
Magnetization, Bound Currents, and the H Field

In magnetic materials, atoms and molecules may have non-zero average magnetic mo-

ments 〈m〉. Such magnetic moments are usually induced by an external magnetic fields, but

in permanent magnets they can remain long after the external field is switched off. One way

or the other, the atomic/molecular magnetic moments lead to macroscopic magnetization

M =
net magnetic dipole moment

volume
. (1)

In these notes, we shall explore the macroscopic magnetic field B(x, y, z) due to such mag-

netization.

Let’s start with the vector potential A(x, y, z) due to a single magnetic dipole m,

A(r) =
µ0
4π

m×
r̂

r2
=

µ0
4π

m×∇

(

−1

r

)

. (2)

By the superposition principle, the vector potential of a bunch of magnetic dipoles is a sum

of potentials like (2), namely

A(r) =
µ0
4π

dipoles
∑

i

mi ×∇r

(

−1

|r− ri|

)

. (3)

Likewise, for a continuous distribution of dipoles with macroscopic magnetization M(x, y, z),

we have

A(r) =
µ0
4π

∫∫∫

d3Vol
′
M(r′)×∇r

(

−1

|r− r′|

)

. (4)

To simplify this expression, we note that

∇r

(

−1

|r− r′|

)

= ∇r′

(

+1

|r− r′|

)

(5)

and then integrate by parts:

M(r′)×∇r′

(

+1

|r− r′|

)

= −∇r′

(

+1

|r− r′|

)

×M(r′) = −∇r′ ×

(

M(r′)

|r− r′|

)

+
∇×M(r′)

|r− r′|
.

(6)
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Applying these formulae to the integrand of eq. (4), we arrive at

A(r) =
µ0
4π

∫∫∫

d3Vol
′ ∇×M(r′)

|r− r′|
−

µ0
4π

∫∫∫

d3Vol
′
∇r′ ×

(

M(r′)

|r− r′|

)

. (7)

Moreover, the second term on the RHS can be rewritten as a surface integral using the

Lemma I shall prove in the Appendix to these notes, namely for any vector field T(r) and

any volume V with surface S,

∫∫∫

V

(∇×T)d3Vol = −

∫∫

S

T× d2A = −

∫∫

S

(T(r)× n(r)) d2A (8)

where n(r) is a unit vector normal to to the surface S at point r. In the present context,

M(r′)/|r − r′| plays the role of T(r′), V is the volume occupied by the magnetic material

and S is its outer surface. Thus altogether, the vector potential (7) becomes

A(r) =
µ0
4π

∫∫∫

V

d3Vol
′ ∇×M(r′)

|r− r′|
+

µ0
4π

∫∫

S

d2A
M(r′)× n(r′)

|r− r′|
, (9)

which has the form of a vector potential created by the volume current

Jb(r
′) = ∇×M(r′) (10)

and the surface current

Kb(r
′) = M(r′)× n(r′); (11)

indeed, in terms of these current, the potential (9) becomes

A(r) =
µ0
4π

∫∫∫

V

d3Vol
′ Jb(r

′)

|r− r′|
+

µ0
4π

∫∫

S

d2A
Kb(r

′)

|r− r′|
. (12)

The currents (10) and (11) are called the bound currents, by analogy with the bound charges

in a dielectric.
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• Example: A uniformly magnetized cylinder, magnetization M in the direction of the

cylinder’s axis.

inside the cylinder Jb = ∇×M = 0,

on the top and the bottom disks Kb = M× n = 0,

on the outer wall Kb = M× n = M ẑ× ŝ = Mφ̂.

(13)

Thus, the magnetic field due to magnetization is the same as the field due to a surface

current K = Mφ̂ flowing in circles around the cylinder’s outer surface, — which is

similar to the free current flowing around a solenoid. Consequently, the magnetic field

of the magnetized cylinder is similar to the solenoid’s field; in particular, for a cylinder

whose length L is much longer than its diameter 2R, the magnetic field is

inside the cylinder B ≈ µ0Kẑ = µ0M,

outside the cylinder B ≈ 0.
(14)

• Example: A uniformly magnetized ball. Let’s use spherical coordinates where M

points towards the ‘North pole’ θ = 0. Then

inside the ball Jb = ∇×M = 0,

on the spherical surface K = M× n = M ẑ× r̂ = M sin θ φ̂.
(15)

