(
pn − M

xn − xn−1

∆t

)2

+
M

2∆t

∑
n

(xn − xn−1)2 − ∆t
∑
n

V (xn)

= − ∆t

2M

∑
n

(
pn − M

xn − xn−1

∆t

)2

+ SLagr
discr(x0, . . . ,xN )

(38)

where

SLagr
discr(x0, . . . ,xN ) = ∆t

∑
n

[
M

2

(
xn − xn−1

∆t

)2

− V (xn)

]

−−−→
N→∞

∫
dt

[
M

2

(
dx

dt

)2

− V (x)

]
= SLagr[x(t)]

(39)

is the discretized action for of the Lagrangian formalism. In light of eq. (38) we may write the

discretized path integral (23) as∫
d3x1 · · ·

∫
d3xN−1

∫
d3p1

(2πh̄)3
· · ·
∫
d3pN
(2πh̄)3

exp

(
i

h̄
SHam

discr (x0, . . . ,xN ;p1, . . . ,pN )

)
=

=

∫
d3x1 · · ·

∫
d3xN−1 exp

(
i

h̄
SLagr

discr(x0, . . . ,xN )

)
×

×
N∏
n=1

∫
d3pn

(2πh̄)3
exp

(
−i∆t
2Mh̄

(
pn − M

xn − xn−1

∆t

)2
)
(40)

where we integrate over all the momenta pn before we integrate over the coordinates. Conse-

quently, in each integral on the last line of eq. (40) we may shift the integration variable from

pn to p′n = pn −M∆xn/∆t, thus∫
d3pn

(2πh̄)3
exp

(
−i∆t
2Mh̄

(
pn − M

xn − xn−1

∆t

)2
)

=

∫
d3p′n

(2πh̄)3
exp

(
−i∆t
2Mh̄

p′2n

)

=

(
M

2πih̄∆t

)3/2

.

(41)
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Plugging this formula back into eq. (40), we arrive at the Lagrangian path integral

U(B;A) = lim
N→∞

(
MN

2πih̄(tB − tA)

)3N/2

×
∫
d3x1 · · ·

∫
d3xN−1 exp

(
i

h̄
SLagr

discr(x0, . . . ,xN )

)

≡
x(tB)=xB∫∫∫
x(tA)=xA

D′[x(t)] exp

(
i

h̄
SLagr[x(t)]

)
.

(42)

Note however that in the Lagrangian formalism, the D′[x(t)] is not just the limit of d3(N−1)x ≡
d3x1 · · · d3xN−1 but also includes the normalization factor

C(N,M, tB − tA) =

(
MN

2πih̄(tB − tA)

)3N/2

. (43)

This normalization factor depends on N , on the net time T = tB − tA, and on the particle’s

mass M , but it does not depend on the potential V (x) or the initial and final points xA and

xB. Consequently, without discretizing time, a Lagrangian path integral calculation yields the

amplitude U(B;A) up to an unknown overall factor F (M,T ). However, we may obtain this

factor by comparing with a similar path integral for a free particle: the overall F (M,T ) factor

is the same in both cases, and the free amplitude is known to be

Ufree(B;A) =

(
M

2πih̄T

)3/2

× exp

(
iM(xB − xA)2

2h̄T

)
. (44)

Alternatively, all kind of quantities can be obtained from the ratios of path integrals, and such ra-

tios do not depend on the overall normalization of the D[x(t)]; this is the method most commonly

used in the quantum field theory.

