
1. Saddle Point Method of Asymptotic Expansion

1.1 The Real Case.

Consider an integral of the form

I(A) =

x2
∫

x1

dx f(x) eAg(x) (1.1)

where f and g are some real functions of x and A > 0 is a parameter. For large values of A

the integrand has narrow sharp peaks like this

x

f(x)× eAg(x)

0 π
6

π
3

π
2

2π
3

5π
6 π

(in this particular example f(x) = x, g(x) = sin x and A = 100), and the integral is

completely dominated by the biggest peak. Each peak is located at a maximum of g(x), and

its width is O(1/
√
A ). So let x0 be the location of the biggest maximum of g between x1

and x2, and let’s change the integration variable from x to y according to

x = x0 +
y√
A
. (1.2)

Expanding Ag(x) in powers of y, we have

Ag(x) = Ag(x0) + 1
2y

2g′′(x0) +
y3g′′′(x0)

6
√
A

+ · · · (1.3)

(the first-derivative term is missing here because x0 is a maximum of g). Treating this

expansion as expansion in powers of 1/
√
A rather than y, we expand the exponential eAg(x)
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as

eAg(x) = eAg(x0) · ey2g′′(x0)/2 ·
(

1 +
y3g′′′(x0)

6
√
A

+
3y4g′′′′ + y6(g′′′)2

72A
+ · · ·

)

. (1.4)

Similarly, assuming f(x0) 6= 0, we have

f(x) = f(x0) ·
(

1 +
yf ′(x0)

f(x0)
√
A

+
y2f ′′(x0)
2f(x0)A

+ · · ·
)

. (1.5)

Substituting eqs. (1.4) and (1.5) into (1.1) gives us

I(A) =
f(x0) e

Ag(x0)

√
A

y2
∫

y1

dy ey
2g′′(x0)/2 ·

(

1 +
∞
∑

n=1

A−n/2Pn(y)

)

, (1.6)

where Pn are some polynomial functions of y; it is easy to show that Pn(y) are odd polyno-

mials for odd n and even polynomials for even n.

We assume that x1 < x0 < x2 — i.e., the maximum of g occurs strictly between x1 and

x2 and not at one of the end points. Then, in the large A limit, y1 → −∞ and y2 → +∞ as

O(
√
A), and since the Gaussian factor ey

2g′′(x0)/2 decreases very rapidly for y → ±∞ (note

g′′(x0) < 0 because x0 is a maximum of g), we may extend the integration range of the

integral (1.6) to the entire real axis. This is in-exact for a finite A, but the relative error in

I(A) due to this extension decrease with A faster than any power of A. Therefore,

I(A) ≈ f(x0) e
Ag(x0)

√
A

+∞
∫

−∞

dy ey
2g′′(x0)/2 ·

(

1 +

∞
∑

n=1

A−n/2Pn(y)

)

= f(x0) e
Ag(x0)

√

2π

−Ag′′(x0)
×
(

1 +
∞
∑

n=1

Cn

An/2

)

,

(1.7)

where

Cn =

∫ +∞
−∞ dy eg

′′(x0)y
2/2 × Pn(y)

∫ +∞
−∞ dy eg

′′(x0)y2/2
. (1.8)

Moreover, since all the odd-numbered P2n−1(y) polynomial are odd WRT y → −y, all the
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odd C2n−1 vanish, so only the even C2n contribute to the series (1.7), thus

I(A) = f(x0) e
Ag(x0)

√

2π

−Ag′′(x0)
×
(

1 +
∞
∑

n=1

C2n

An

)

. (1.9)

Working out explicit formulae for the C2n in terms of the derivatives of the f and g functions

at x0 is a straightforward (but rather boring) exercise; for example

C2 =

(

− f ′′

2fg′′
+

f ′g′′′

2f(g′′)2
+

g(4)

8(g′′)2
− 5(g′′′)2

24(g′′)3

)

@x0 . (1.10)

Fortunately, we won’t need such formulae in these notes, so let me skip their derivation.

