
PHY–387 K. Problem set #11. Due November 14, 2024.

⋆ Problems 1 and 2 of this set concern radiation by a compact dipole with a time-dependent

dipole moment p(t). In a pure dipole approximation — meaning, vanishing geometric size

but finite p(t), the electric charge density and the current density of this system become

ρ(y, t) = −
(

p(t) · ∇y

)

δ(3)(y), J(y, t) =
dp

dt
δ(3)(y). (1)

1. First, consider a harmonically oscillating dipole moment p(t) = p0e
−iωt.

(a) Show that (in the Landau gauge), the vector potential generated by this dipole moment

is

A(x, t) =
−iωµ0
4π

eikr−iωt

r
p0 (2)

at all distances from the dipole, long or short. Consequently, the exact electric and

magnetic fields at all distances from the dipole are

H(x, t) =
kω

4π

eikr−iωt

r

(

1 +
i

kr

)

(n× p), (3)

E(x, t) =
kωZ0

4π

eikr−iωt

r

[

i

kr

(

1 +
i

kr

)

(

p − 3(n · p)n
)

− n× (n× p)

]

. (4)

(b) Explain the long-distance and the short-distance limits of these EM fields.

(c) Calculate the (time-averaged) Poynting vector S of this dipole radiation. Show that

for a non-linear dipole with p×p∗ 6= 0, this S has not only the usual radial component

but also a lateral component in the direction of

n× Im
(

p× p∗
)

. (5)

(d) The lateral component of S leads to non-zero angular momentum of the EM fields.

Calculate the rate dLrad/dt at which this angular momentum is carried away by the

dipole radiation.
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Now consider a specific non-linear dipole moment, namely the classical Rutherford atom

with an electron on a circular orbit around the nucleus. This atom looses both energy U

and angular momentum L to the radiation.

(e) Show that the rates at which they are lost are related as

dU

dt
= ~ω ·

dL

dt
(6)

and also check that the dL/dt has precisely opposite direction from the L.

(f) Finally, use the results of part (e) to argue that the electron’s orbital plane remains

fixed, and if the orbit was initially circular that it would remain circular until the

ultimate collapse.

Hint: an orbit in a Coulomb potential is circular if and only if its energy and angular

momentum are related as

UL2 = −
mα2

2
, for α =

e2

4πǫ0
. (7)

2. Now consider a dipole moment with a non-harmonic time dependence but completely

general p(t).

(a) Use Efimenko equations to show that in this case

H(x, t) =
1

4π

[

•

p× n

r2
+

••

p× n

rc

]

ret

, (8)

E(x, t) =
1

4πǫ0

[

3(n · p)n− p

r3
+

3(n ·
•

p)n−
•

p

r2c
+

(n ·
••

p)n−
••

p

rc2

]

ret

, (9)

where the subscript ‘ret’ means evaluated at the retarded time

tret = t −
r

c
. (10)

Hint: remember that the retarded time — and hence p(tret) and its time derivatives

— depend on x.
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http://web2.ph.utexas.edu/~vadim/Classes/2024f-emt/Maxwell.pdf#page=16


(b) Calculate the long-distance limit of the Poynting vector and show that the net power

emitted by the dipole moment is

P (t) =
Z0

6πc2
‖

••

pret‖
2. (11)

(c) As an example, consider a parallel-plate capacitor with plates of area A at distance b

from each other. The capacitor is slowly charged to charge Q0 and then is allowed to

discharge through a resistor R, thus Q(t) = Q0 exp(−t/RC).

Find the net energy radiated by the capacitor while it discharges as a fraction of its

initial energy U0 = Q2
0/2C.

(d) Calculate the actual numeric ratio Urad/U0 for A = 10 cm × 10 cm, b = 1 mm, and

R = 10 Ω.

3. Finally, a simple problem about the electric quadrupole radiation.

Four charges ±q sit at corners of a square of size a × a, which rotates with frequency Ω

around the ⊥ axis through the square’s center.

+q

−q+q

−q

(a) Find the electric quadrupole moment tensor of this system. With what frequency does

it oscillate?

(b) Find the angular distribution of the EM power radiated by the rotating quadrupole.

(c) Find the net EM power radiated by the rotating quadrupole.
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