The Partition Function

In statistical mechanics, the partition function of a quantum system is

Z(β) =
∑
energy

eigenvalues

e−βE ×multiplicity(E) (45)

where β is the inverse temperature, or rather

β =
1

kB × temperature
. (46)
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Formally, the sum in eq. (45) is the trace

Z(β) = tr
(
exp(−βĤ)

)
. (47)

Aside: the trace of a matrix is defined as the sum of its diagonal elements,

tr
(
‖Mij‖

)
=
∑
i

Mii , (48)

and for any diagonalizable matrix, the sum of its eigenvalues always equals to its trace,

∑
eigenvalues(M) = tr(M). (49)

For the linear operators in a Hilbert space, we have a similar definition: the trace of an operator

is the sum of its diagonal matrix elements in an orthonormal basis,

tr(Â) =
∑
n

〈n| Â |n〉 . (50)

Note: the trace of an operator does not depend on the basis we use to calculate it. In any

discrete basis |n〉 we get exactly the same trace (50), an even in a continuous basis a suitable

generalization of eq. (50) yields the same trace,

∫
d3x 〈x| Â |x〉 =

∫
d3p

(2πh̄)3
〈p| Â |p〉 = same tr(Â). (51)

In particular, if the operator Â is diagonalizable, then taking the trace in its own eigenbasis we

get

tr(Â) =
∑
n

An ×multiplicity(An). (52)

Thus, the partition function (45) is indeed the trace of the operator exp(−βĤ) as in eq. (47).
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The partition function is related to the evolution operator Û(tB − tA) by analytically con-

tinuing Z(β) to imaginary

β → β′ = i
tB − tA

h̄
, (53)

hence

Z(iβ′) = tr exp

(
−i(tB − tA)

h̄
Ĥ

)
= tr Û(tB − tA) (54)

Equivalently, we may say that the partition function for a real β is the trace of evolution operator

over an imaginary time interval

T ≡ (tB − tA) → −ih̄β =
−ih̄

kB × Temperature
. (55)

Evolution in the imaginary time — especially in the context of path integrals — is explained in

some details in my notes from the QFT class on the Euclidean time, but for the present purposes

let’s go back to the real time and re-define

Z(T ) = tr
(
exp(−iT Ĥ/h̄)

)
= tr

(
Û(T, 0)

)
=

∑
energy

eigenstates

exp(−iTE/h̄)×multiplicity(E). (56)

In the coordinate basis, the trace of the evolution operator is

tr(Û(T, 0)) =

∫
d3x 〈x| Û(T, 0) |x〉 =

∫
d3xU(T,x; 0,x), (57)

where U(T,x; 0,x) is the evolution kernel for propagation from x at time t0 = 0 to exactly same

point x at a later time T . In the path integral formulation,

U(T, z; 0,y) =

x(T )=z∫∫∫
x(0)=y

D′[x(t)]eiS[x(t)]/h̄, (42)

hence

Z(T ) = tr(Û(T, 0)
)

=

∫
d3yU(T,y; 0,y)

=

∫
d3y

x(T )=y∫∫∫
x(0)=y

D′[x(t)]eiS[x(t)]/h̄

=

∫∫∫
x(T )=x(0)

whatever that is

D[x(t)]eiS[x(t)]/h̄.

(58)
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Note no prime over D because the paths x(t) are subject to only one boundary condition —

periodicity in time, x(T ) = x(0).

Without discretizing time, the path integral (58) can be calculated up to an overall normal-

ization constant. Consequently, when we extract the Hamiltonian’s spectrum {En} from the

partition function Z(T ), the multiplicity of all the eigenvalues can be determined only up to

some unknown overall factor.

For example, consider a harmonic oscillator with action

S[x(t)] =
M

2

∫
dt
(
ẋ2(t) − ω2x2(t)

)
. (59)

This action is a quadratic functional of the x(t), and it can be diagonalized via Fourier transform,

x(t) =
+∞∑

n=−∞
yn × e2πint/T , y∗n = y−n , (60)

S[x(t)] =
+∞∑

n=−∞
Cny

∗
nyn , (61)

Cn = C−n =
MT

2
×

((
2πn

T

)2

− ω2

)
. (62)

Note that the discrete frequencies 2πn/T of the Fourier transform (60) are completely determined

by the periodicity condition x(T ) = x(0) and have nothing to do with the oscillator’s frequency ω.

By linearity of the transform (60),

∫∫∫
periodic

D[x(t)] =
+∞∏

n=−∞

∫
dyn × a constantJacobian

= J ×
∫
dy0

∞∏
n=1

∫
dRe yn

∫
d Im yn .