The series in eq. (1.9) usually has zero radius of convergence, so it cannot be actually

summed up for any finite value of A. Instead, it’s an asymptotic series whose partial sums

have the right asymptotic behavior in the large A limit,

1 +
∞
∑

n=1

C2n

An
= 1 +O(1/A) = 1 + C2/A+O(1/A2) = 1 + C2/A+ C4/A

2 +O(1/A3) = · · ·

(1.11)

in the strict mathematical sense of O(1/An) — it’s no larger than const/An but only for a

large enough A. Thus the precise meaning of eq. (1.9) is

I(A) = f(x0) e
Ag(x0)

√

2π

−Ag′′(x0)
·
(

1 +O(1/A)
)

= f(x0) e
Ag(x0)

√

2π

−Ag′′(x0)
·
(

1 + C2/A+O(1/A2)
)

= · · ·

(1.12)

in the large A limit.
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1.2 The Complex Case.

Now consider the case of complex f(x) and g(x). Again, in the large A limit the integrand

is sharply peaked near the maximum of Reg(x), so it seems like we could proceed similarly

to the real case. There is however one crucial difference — the maximum of Reg(x) is not

necessarily the stationary point of the phase Img(x), so we have to add a purely imaginary

term
√
Ayg′(x0) to the expansion (1.3) for the Ag(x). Consequently, the integral (1.6)

becomes

I(A) =
f(x0) e

Ag(x0)

√
A

∫

dy ey
2g′′(x0)/2ey

√
Ag′(x0) ·

(

1 +
∞
∑

n=1

A−n/2Pn(y)

)

, (1.13)

and the rapidly (in the large A limit) oscillating phase factor ey
√
Ag′(x0) severely suppresses

the asymptotic behavior of the integral. Specifically, the leading term in the expansion now

gives us

I(A)
?−−−→

A→∞
f(x0) e

Ag(x0)

√

2π

−Ag′′(x0)
· exp

(

−Ag′2(x0)/g′′(x0)
)

, (1.14)

and the last factor here is very small because the real part of g′2(x0)/g′′(x0) is always

positive. Consequently, a maximum of Reg(x) does not contribute at full strength unless it

also happen to be a stationary point of the phase Img(x). The suppression is so strong that

the region around a maximum of Reg that is not a stationary point of the phase may no

longer dominate the large A asymptotic behavior of the integral. This calls for a different

approach in the complex case.

Indeed, proper complexification of the integral (1.1) goes beyond making f and g complex

functions of a real variable x. Instead, we should take f and g to be complex analytic functions

of a complex variable, and write a contour integral

I(A) =

∫

Γ

dz f(z)× eAg(z) (1.15)

over some contour Γ in the complex plane. A fundamental theorem of complex analysis states

that contour integrals of analytic functions are invariant under any continuous deformation

of the contour that does not affects its end points (if any) and does not drag contour over

4



any singularities of the integrand. Thus for the problem at hand, we deform the contour

until the maximum of Reg along the contour is also a stationary point of the phase Img.

Often, such deformation turns a real interval from x1 to x2 into a non-real contour in the

complex plane. This may seem like making the problem even more complex (in both senses

of the word) than it is, but in fact this leads to an easily obtainable large A asymptotics.

The points in the complex plane where a maximum of Reg (along some contour) coincides

with a stationary point of the phase Img are the zeros of the complex derivative g′(z). Near

such a point Reg(z) looks like a saddle or the top of a mountain pass — it has a maximum

along some directions in the complex plane and a minimum along other directions — hence

the two names for the asymptotic method described here: the saddle point method or the

mountain pass method. The mountain pass analogy is particularly apt, for a properly routed

contour not only goes through a zero of g′, but crosses that zero in the manner of a highway

crossing a mountain pass, by starting in a valley (of low Reg), going up till it reaches the top

of the pass, then going down into another valley. Although a mountain goat might think of

a pass as a low point on a trail from one hill to another, thinking like a goat does not work

for computing integrals.

