
EDDY CURRENTS, DIFFUSION, AND SKIN EFFECT

The magnetic field cannot instantly penetrate a conducting material, it has to diffuse in

from the surface. The reason for this behavior are eddy currents due to EMF induced by the

changing magnetic field; these currents in turn cause magnetic fields opposing the change of

the original field.

To see how this works, consider a large piece of a uniform material of electric conductivity

σ and magnetic permeability µ. There are several equations relating the electric field, the

magnetic field, and the conduction current in this material:

the Ohm’s law

J = σE; (1)

the Ampere’s law
⋆

∇×B = µµ0∇×H = µµ0J; (2)

and the Faraday’s law of induction for the fields

∇× E = −∂B

∂t
. (3)

Combining these equations, we obtain

∇×B = µµ0 J = µµ0σE, (4)

∇× (∇×B) = µµ0σ∇×E = −µµ0σ
∂B

∂t
, (5)

∇2
B = ∇(∇ ·B) − ∇× (∇×B) = 0 + µµ0σ

∂B

∂t
, (6)

⋆ Strictly speaking, for the time-dependent field we should use the Maxwell–Ampere law which includes

the displacement current ∂D/∂t in addition to the conduction current J. But in good conductors and

less-then-optical frequencies the conduction current is so much stronger than the displacement current

that the latter may be neglected.
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and hence the diffusion equation for the magnetic field

∂

∂t
B(x, t) = D∇2

B(x, t) (7)

for the diffusion coefficient

D =
1

µµ0σ
=

ρ

µµ0
. (8)

The current density J(x, t) obeys a similar diffusion equation with the same diffusion coef-

ficient D. Indeed, taking the curl of both sides of eq. (7), multiplying by µµ0, and using the

Ampere’s law, we obtain

∂

∂t

(

µµ0∇×B
)

= µµ0∇× ∂B

∂t
= µµ0∇× (D∇2

B) = D∇2(µµ0∇×B) (9)

and hence

∂

∂t
J(x, t) = D∇2

J(x, t). (10)

Solving the Diffusion Equation: An Example

As an example of magnetic diffusion, consider a solid metal cylinder surrounded by a

solenoidal coil. When we turn on the current in the coil, the surface of the metal cylinder is

suddenly exposed to the coil’s H field parallel to the cylinder. But this field cannot instantly

penetrate the cylinder; instead, it has to diffuse inward from the surface according to the

diffusion equation (7). This means that at the moment the coil’s current I is turned on, we

get an equal and opposite counter-current on the cylinder’s surface,

J(z, s, φ) = −Kδ(s− R)nφ for K =
IN

L
. (11)

But as the time passes, this counter-current diffuses inward towards the cylinder’s center,

and this allows the magnetic field to penetrate the surface and also diffuse inward:

for t > 0, J(x, t) = J(s, t)nφ , B(x, t) = B(s, t)nz (12)

for some time-dependent radial profiles J(s, t) and B(s, t).
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Alas, solving the diffusion equation for the time dependence of these radial profiles

involves Bessel functions and their relatives, so let’s consider a simpler, one-dimensional

example: An infinite slab of metal with a flat current sheet just above it:

metal

vacuum

current sheet

x1

x2, x3

In this picture the x1 axis points down while the x2 and x3 axes are horizontal, the metal

fills up the x1 > 0 half space, and the current sheet carries a uniform current density in the

x3 direction. All by itself, this current would create a uniform magnetic field below the sheet

in the x2 direction, but the conduction current in the metal makes the problem much more

interesting. Still, it’s a one-dimensional problem where the magnetic field and the current

in the metal depend only on the x1 coordinate but not the x2 or the x3. Also, in the metal

the current always flows in the ±x3 direction while the H field points in the ±x2 direction,

thus

J(x, t) = −J(x1, t)n3, H(x, t) = H(x1, t)n2 . (13)

With these sign/direction conventions, the Ampere law becomes

J(x1, t) = −∂H

∂x1
, (14)

so once we solve the 1D diffusion equation

∂J

∂t
= D ∂2J

∂x2
(15)
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for the current, the solution for the magnetic field obtains by integration

H(x1, t) = +

∞
∫

x1

J(x′, t) dx′. (16)

Note: the upper limit in this formula follows from the asymptotic condition H = 0 infinitely

deep inside the metal for any finite time t.