Thus, the magnetic field due to uniform magnetization of the ball is the same as the

field of a surface current K = M sin θφ̂ flowing in circles along the latitudes of the

sphere. The specific form of this surface current is similar to the rotating charged

sphere example from my notes on the vector potential, with M playing the role of

ωRσ. Consequently, proceeding exactly as in that example, we find the magnetic field

inside the magnetized ball to be uniform

Binside =
2

3
µ0M, (16)

while outside the ball we have pure dipole field

Boutside(r) =
µ0R

3

3

3(M · r̂)r̂ − M

r3
(17)
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corresponding to the net magnetic moment

mnet =
4πR3

3
M = Volume(ball)M. (18)

Origin of the Bound Currents

Physically, the bound currents on the surface of a magnetized material (and also in its

volume for a non-uniform M) originate from the mis-cancellation of the microscopic currents

inside the atoms which give rise to their magnetic moments. As a model of how this works,

consider a large L×L×L a uniformly magnetized material withM pointing in the z direction

of the cube. For simplicity, let’s assume the material in question is a crystal with a simple

cubic lattice — each tiny a × a × a cube occupied by a single atom, — and further more,

assume each atom has the same magnetic moment

m = a3M. (19)

The picture below shows a single slice of this cubic lattice along the (x, y) plane, or rather

a small part of that slice:

The red loops here stand for the current loops creating the atomic magnetic moments m. We

do not know the radii or even the shapes of these loops or the currents which flow through
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them; we do not even know if the currents are line currents or volume currents. But for our

purposes all such details do not matter, all we care is the net magnetic moment m of each

atom. As far as the macroscopic magnetic field B(r) is concerned, we may replace each atom

with an a× a× a cube with the surface current

I =
m

a2
=⇒ K =

I

a
=

m

a3
(20)

flowing around the 4 vertical sides of the cube. Here is the picture of such a cubic model, or

rather, of a small part of a single slice of the cubic lattice:

Inside each atom, the current flows counterclockwise. But when we look at the boundary

between two neighboring atoms, we immediately see that over that boundary, the currents

of the two atoms flow in opposite directions. And since they have the same magnitude

I = m/a2, they cancel each other! Thus, in the middle of the crystal all the atomic currents

cancel each other and there is no net current. However, at the outer boundary of the crystal,
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there is no cancellation:

=

Instead, there is un-canceled current I = m/a2 flowing counterclockwise around the entire

outer boundary of the crystal, or rather of single atomic layer of the crystal. The next layer

on top of the layer shown on the above picture has a similar current, and so is every other

layer, which makes for a surface current density

K =
I

a
=

m

a3
= M (21)

over the 4 vertical sides of the whole magnetized cube. In vector notations, the surface

current on each side of the cube is

K = M× n (22)

where n is the unit vector normal to the side in question.

The above toy model explains the physical origin of the surface bound current. It does not

have a volume bound current since we assumed a uniform magnetization inside the magnetic

material. To model a non-uniform magnetization we should give different atoms different

magnetic moments m and hence different atomic currents. Consequently, at the boundary

of two neighboring atoms we would no longer have exact cancellation of their currents, and

that would give rise to bound volume currents inside the bulk of the magnetized material.

Assuming for simplicity that all atomic magnetic moments point in z directions but their
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magnitudes slowly depend on x and y coordinated of the atom, the net current on the

boundary between two atoms neighboring in x direction is

K = (−ŷ)× a
∂

∂x

(mz

a3

)

(23)

while on the boundary between two atoms neighboring in y direction

K = (+x̂)× a
∂

∂y

(mz

a3

)

. (24)

Averaging these currents over the volume of the magnetized crystal, we get the volume bound

current

Jb =
1

a
K =

(

x̂
∂

∂y
− ŷ

∂

∂x

)

mz

a3
=

(

x̂
∂

∂y
− ŷ

∂

∂x

)

Mz = ∇×M. (25)

The Magnetic Intensity Field H

In dielectric materials, it’s convenient to use two kinds of electric field: the electric

tension field E and the electric displacement field D = ǫ0E + P. Likewise, in magnetic

materials it’s convenient to use two kinds of magnetic field: the magnetic intensity field H

and the magnetic induction field B. Here is how this works.

⋆ Microscopically, there is only one kind of magnetic field, namely the B(r).