Once you have the right contour Γ, obtaining the large A asymptotics of the integral

(1.15) becomes analogous to the real case. First, we change the integration variable from z

to a new complex variable y related to z via

z = z0 +
ηy√
A
, (1.16)

where z0 is a zero of g′(z) and η is a unimodular complex number, |η| = 1. Second, we

expand the integrand of (1.15) into powers of 1/
√
A in the same manner as we did in the

real case; this gives us

I(A) =
ηf(z0) e

Ag(z0)

√
A

∫

Γ′

dy ey
2η2g′′(z0)/2 ·

(

1 +

∞
∑

n=1

A−n/2Pn(ηy)

)

, (1.17)

where Γ′ is the integration contour in the y plane. The Γ′ always crosses the y = 0 point,

but the direction of that crossing depends on η; to simplify our arguments, let us choose the

η that would make the direction of the Γ′ contour — i.e., the direction of dy along the Γ′ —
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real and positive at y = 0. Consequently, for the original contour Γ (in the z plane) which

crosses the saddle point z0 as a mountain highway rather than as a goat trail, the coefficient

of y2/2 in the exponent in eq. (1.17) has a negative real part,

Re(η2 × g′′(z0)) < 0. (1.18)

Also, the Γ′ contour in the y plane is tangent to the real axis at y = 0, so in the A → ∞
limit it becomes the real axis itself, plus some appendages at infinity. Similar to the real

case, contributions of these appendages to the integral (1.17) has relative magnitude smaller

than any negative power of A, so we may safely neglect it. In other words, we may replace

Γ′ with the real axis, hence

I(A) ≈ ηf(z0) e
Ag(z0)

√
A

+∞
∫

−∞

dy ey
2η2g′′(z0)/2 ×

(

1 +

∞
∑

n=1

A−n/2Pn(ηy)

)

〈〈where the integral converges thanks to the inequality (1.18) 〉〉

=

√

2π

A
exp
(

Ag(z0)
)

× ηf(z0)
√

−η2g′′(z0)
×
(

1 +

∞
∑

n=1

C2n

An

)

, (1.19)

in complete analogy to the real formula (1.12). Note that the η parameter in eq. (1.19)

essentially cancels itself out, except that it helps determine the sign of the complex square

root
√

−η2g′′(z0) — the real part of this root should be positive.

Although formulae (1.12) and (1.19) differ very little, there is one important difference

between large A asymptotics of real and complex integrals I(A). The asymptotics of a real

integral (1.1) is always dominated by the global maximum of g(x) within the integration

range, which can be either the biggest local maximum x0 strictly within the range, or one

of the end points of that range (in which case eq. (1.12) does not apply). Local maxima of

g(x) outside the integration range of (1.1) never play any role in the asymptotic expansion

even if they are bigger than any maximum within the range.

For the complex integrals (1.15), determining which of the saddle points of g(z) in the

complex plane dominates the integral’s asymptotics is not so straightforward. Given the

freedom to deform the integration contour Γ, one cannot simply say that a saddle point

z0 is “within the integration range” while another saddle point is “outside the integration
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range”, because Γ can always be deformed to cross any point we like. Usually, the general

direction of the original contour and the phases of g′′ at saddle points which control the

directions in which those saddle points should be traversed give sufficient clues to determine

which saddle point is dominant and how to deform the contour to go through it. However,

such determination is somewhat of a black art best explained on specific examples; one such

example — the asymptotic behavior of Airy functions — shall be discussed in the next

section.

2. Airy Functions

2.1 Construction.

The Airy functions Ai and Bi are solutions of the linear differential equation

Ψ′′(z) − zΨ(z) = 0. (2.1)

Physically, it is the scale-invariant form of the Schrödinger equation for a quantum particle

subject to a constant force, i.e., linear potential V (x) = −Fx,

− h̄2

2m

d2Ψ

dx2
− Fx×Ψ(x) = EΨ(x). (2.2)

The relation between z and the particle’s coordinate x is

z = − sign(F )
3

√

2m|F |
h̄2

× (x− x0) (2.3)

where x0 = −E/F is the classical turning point where V (x0) = E.