The simplest way to solve the diffusion equation (15) is via the Fourier transform. First,

to avoid problems with the abrupt discontinuity of the current at the metal’s edge x = 0,

let’s formally continue the J(x1) profile to negative x1 but making it an even function of x1

thus

J̃(±x) = J(+x). (17)

Next we Fourier transform from x1 to k for each time t,

J̃(x, t) =

+∞
∫

−∞

dk

2π
eikx × F (k, t), (18)

F (k, t) =

+∞
∫

−∞

dx e−ikx × J̃(x, t) =

∞
∫

0

dx
(

e−ikx + e+ikx
)

× J(x, t). (19)

In terms of the F (k, t), the x derivative acts by multiplying by ik, so the diffusion equation

becomes

∂F

∂t
= −Dk2 × F (k, t). (20)

For each k, this is a simple linear differential equation WRT time t, whose solution is

F (k, t) = F (k, 0)× exp(−Dk2 × t). (21)

Now let’s apply eqs.(18), (19), and (21) to the problem at hand. Suppose the current

K in the current sheet stays zero for a long while, and then abruptly turns on at t = 0 and

then stays constant. This outside current suddenly creates a magnetic field H0 just outside
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the metal, and since this field cannot instantly penetrate the metal, it has to be screened

by the surface current in the metal itself. This means that at the initial time t = 0, H(x1)

inside or near metal is given by the step function H(x1) = H0Θ(−x1), or rather

H(x1) ≈ H0Θ(ǫ− x1) (22)

for some microscopically small depth ǫ inside the metal. Consequently, the initial current in

the metal is

@t = 0, J(x1, 0) = −∂H

∂x1
= +H0δ(x1 − ǫ), (23)

and according to eq. (19). the Fourier transform of this current is

F (k, 0) =

∞
∫

0

dx
(

e−ikx + e+ikx
)

×H0δ(x− ǫ) = 2H0 cos(kǫ) ≈ constant 2H0 . (24)

According to eq. (21), at later times t > 0 this transform becomes

F (k, t) = 2H0 × exp(−Dk2 × t), (25)

so Fourier transforming from k back to x1, we obtain the current profile

J(x1, t) =

∫

dk

2π
eikx1 × 2H0 exp(−Dt× k2)

=
H0

π

∫

dk exp

(

−Dt× k2 + ix1 × k = −Dt

(

k − ix1
2Dt

)2

− x21
4Dt

)

=
H0

π
× exp

(

−x21/(4Dt)
)

×
∫

d(k + const) exp
(

−Dt(k + const)2
)

=
H0

π
× exp

(

− x21
4Dt

)

×
√

π

Dt

=
2H0√
4πDt

× exp

(

− x21
4Dt

)

.

(26)

This is a Gaussian profile of the form

J(x1, t) =
2H0√
π a(t)

× exp

(

− x21
a2(t)

)

(27)
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— or rather the x1 > 0 half of the Gaussian profile, — whose width increases with time as

a(t) =
√
4D × t . (28)

As to the magnetic field H(x1, t), it obtains from integrating the Ampere’s law according

to eq. (16):

H(x1, t) =

∞
∫

x1

J(x1, t) =
2H0√
π a(t)

×
∞
∫

x1

exp(−x′2/a2(t)) dx′ = H0×
(

1− erf(x1/a(t))
)

(29)

where erf is the error function of the Gaussian distribution.

Skin Effect

Now consider an AC current

J(x, t) = Re
(

J(x) e−iωt
)

(30)

flowing down a thick wire. For such an AC current, the diffusion equation (10) becomes

∇2
J(x) =

1

D
∂J

∂t
=

−iω

D J(x). (31)

Because of the imaginary coefficient on the RHS, all solutions to this equation are complex,

which means that not only the amplitude but also the phase of the AC current vary from

one point x to another.

For a round wire, the radial profile of an axially symmetric solution of eq. (31) involves

Bessel functions of complex arguments, so its qualitative features are rather hard to extract.