• Macroscopically, the magnetic induction field Bmacro(r) is the microscopic magnetic

field averaged over some distance scale a ≫ typical distances between the atoms,

Bmacro(r) =

∫∫∫

d3r′

a3
f
(r′ − r

a

)

Bmicro(r
′) (26)

for some non-negative averaging function f which integrates to 1, for example

f(∆r/a) =
3

4π
Θ(a− |r|) or f(∆r/a) = π−3/2 exp

(

−(∆r)2/a2
)

. (27)
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• The macroscopic magnetic induction field obeys similar equations to the microscopic

magnetic field, namely the zero divergence equation and the Ampere law,

∇ ·Bmacro = 0 and ∇×Bmacro = µ0J
net
macro . (28)

In the macroscopic Ampere law here, the net electric current includes both the bound

current Jb(r) due to magnetization as well as the free macroscopic current Jf (r) due

to electric conductance. Altogether, this gives us

∇×B = µ0Jb + µ0Jf = µ0∇×M + µ0Jf , (29)

which we may rewrite as

∇× (B− µ0M) = µ0Jf . (30)

⋆ The macroscopic field H(r) — called the magnetic intensity field or the magnetic

tension field — is defined as

H(r) =
1

µ0
B(r) − M(r). 〈〈 note the minus sign! 〉〉 (31)

In light of eq. (30), the H field obeys the Ampere Law which involves only the free

current,

∇×H = Jf . (32)

In the integral form, this Ampere Law becomes

∮

L

H · d~ℓ = Ifree[through loop L]. (33)

• On the other hand, the B field is divergence-less, ∇ ·B = 0, come hell or high water,

while

∇ ·H =
1

µ0
∇ ·B − ∇ ·M = −∇ ·M, which does not have to vanish. (34)

◦ In MKSA units, the H field is measured in Amperes-per-meter, 1 A/m, while the B

field is measured in Teslas.
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◦ In Gauss units, H is defined as H = B − 4πM, so in vacuum H = B. Nevertheless,

the Gauss units for the two kinds of magnetic fields have different names: the unit of

H field is called the Oersted, 1 Oe, after Hans Cristian Ørsted, while the unit of B

field is called the Gauss, 1 G, after Carl Friedrich Gauss. In vacuum, H = 1 Oe means

B = 1 G and vice verse.

Let me conclude this section with a simple example of the Ampere Law for the H field.

Consider a long straight copper wire with a round cross-section carrying uniform current

density Jf = (I/πR2)ẑ. Copper is a linear diamagnetic, so in magnetic field it develops

magnetization M in the opposite direction from B and H, specifically

M = χmH for a negative magnetic susceptibility χm[Cu] ≈ −9.6 · 10−6. (35)

The H field of the long straight wire follows directly from the Ampere Law (33) and the

symmetries of the wire

outside the wire, for s > R, H =
I

2πs
φ̂,

inside the wire, for s < R, H =
Is

2πR2
φ̂,

(36)

cf. my earlier notes on the Ampere Law. Consequently, outside the wire

B = µ0H =
µ0I

2πs
φ̂ (37)

while inside the wire

B = µ0H + µ0M = µ0(1 + χm)H =
µ0(1 + χm)Is

2πR2
φ̂. (38)

More interestingly, inside the wire the magnetization M = χmH gives rise to the bound

current

Jb = ∇×M =
χmI

2πR2
∇× (sφ̂) (39)
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where

∇× (sφ̂) = ∇× (xŷ − yx̂) = 2ẑ, (40)

hence

Jb =
χmI

πR2
ẑ = χmJf . (41)

But please note that the copper is diamagnetic, χm < 0, so the bound current in the bulk

of the wire flows in the opposite direction from the free current!

Besides the volume bound current, there is also a surface bound current

K = M(s = R)× n =
χmI

2πR
φ̂× r̂ =

χmI

2πR
(−ẑ), (42)

note the minus sign! However, there is another negative sign due to χm < 0, so the bound

current on the surface flows in the same direction as the free current.

Finally, the net bound current through the wire is zero:

Inetb = πR2 × Jb,z + 2πR×Kb,z = +χmI − χmI = 0. (43)

The above example was particularly simple due to symmetries of the wire. In less

symmetric situations, we cannot find the magnetic fields from just the Ampere Law. Instead,

we must solve the field equations

∇ ·B = 0, ∇×H = Jf , (44)

together with the boundary conditions at the surface of the magnetic material.
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Boundary Conditions

Consider the outer surface of some magnetic material. Pick any point on the surface and

let ζ be a coordinate normal to the surface at that point. Then, any discontinuities of the

magnetic fields B and H at the surface give rise to δ-function terms in the derivatives ∇ ·B

and ∇×H, specifically

∇ ·B = δ(ζ)n · disc(B) + finite, (45)

∇×H = δ(ζ)n× disc(H) + finite. (46)

Combining these formulae with eqs. (44) for the fields, we immediately see that

n · disc(B) = 0 =⇒ disc(B⊥) = 0, (47)

n× disc(H) = Kf =⇒ disc(H‖) = Kf × n, (48)

regardless of the bound surface current. In particular, when there is no free current flowing

along the surface,

disc(B⊥) = 0, disc(H‖) = 0, (49)

which means that the normal component of the B field and the tangential components of the

H field must be continuous across the surface; on the other hand, the tangential components

of the B field and the normal component of the H field are discontinuous.