For Bessel functions experts, the easiest way to solve the equation (2.1) is to substitute

z = 2i
3 y

3/2, Ψ(z) = y1/3J(y). (2.4)

In terms of J(y) equation (2.1) becomes

J ′′(y) +
J ′(y)
y

+

(

1− 1

9y2

)

J(y), (2.5)

which is the Bessel equation of the order 1/3. Thus, J(y) is a linear combination of the

Bessel functions J+1/3(y) and J−1/3(y).
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However, it is more instructive to solve the equation (2.1) in a different way. Let us

perform a Laplace-like transform and look for a solution Ψ(z) in the form of a contour

integral

Ψ(z) =

∫

Γ

dt etzΦ(t); (2.6)

here Γ is some z-independent contour in the complex t plane and Φ(t) is an analytic function

of t that does not have any singularities on the contour Γ. With these assumptions, the second

derivative Ψ′′(z) is related to t2Φ(t) via

Ψ′′(z) =

∫

Γ

dt etzt2Φ(t). (2.7)

On the other hand, zΨ(z) is related to the first derivative of Φ(t) via

zΨ(z) =

∫

Γ

dt
∂etz

∂t
× Φ(t)

〈〈 integrating by parts 〉〉

=
[

etzΦ(t)
]end(Γ)

start(Γ)
−
∫

Γ

dt etzΦ′(t).

(2.8)

Therefore, in terms of Φ(t), the second order eq. (2.1) is equivalent to a first order equation

t2Φ(t) + Φ′(t) = 0, (2.9)

plus a boundary condition

etzΦ(t) = 0 on the boundary of the contour Γ. (2.10)

The general solution of the equation (2.9) is

Φ(t) = C exp
(

−t3/3
)

, (2.11)

where C is a constant; therefore, we have formally solved the Airy equation (2.1) in terms

of the contour integral

Ψ(z) = C

∫

Γ

dt exp
(

tz − 1
3 t

3
)

, (2.12)

and all we need now is to specify the integration contour Γ.
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Since the integrand of eq. (2.12) has no singularities for any finite t, only the end points

of the contour would affect the integral; in particular, any closed Γ would lead to the trivial

solution Ψ(z) ≡ 0. On the other hand, an open Γ with finite end points would violate the

boundary condition (2.10). Hence, both end points of the contour Γ must be at the complex

∞, and the directions in which the two ends of the contour approach the∞ would completely

determine the integral (2.12) (the latter follows from the lack of finite singularities of the

integrand). Those directions of approach are controlled by two considerations: First, one

should approach the infinity along directions in which the integrand decreases rather than

increases; for the problem at hand, this allows angles of approach between −π/6 and +π/6,

between +π/2 and +5π/6, and between −5π/6 and −π/2, that is, within one of the three

green sectors on the following diagram:

Γ1

Γ3

Γ2

(2.13)

The second consideration is that all approaches within the same sector are equivalent; con-

sequently, the two ends of the contour must belong to different sectors. These two consider-

ations give us a choice of three contours — Γ1 , Γ2 and Γ3 on figure (2.13) — corresponding

to three different solutions Ψ1(z), Ψ2(z) and Ψ3(z) of the Airy equation (2.1). Since the

combined contour Γ1 + Γ2 + Γ3 is shrinkable, it follows that Ψ1(z) + Ψ2(z) + Ψ3(z) ≡ 0,

so only two of the solutions are independent. The Airy functions Ai and Bi are the two

independent solutions which happen to be real for real z, namely

Ai(z) =
i

2π

∫

Γ3

dt exp
(

tz − 1
3t

3
)

,

Bi(z) =
1

2π

∫

Γ2−Γ1

dt exp
(

tz − 1
3 t

3
)

,

(2.14)
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where the integral over Γ2−Γ1 is the integral over Γ2, plus the integral over −Γ1, the latter

being Γ1 traversed in the direction opposite to the arrow on figure (2.13).

