
PHY–387 K. Problem set #8. Due October 24, 2024.

1. In conducting materials, the EM waves attenuate with distance. For a specific example,

consider a uniform material with dielectric constant ǫ and conductivity σ; assume the

frequency is low enough that ǫ and σ are real. Also assume negligible magnetism, µ = 1.

The attenuating plane wave propagating in z direction has general form

E(x, y, z, t) = ~E exp(ikrz − κz − iωt), H(x, y, z, t) = ~H exp(ikrz − κz − iωt). (1)

(a) Write down formulae for kr and κ as functions of ω. Also, relate the electric amplitude

~E and the magnetic amplitude ~H to each other.

Now consider a boundary between a conducting material and the vacuum. Suppose an EM

wave comes from the vacuum side and hits the boundary head-on.

(b) Calculate the reflectivity R = |r|2 of the boundary.

(c) Show that for a good conductor

R ≈ 1 −
4Re(n)

|n2|
≈ 1 −

4πδ

λ0
(2)

where n(ω) is the complex refraction coefficient of the conductor, δ(ω) is the skin depth

of that conductor, while λ0 is the wavelength of the EM wave in the vacuum.

(d) As an example, find the reflectivity of sea water (σ ≈ 5

Ω

/m) at an FM radio frequency

ω = 2π × 100 MHz.

2. Next, consider charge density perturbations ρ(x, t) in a metal.

(a) Fourier transform time-dependence of macroscopic EM fields and charge/current den-

sities to frequency dependence. Use

Jnet(x, ω) = Jcond(x, ω) − iωD(x, ω) = σc(ω)E(x, ω) (3)

where

σc(ω) = σ(ω) − iωǫ(ω)ǫ0 (4)

is the effective complex conductivity of the metal, as well as the Fourier-transformed
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Maxwell equations to show that the transformed charge density ρ(x, ω) obeys

σc(ω)ρ(ω,x) = 0. (5)

Hint: ∇ · Jnet = 0.

Drude–Lorentz formula tell us that in metals

σc(ω) =
ne2f0
m∗

e

1

γ0 − iω
− iωǫbǫ0 ≈ ǫbǫ0

(

ω2
p

γ0 − iω
− iω

)

(6)

where γ0 = (1/τ) is the rate at which the conduction electrons lose their average velocity

vector to collisions with ions, and ωp is the plasma frequency of the metal.

(b) Show that for the Drude-Lorentz compex conductivity (6), eq. (5)becomes

(ω2
p − iγ0ω − ω2)ρ(x, ω = 0) = 0 (7)

and hence the time-dependent charge density ρ(x, t) obeys the differential equation

(

∂2

∂t2
+ γ0

∂

∂t
+ ω2

p

)

ρ(x, t) = 0. (8)

(c) Finally, solve eq. (8) for the charge density oscillations in a metal with ωp ≫ γ0.

3. Now consider a 1D wave propagating through a linear and homogeneous but dispersive

media with refraction index n(ω), i.e., the phase velocity of a wave v(ω) = c/n(ω). To

allow for absorption, n(ω) may be complex rather than real.

(a) Show that the most general solution of the dispersive wave equation is

ψ(x, t) =

+∞
∫

−∞

dω

2π
e−iωt

(

A(ω)× exp(+iωn(ω)x/c) + B(ω)× exp(−iωn(ω)x/c)
)

(9)

for some arbitrary complex functions A(ω) and B(ω).
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(b) Show that a real wave ψ(x, t) requires n(−ω) = n∗(+ω) as well as A(−ω) = A∗(+ω)

and B(−ω) = B∗(+ω).

(c) Suppose at x = 0 we observe ψ and its x derivative as functions of time. Show that in

terms of these data

A(ω) =

+∞
∫

−∞

dt e+iωt

[

1

2
ψ(0, t) −

ic

2ωn(ω)

∂ψ

∂x
(0, t)

]

,

B(ω) =

+∞
∫

−∞

dt e+iωt

[

1

2
ψ(0, t) +

ic

2ωn(ω)

∂ψ

∂x
(0, t)

]

.

(10)

4. Finally, show that in the regime of normal dispersion — i.e., at frequencies not too close

to any of the resonances — the group velocity of the EM wave is always less than c. For

simplicity, assume negligible magnetism µ ≈ 1 and use the low-density approximation to

the dielectric constant,

ǫ(ω) ≈ 1 +
ne2

ǫ0me

resonances
∑

i

fi
ω2
i − ω2 − iωγi

. (11)

Hint: show that vgroup < vphase and vgroup × vphase < c2.
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