So let’s consider a wire which is so thick that near its surface it looks like an infinite half-

space worth of metal, just like we had in the previous example. Again, we assume that the

current density J(x) = J(x1)n3 depends only on the depth x1, so eq. (31) becomes the 1D
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differential equation

d2J

dx21
=

−iω

D × J(x1). (32)

The two independent solutions to this equation are

J(x1) ∝ exp(±κx1) (33)

for κ =
√

−iω/D; for the sake of definiteness, let’s define κ as the root which has a positive

real part, thus

κ =

√

−iω

D =

√

ω

D ×
(√

−i = e−πi/4 =
1− i√

2

)

=
1− i

δ
(34)

for δ
def
=

√

2D
ω

=

√

2ρ

µµ0ω
, (35)

so the two solutions become

J(x1) ∝ exp
(

(+1− i)
x1
δ

)

and J(x1) ∝ exp
(

(−1 + i)
x1
δ

)

. (36)

But besides the equation (32) itself, we also have the asymptotic condition: the current

density should diminish to zero at infinite depth rather than grow out of control, J → 0 for

x1 → +∞. Consequently, only the second solution is allowed, thus

J(x1) = J0 × exp(−κx1) = J0 × exp(−x1/δ)× exp(+ix1/δ), (37)

whose magnitude decreases with the depth as

|J(x1)| = |J0| × exp(−x1/δ). (38)

This decrease of the current amplitude with depth is called the skin effect: a high-frequency

AC current flows only near the surface of the conductor, and δ — the effective depth through

which the current flows is called the skin depth.
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According to eq. (35), this skin depth decreases with frequency as 1/
√
ω. For example,

consider a copper wire; at room temperature copper has ρ = 1.68 · 10−8 Ω/m and µ ≈ 1,

hence

δ =
65.2 mm
√

f [in Hz]
. (39)

Thus, for the 60 Hz AC current in the power wires, the skin depth is 8.4 mm, but for the

700 MHz frequency used by many cellphones, the skin depth in a copper wire is only 2.5

microns.

In a round wire of radius rw much larger than the skin depth δ, the AC currents flows

mostly near the surface of the wire and decreases with depth x = rw − r similarly to the

current in the metal slab of our example,

Jz(x) ≈ Jsurface × e−x/δ × eix/δ. (40)

Consequently, the net current through the wire is

I ≈ 2πrw

rw
∫

0

dxJ(x) ≈ 2πrwJsurface

∞
∫

0

dx exp(−(1 − i)x/δ) = 2πrwJsurface ×
δ

1− i
, (41)

while the voltage — measured along the wire’s surface — is

V = L× Esurface = LρJsurface (42)

where L is the wire’s length. Thus, the AC impedance of the wire is

ZAC =
V

I
=

Lρ

2πrw δ
(1− i) =

Lρ

2πrw δ
(1 + j), (43)

much larger that the wire’s DC resistance

RDC =
ρL

πr2w
. (44)

For example, a copper wire of diameter 2rw = 0.5 mm has DC resistance of only 0.086 Ω/m

but at 700 MHz its AC impedance becomes 4.3(1 + j) Ω/m.
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Finally, as a cross-check on the AC impedance (43), consider the net power dissipated

by the current flowing along the wire’s skin:

P =
1

2

∫∫∫

d3x Re(E∗ · J) =
ρ

2

∫∫∫

d3x |J|2

≈ ρ

2
× 2πrwL×

∞
∫

0

dx |Jsurface|2 × e−2x/δ

=
ρ

2
× 2πrw × |Jsurface|2 ×

δ

2
.

(45)

Comparing this formula to the voltage and current amplitudes V and I, we find

Re(ZAC) =
2P

|I|2 =
Lρ

2πrw δ
(46)

while

Re

(

1

ZAC

)

=
2P

|V |2 =
2πrw δ

2Lρ
=

1

2
× 1

Re(ZAC

. (47)

On the other hand,

Re

(

1

ZAC

)

=
Re(ZAC)

|ZAC|2
, (48)

so the factor 1
2
in eq. (47) calls for

Im(ZAC) = ±Re(ZAC) (49)

and therefore

ZAC =
Lρ

2πrw δ
× (1± j), (50)

in perfect agreement with the impedance (43).
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