2.2 Asymptotics

In quantum mechanics, the Airy functions help to match the WKB approximations to

the wave functions on two sides of a classical turning point. To do that, we need to know the

asymptotic behaviors of the Airy functions for large real z, both positive (for the classically

forbidden side) and negative (for the classically allowed side). The easiest way to obtain this

information is to use the saddle point method described in the previous section.

Although the integrals in eq. (2.14) do not have the exact form (1.15), we may bring

them to that form by changing the integration variable from t to τ ≡ t/
√

|z|, thus

Ai(z) =
i

2π
× |z|1/2

∫

Γ3

dτ exp
(

|z|3/2
(

z
|z|τ −

1
3τ

3
)

)

,

Bi(z) =
1

2π
× |z|1/2

∫

Γ2−Γ1

dτ exp
(

|z|3/2
(

z
|z|τ −

1
3τ

3
)

)

;

(2.15)

note that the contours Γ1,2,3 are essentially scale invariant, so they may be used without

change in both t and τ planes. For the integrals (2.15), large |z|3/2 plays the role of the large

A parameter while z
|z|τ −

1
3τ

3 acts as A-independent g(τ), exactly as in eq. (1.15). However,

this g(τ) also depends on the phase of a complex z — or the sign of a real z, so we should

have different asymptotics for z → +∞ than for z → −∞.

Let’s start with the positive z → +∞ for which g(τ) = +τ − 1
3τ

3 has stationary points

at τ1 = +1 and τ2 = −1. The positive saddle point τ1 has a larger value of Reg(τ1) than the

negative saddle point τ2,

g(τ1 = +1) = +2
3 versus g(τ2 = −1) = −2

3 , (2.16)

so naively one expects both integrals (2.15) to be dominated by the τ1 saddle point. However,

the actual situation is more complicated due to the τ → τ∗ symmetry of the integrals and
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the mountain-pass directions in which the two saddle points should be traversed. Indeed,

g′′(τ1) = −2, g′′(τ2) = +2, (2.17)

so the mountain-pass directions through τ1 are within 45◦ of the horizontal while the

mountain-pass directions through τ2 are within 45◦ of the vertical; graphically,

(2.18)

For the Γ2 and the −Γ1 contours in the complex plane, it is easy to deform them so they

run through the τ1 = +1 saddle point in the horizontal left-to-right direction, cf. solid blue

lines on the diagram below:

−Γ1

Γ2

(2.19)

We may also make each of the two contours run through both saddle points in mountain-

pass directions — cf. the dashed blue lines — but they would run in the same left-to-right

direction through the τ1 = +1 saddle point but in the opposite vertical direction through

the τ2 = −1: the Γ2 contour would run upward while the −Γ1 contour would run downward.
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Thanks to the τ → τ∗ symmetry, this means that the contributions of the τ2 saddle point to

the integrals over the Γ2 and the −Γ1 contours would cancel each other from the Bi(z) Airy

function, so we may just as well re-route the two contours to skip the τ2 point altogether

and run only through the τ1 saddle point. (The solid blue lines on the above diagram).

At the τ1 = +1 point, we have g(τ1) = +2
3 , f(τ) ≡ 1, −g′′(τ1) = +2, η = +1 for both

+Γ2 and −Γ1 contours, hence in the large A = |z|3/2 limit

√

2π

A
× exp(Ag(τ1))×

ηf(τ1)
√

−η2g′′(τ1)
=

√
2π

|z|3/4
× exp

(

+2
3 |z|

3/2
)

× 1√
2

(2.20)

and therefore

∫

+Γ2

dτ exp
(

|z|3/2 × (τ − 1
3τ

3)
)

∫

−Γ1

dτ exp
(

|z|3/2 × (τ − 1
3τ

3)
)































−→
√
π

|z|3/4 × exp
(

+2
3 |z|

3/2
)

×
(

1 +O(|z|−3/2
)

. (2.21)

