
PHY–387 K. Problem set #4. Due September 26, 2024.

1. First, a couple of reading assignments about examples of boundary problems in dielectric

and magnetic materials.

(a) First, read the examples of dielectric boundary problems in §4.4 of the Jackson’s

textbook, especially the dielectric sphere example (see also my notes on dielectrics

and magnetic materials).

(b) Second, read §5.12 of Jackson’s textbook about magnetic shielding by a spherical shell

of high-permeability material. If you have trouble following the boundary condition

for the magnetic scalar potential Ψ(x) — which Jackson calls ΦM (x), — go back to

part (a).

2. Now consider a wire loop L carrying steady current I. The loop L may have any size or

shape, as long as it is closed. The magnetic field H generated by the current in this loop

obtains from the scalar potential

Ψ(x) =
I

4π
Ω(x) (1)

where Ω(x) is the solid angle spanned by the loop L when viewed from the point x.

By convention, Ω(x) is positive if the current in L viewed from point x appears to run

clockwise, and negative if the current appears to run counterclockwise. To avoid a discon-

tinuity when x is surrounded by the loop, Ω(x) should be analytically continued while x

moves from one side of the loop to another. Such continuations make Ω multivalued, with

different values of Ω(x) at the same point x differing by 4π, or more generally by 4π× an

integer.

(a) Show that

Ω(x) =

∫∫
S

(y − x)

|y − x|3
· d2area(y) (2)

where S is a surface spanning the loop L.
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(b) Explain how eq. (2) leads to the sign convention for the Ω(x), and also how different

surfaces S can yield values of Ω(x) which differ from each other by 4π × an integer.

(c) Show that H = −∇Ψ for the scalar potential (1) agrees with the Biot–Savart–Laplace

formula for the magnetic field of the current I in the loop L.

Hint: prove and use

∇y ×
(

(y − x)× c

|y − x|3

)
= (c · ∇y)

(y − x)

|y − x|3
(3)

for y 6= x and any constant vector c.

3. Next, a capacitor force problem.

(a) Consider an infinitesimal change in the geometry of a charged capacitor which changes

its capacitance C by δC. During this process, the capacitor may be disconnected,

or connected to a DC power supply with a fixed voltage, or even connected to some

circuitry that changes both the voltage of the capacitor and the charge it stores. Show

that in any case, the mechanical work involved in changing the capacitor’s geometry

is

δWmech = −V
2

2
× δC. (4)

Note: this is mechanical work on the capacitor by the external forces; the mechanical

work by the capacitor itself has opposite sign.

(b) Inserting an extra piece of dielectric into the capacitor generally increases its capaci-

tance. Consequently, there is a net electric force on that piece of dielectric pulling it

in. Show that the magnitude of this force is

F =
V 2

2
× dC

dx
. (5)

(c) Finally, consider the capacitor made from two large parallel vertical metal plates at

small distance d between them, immersed part way into transformer oil with dielectric

constant ε and mass density ρ. Connect the plates by wires to a battery or any other

DC power supply of voltage V .
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Show that this makes the oil between the plates rise to the height

h =
(ε− 1)ε0V

2

2ρgd2
(6)

relative to the oil outside the plates. (g = 9.8 N/kg is the gravitational field.)

4. Finally, an easy problem on Faraday’s Induction Law. Consider a long straight vertical

wire moving at constant velocity v in a horizontal direction. The wire carries a constant

current I, which creates a magnetic field; in the quasi-static approximation (valid for

v � c), B(x, t) obtains via the Biot–Savart–Laplace equation using the wire’s location at

time t. But the moving wire make this quasi-static field move, so at a fixed location x the

magnetic field changes with time.

Find the electric field E(x, t) induced by this time-dependent magnetic field.

Hint: calculate the vector potential A(x, t) for the magnetic field of the moving wire.
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