These rules are very similar to the rules for the electric tension and displacement fields

E and D at the surface of a dielectric material:

• E‖ and D⊥ are continuous across the surface, but E⊥ and D‖ may jump, just like

• H‖ and B⊥ are continuous across the surface, but H⊥ and B‖ may jump.

The electric-magnetic analogy extends to the equations obeyed by the respective fields in

the absence of free charges or currents:

when ρf = 0, ∇× E = 0, ∇ ·D = 0, D = ǫ0E + P; (50)

when Jf = 0, ∇×H = 0, ∇ ·B = 0, B = µ0H + µ0M. (51)
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Consequently, the solutions for the dielectric boundary problems apply equally well to sim-

ilar boundary problems for the magnetic materials. For example, in homework set#8 you

(should) have calculated the electric field inside a uniformly polarized dielectric ball; the

solution gives a pure dipole field outside the ball (with dipole moment p = P× 4π
3
R3) while

inside the ball there is uniform field

D =
2

3
P, E = −

1

3ǫ0
P. (52)

Now we may recycle this solution to find the magnetic field of a uniformly magnetized ball

without doing any new calculations at all — all we need is to translate the dielectric ball

solution to the magnetic language. Thus, outside the magnetized ball the magnetic field is

a pure magnetic dipole field (with magnetic moment m = M× 4π
3
R3), while inside the ball

there is uniform field

B =
2µ0
3

M, H = −
1

3
M. (53)

Note that despite complete absence of any free currents anywhere, the H field does not

vanish either inside or outside the ball.

Linear Magnetic Materials

Many magnetic materials are linear: the magnetization respond linearly to the magnetic

field which causes it,

M = (const)B, (54)

although by analogy with the linear dielectrics, this formula is usually written as

M = χmH. (55)

The dimensionless constant coefficient χm here is called the magnetic susceptibility of the

material in question.

• Diamagnetic materials have small negative susceptibilities, χm < 0, |χm| ≪ 1.

• Paramagnetic materials have small positive susceptibilities, χm > 0, |χm| ≪ 1.
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• Ferromagnetic materials have large positive susceptibilities, χm > 0, |χm| ≫ 1.

In light of eq. (55),

B = µ0(H+M) = µ0(1 + χm)H, (56)

which is usually written as

B = µabsH = µrelµ0H, µrel = χm + 1. (57)

The coefficient µrel here (often written as simply µ) is called the relative magnetic permeability

of the magnetic material in question, while µabs = µrelµ0 is called the absolute magnetic

permeability. In this terminology, the µ0 constant of the MKSA system of units is the

magnetic permeability of the vacuum.

In the bulk of a uniform magnetic material,

µ0Jnet = ∇×B = µrelµ0∇×H = µrelµ0Jfree , (58)

hence the bound currents shadows the free currents,

Jnet = µrelJfree =⇒ Jbound = χmJfree . (59)

This, in the middle of a ferromagnetic conductor like iron or nickel, there is a bound current

flowing in the same direction as the free current, but much stronger in magnitude. In the

middle of a paramagnetic conductor like aluminum, the bound current also flows in the

same direction as the free current, but its magnitude is much weaker. On the other hand, in

the middle of a diamagnetic conductor like copper, the bound current flows in the opposite

direction from the free current, as we already saw a few pages back.