In terms of the irregular Airy function

Bi(z) =
|z|1/2
2π
×
∑

(

2 contour

integrals

)

, (2.22)

this gives us its asymptotic behavior for z → +∞ as

Bi(z) −−−−→
z→+∞

1√
π|z|1/4 × exp

(

+2
3 |z|

3/2
)

×
(

1 +O(|z|−3/2
)

. (2.23)

For the regular Airy function Ai(z), we have a very different challenge re-routing the

Γ3 contour to run through the saddle points τ1 = +1 and τ2 = −1. This time, it is quite

natural to let Γ3 run through the τ2 in the mountain-pass-like downward direction — the

blue line on the diagram below — but much less natural to let it run through the τ1 in
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mountain-pass-like horizontal direction, as in the orange lines below:

Γ3

(2.24)

Moreover, the two orange lines cross the τ1 saddle point in opposite directions, so its con-

tribution to the integrals over the two orange contours would have opposite sign. But by

the τ → τ∗ symmetry of the integrand, the two orange lines should be completely equiva-

lent as integration contours, so we may just as well take the average (of the two integrals),

from which the τ1 contribution would completely cancel out! Thus, despite the τ1 saddle

point having a larger Reg(τ) than the τ2 saddle point, it’s the τ2 point which dominates the

integral over the Γ3 contour in the A = |z|3/2 →∞ limit.

Thus, for the regular Airy function Ai(z) for z → +∞, we draw the Γ3 contour as the

blue line on the diagram (2.24) and focus on the contribution of the τ2 = −1 saddle point.

At that point, g(τ2) = −2
3 , −g′′(τ2) = −2, f(τ) ≡ 1, and η = −i for the Γ3 contour, thus

√

2π

A
× exp(Ag(τ2))×

ηf(τ2)
√

−η2g′′(τ2)
=

√
2π

|z|3/4 × exp
(

−2
3 |z|

3/2
)

× −i√
2
, (2.25)

hence

∫

Γ3

dτ exp
(

|z|3/2(τ − 1
3τ

3)
)

≈ −i
√
π

|z|3/4
× exp

(

−2
3z

3/2
)

×
(

1 +O(z−3/2)
)

(2.26)
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and therefore

Ai(z) =
i|z|1/2
2π

× (2.26) =
1

2π1/2 |z|1/4 × exp
(

−2
3 |z|

3/2
)

×
(

1 +O(z−3/2)
)

. (2.27)

The asymptotic limits (2.27) and (2.23) of Airy functions are for the large positive values

of z. For a negative z, we have

g(τ) = −τ − τ3

3
, (2.28)

so the saddle points are at imaginary locations τ3,4 = ±i rather than the real real τ1,2 = ±1.
At these saddle points, we have

g(τ3 = +i) = −2
3 i, g′′(τ3) = −2i,

g(τ4 = −i) = +2
3i, g′′(τ4) = +2i.

(2.29)

In particular, both saddle points have the same value of Reg(τ3,4) = 0, so we expect the two

saddle points to be co-dominant for both Airy functions Ai(z) and Bi(z) in the z → −∞
limit. Also, the second derivatives indicate the mountain-pass-like directions for traversing

the two saddle points:

NW to SE or SE to NW

through τ3 = +i

NE to SW or SW to NE

through τ4 = −i

(2.30)

Given the general directions of the three integration contours −Γ1, +Γ2, and Γ3, this means
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that that the contours should be re-routed as shown on the diagram below:

Γ3

Γ3

−Γ1

+Γ2

+Γ2

−Γ1

(2.31)

In particular, the−Γ1 contour crosses only one saddle point τ3 in the direction η = e−πi/4,

hence

√

2π

A
× exp(Ag(τ3))×

ηf(τ3)
√

−η2g′′(τ3)
=

√
2π

|z|3/4
× exp

(

−2
3 i|z|

3/2
)

× e−πi/4

√
2

(2.32)

and therefore

∫

−Γ1

dτ exp
(

|z|3/2(−τ − 1
3τ

3)
)