(63)

To be precise, the Jacobian J here depends on T and on the mass M via the normalization of

the Lagrangian path integral, but it does not depend on any of the yn variables, and it does not

depend on the oscillator’s frequency ω.
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In terms of the Fourier variables yn, the path integral (58) becomes

Z = J ×
∫
dy0

∞∏
n=1

∫
dRe yn

∫
d Im yn exp

(
i

h̄
S =

iC0

h̄
y2

0 +
∞∑
n=1

2iCn
h̄
|yn|2

)

= J ×
∫
dy0 exp

(
−(C0/ih̄)y2

0

)
×
∞∏
i=1

∫
d2yn exp

(
−(2Cn/ih̄)|yn|2

)
= J ×

√
πih̄

C0
×
∞∏
n=1

πih̄

2Cn
.

(64)

The coefficients Cn are spelled out in eq. (62), but it’s convenient to rewrite them as

C0 = −M
2T
× (ωT )2, Cn>0 =

2π2Mn2

T
×

(
1 −

(
ωT

2πn

)2
)
. (65)

Consequently, the partition function (64) becomes

Z(T ) = J ×
√
−2πih̄T/M

ωT
×
∞∏
n=1

(ih̄T )/(4πn2M)

1−
(
ωT
2πn

)2 =
−iF

(ωT )
∞∏
n=1

(
1 −

(
ωT
2πn

)2) (66)

where

F = J ×
√
−2πih̄T

M
×
∞∏
n=1

ih̄T

4πMn2
(67)

combines all the factors that do not depend on the oscillator’s frequency ω. A priori, F could be

a function of M or T , but by the non-relativistic dimensional analysis, a dimensionless function

F (M,T, h̄) which does not depend on anything else must be a constant.

Unfortunately, this argument does not tell us whether this constant F is finite or infinite:

it contains an infinite product over n that is badly divergent, and the Jacobian J is also badly

divergent, but the two divergences might somehow cancel each other. As it happens, they do

and F is finite; in fact F = 1, unless there are some extra degrees of freedom besides x(t). But

alas, showing this takes more work than I am capable of doing in one extra lecture.

If you are interested, you can read my notes on convergence issue in path integrals. Those

notes where written for my QFT class last year, so the second half (about the functional integrals

in Euclidean spacetime) is way beyond the scope of this quantum mechanics class; but the first

half (the first 9 pages) deals with a harmonic oscillator so you should be able to follow it.
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Meanwhile, let’s take finite F for granted and rewrite eq. (66) as

Z(T ) =
−iF
2π
× s(x) (68)

for x =
ωT

2π
(69)

and s =
1

x
×
∞∏
n=1

(
1

1− (x/n)2
=

n

n− x
× n

n+ x

)
. (70)

and focus on the remaining infinite product in this formula. Fortunately, this product is abso-

lutely convergent and may be evaluated just by looking at its poles and zeroes. Specifically, s(x)

has no zeroes, it has simple poles at all integers (positive, negative, and zero), it does not have

any worse-than-pole singularities in the complex x plane, and it does not grow when Imx→ ±∞.

These facts completely determine the s(x) function to be

1

x
×
∞∏
n=1

1

1− (x/n)2
=

π

sin(πx)
(71)

where the normalization comes from the residue of the pole at x = 0. Hence, the partition

function Z(T ) of the harmonic oscillator turns out to be

Z(T ) =
−iF/2

sin(ωT/2)
. (72)

To extract the oscillator’s eigenvalues from this partition function, we expand it as

Z(T ) =
F

2i sin(ωT/2)
=

F

eiωT/2 − e−iωT/2

=
Fe−iωT/2

1− e−iωT
= F ×

∞∑
n=0

e−iωT (n+ 1
2
).

(73)

Comparing this series to eq. (56), we immediately see that the eigenvalues are En = h̄ω(n+ 1
2) and

they all have the same multiplicity F . Of course, we all new those facts back in the undergraduate

school (if not earlier), but now we know how to derive them in the path-integral formalism.
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