But eq. (59) apply only to the volume currents in the bulk of a uniform material. At the

outer surface of the magnetic material — or at the interface between two different magnetic

materials — there are surface bound currents not related to any free currents. Instead, we
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have to calculate them from the boundary conditions for the H and B fields. Specifically,

at the interface of two uniform magnetic materials,

H
‖
1 = H

‖
2 =⇒

1

µ1
B

‖
1 =

1

µ2
B

‖
2 , (60)

B⊥
1 = B⊥

2 =⇒ µ1H
⊥
1 = µ2H

⊥
2 . (61)

For example, consider bending of the magnetic field at the interface:

µ1

µ2

α1

α2

From the angles α1 and α2 on this picture we find that

B
‖
1

B⊥
1

= tanα1 ,
B

‖
2

B⊥
2

= tanα2 , (62)

and therefore

tanα1

tanα2
=

B
‖
1

B⊥
1

/

B
‖
2

B⊥
2

=
B

‖
1

B
‖
2

/

B⊥
1

B⊥
2

. (63)

But according to eqs. (60) and (61),

B⊥
2

B⊥
1

= 1 while
B

‖
1

B
‖
2

=
µ1
µ2

, (64)

hence

tanα1

tanα2
=

µ1
µ2

/

1 =
µ1
µ2

. (65)

This refraction law is exactly similar to the bending of the electric field line at the boundary

of two uniform dielectrics.
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Electromagnets

To make a strong electromagnet powered by a moderate electric current one needs to fill

the electromagnet with a ferromagnetic core, usually iron or steel. As an example of how

this works, consider a solenoid with an iron core, such as shown on this picture:

To simplify the calculation of the magnetic field created by this solenoid, let’s assume its

length is much longer than its diameter, so to a first approximation we may treat it as

infinitely long, hence the cylindrical symmetry. By this symmetry (and also by the reflection

z → −z symmetry), the magnetic field everywhere — both inside and outside the solenoid

— points in z direction while its magnitude depends only on s. Furthermore, by the Ampere

Law applied to the H field,

H(s1) − H(s2) =
IN

L
for any s1 < R, s2 > R, (66)
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hence uniform H inside the solenoid, uniform H outside the solenoid, and therefore

Hinside =
IN

L
ẑ, Houtside = 0. (67)

But the inside of the solenoid is filled with the iron core of high relative permeability µ ≫ 1,

so the B field inside that core is µ times larger than it would be in the air-filled solenoid,

Binside = µµ0H = µ
µ0IN

L
. (68)

Now let’s remember the solenoid has finite length and consider one of its ends, or rather

one end of the iron core:

Inside the core, the magnetic field lines are approximately parallel to the solenoid’s axis, so

at the end of the core they are almost perpendicular to the boundary. Consequently, just

outside the core’s end

B⊥
outside = B⊥

inside = µ
µ0IN

L
. (69)

Thus, the iron core amplifies the magnetic field µ-fold not only inside the core but also

outside-the-core but near-the-poles, and hence also everywhere outside the electromagnet!

For a numeric example, take a solenoid with N/L = 1000 loops per meter powered by

a current I = 1 A. This solenoid creates the magnetic intensity field H = 1000 A/m, so

without the core the magnetic induction field would be B ≈ 1.3 · 10−3 Tesla, quite weak.

However, with an iron core of relative permeability µ = 1000, the magnetic field increases

thousandfold, to a rather strong B ≈ 1.3 Tesla.

Another advantage of the iron core is that we can have it stick out from the solenoid

for some distance, and even bend around in a curve, and most of the magnetic flux would

follow such a bent core to its end. Consequently, we can put the poles of the electromagnet

wherever we need them rather than have them stuck at the end of the solenoidal coil. But

these engineering aspects of the iron core go beyond this class, so let me stop here.
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Appendix: Proving the Lemma

Near the beginning of these notes I have used a Lemma of vector calculus saying that

for any vector field T(r) and any volume V with surface S,

∫∫∫

V

(∇×T)d3Vol = −

∫∫

S

T× d2A = −

∫∫

S

(T(r)× n(r))d2A (70)

where n(r) is a unit vector normal to to the surface S at point r. This lemma was part of

the homework set#2 back in January, but let me repeat the proof here, just in case you have

forgotten.

Pick any constant vector c, then by the triple product rule c · (∇×T) = ∇· (T×c) and

therefore

c ·

∫∫∫

V

(∇×T)d3Vol =

∫∫∫

V

c · (∇×T)d3Vol =

∫∫∫

V

∇ · (T× c)d3Vol

〈〈 by Gauss theorem 〉〉

=

∫∫

S

(T× c) · d2A

〈〈 by the triple product rule (T× c) · d2A = (d2A×T) · c 〉〉

=

∫∫

S

(

(d2A×T) · c
)

= c ·

∫∫

S

d2A×T.

(71)

Since c here is an arbitrary constant vector, this implies

∫∫∫

V

(∇×T)d3Vol =

∫∫

S

d2A×T = −

∫∫

S

T× d2A = −

∫∫

S

(T× n) d2A (70)

Quod erat demonstrandum.
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