≈
√
π

|z|3/4 × exp
(

−iπ4 − 2
3 i|z|

3/2
)

×
(

1 +O(|z|−3/2)
)

. (2.33)

Likewise, the +Γ2 contour also crossed only one saddle point, but τ4 rather than τ3 and in

the direction η = e+πi/4, hence

√

2π

A
× exp(Ag(τ4))×

ηf(τ4)
√

−η2g′′(τ4)
=

√
2π

|z|3/4 × exp
(

+2
3i|z|

3/2
)

× e+πi/4

√
2

(2.34)

and therefore

∫

+Γ2

dτ exp
(

|z|3/2(−τ − 1
3τ

3)
)

≈
√
π

|z|3/4
× exp

(

+iπ4 + 2
3i|z|

3/2
)

×
(

1 +O(|z|−3/2)
)

. (2.35)
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Altogether, this gives us the z → −∞ limit of the irregular Airy function,

Bi(z) =
|z|1/2
2π

(

(2.33)+(2.35)) −→ 1

π1/2|z|1/4
×cos

(

π
4 + 2

3 |z|
3/2
)

×
(

1+O(|z|−3/2)
)

. (2.36)

Finally, the Γ3 contour crosses both saddle points τ3,4, and both of them integrate to the

integral over this contour. At the τ3 = +i saddle point the contour’s direction is η = e−πi/4,

hence

√

2π

A
× exp(Ag(τ3))×

ηf(τ3)
√

−η2g′′(τ3)
=

√
2π

|z|3/4 × exp
(

−2
3 i|z|

3/2
)

× e−πi/4

√
2

(2.37)

while at the τ4 = −i saddle point Γ3 runs in the η = e−3πi/4 = −e+πi/4 direction, thus

√

2π

A
× exp(Ag(τ4))×

ηf(τ4)
√

−η2g′′(τ4)
=

√
2π

|z|3/4
× exp

(

+2
3 i|z|

3/2
)

× −e
+πi/4

√
2

. (2.38)

Altogether,

∫

Γ3

dτ exp
(

|z|3/2(−τ − 1
3τ

3)
)

=

√
2π

|z|3/4 × exp
(

−2
3 i|z|

3/2
)

× e−πi/4

√
2
×
(

1 +O(|z|−3/2)
)

+

√
2π

|z|3/4 × exp
(

+2
3i|z|

3/2
)

× −e
+πi/4

√
2
×
(

1 +O(|z|−3/2)
)

=

√
π

|z|3/2
× (−2i) sin

(

π
4 + 2

3 |z|
3/2
)

×
(

1 +O(|z|−3/2)
)

,

(2.39)

and therefore the regular Airy function Ai behaves as

Ai(z) =
i|z|1/2
2π

× (2.39) =
1

π1/2 |z|1/4 sin
(

π
4 + 2

3 |z|
3/2
)

×
(

1 +O(|z|−3/2)
)

. (2.40)
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2.3 Airy Functions and the WKB Approximation.

Finally, consider 1D motion of a quantum particle in some potential V (x). In the WKB

approximation, the particle’s wave function in the classically allowed region (where V (x) <

E) looks like

Ψ(x) =
∑

±

C±
√

k(x)
× exp

(

±i
∫

dx k(x)

)

, k(x) =

√

2m(E − V (x))

h̄
. (2.41)

The approximation is valid when the potential is smooth so that k(x) changes slowly on

the 1/k scale of distance. A similar approximation exists in the classically forbidden region

where V (x) > E, namely

Ψ(x) =
∑

±

C±
√

κ(x)
× exp

(

±
∫

dx κ(x)

)

, κ(x) =

√

2m(V (x)− E)

h̄
; (2.42)

again, this approximation is valid as long as κ(x) changes slowly on the 1/κ scale.

Near a classical turning point x0 where V (x0) = E, both approximations (2.41) and

(2.42) break down. Instead, near x0 we treat the force F = −dV/dx as approximately

constant, so the wave function is approximately an Airy function of

z = − sign(F )
3

√

2m|F |
h̄2

× (x− x0). (2.3)

For z → ±∞, x if far enough from the turning point x0 so the Airy function of z should

match the WKB approximation for a linear potential V = −F (x−x0). Specifically, z → +∞
corresponds to the classically forbidden side of the turning point x0, so the Airy-function

solution should match eq. (2.42), while the z → −∞ corresponds to the classically allowed

side so the Airy function should match the eq. (2.41).

Let’s see how this works. For the sake of definiteness, let F > 0, so the classically allowed

region is to the right of x0 while the classically forbidden region is to the left of x0. On the

forbidden side x < x0, z > 0 we have:

κ(x) =

√

2mF (x0 − x)

h̄
= 3

√

2mF

h̄2
× z1/2, (2.43)
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x0
∫

x

κ(x′) dk′ =
2

3
(x0 − x)3/2

√
2mF

h̄
=

2

3
z3/2, (2.44)

hence the two WKB wave functions (2.42) become

Ψ1(x) =
C1

2
√

κ(x)
exp



−
x0
∫

x

κ(x′) dk′



 → C1

2

6

√

h̄2

2mF
× z−1/4 exp

(

−2
3z

3/2
)

,

〈〈 note factors of 2 in the denominator 〉〉

Ψ2(x) =
C2

√

κ(x)
exp



+

x0
∫

x

κ(x′) dk′



 → C2
6

√

h̄2

2mF
× z−1/4 exp

(

+2
3z

3/2
)

,

(2.45)

in perfect agreement with the z → +∞ limits of the two Airy functions (2.27) and (2.23).

Specifically,

for z → +∞, Ψ1(x) = C1
√
π

6

√

h̄2

2mF
× Ai(z), Ψ2(x) = C2

√
π

6

√

h̄2

2mF
× Bi(z).

(2.46)

Likewise, in the allowed side x > x0, z < 0 we have:

k(x) =

√

2mF (x− x0)

h̄
= 3

√

2mF

h̄2
× |z|1/2, (2.47)

x
∫

x0

k(x′) dk′ =
2

3
(x− x0)

3/2

√
2mF

h̄
=

2

3
|z|3/2, (2.48)

hence the two WKB wave functions (2.41), — or rather, their real linear combinations

Ψ1(x) =
C1

√

k(x)
× sin





π

4
+

x
∫

x0

k(x′) dx′



 ,

Ψ2(x) =
C2

√

k(x)
× cos





π

4
+

x
∫

x0

k(x′) dx′



 ,

(2.49)
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become

Ψ1(x) → C1
6

√

h̄2

2mF
× |z|−1/4 sin

(

π
4 + 2

3 |z|
3/2
)

,

Ψ2(x) → C2
6

√

h̄2

2mF
× |z|−1/4 cos

(

π
4 + 2

3 |z|
3/2
)

,

(2.50)

in perfect agreement with the z → −∞ limits of the Airy functions (2.27) and (2.23).

Specifically,

for z → −∞, Ψ1(x) = C1
√
π

6

√

h̄2

2mF
×Ai(z), Ψ2(x) = C2

√
π

6

√

h̄2

2mF
× Bi(z).

(2.51)

Moreover, comparing eqs. (2.46) and (2.51) to each other, we immediately learn how to

match the WKB solutions on the allowed and forbidden sides of the classical turning point

x0:

forbidden side x < x0 ←→ allowed side x > x0

Ψ1(x) =
C1

2
√

κ(x)
exp



−
x0
∫

x

κ(x′) dx′



 ←→ Ψ1(x) =
C1

√

k(x)
sin





π

4
+

x
∫

x0

k(x′) dx′



 ,

Ψ2(x) =
C2

√

κ(x)
exp



+

x0
∫

x

κ(x′) dx′



 ←→ Ψ2(x) =
C2

√

k(x)
cos





π

4
+

x
∫

x0

k(x′) dx′



 .

(2.52)
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