
PHY–387 K. Problem set #12. Due November 21, 2024.

⋆ This problem set has 5 problems, or rather 4 problems and one reading assignment. Prob-

lems 1,2 and 3 concern emission of photons by atoms and nuclei, while problems 4 and 5

are about radiation by long antennas with L >∼ λ.

1. A quantum hydrogen atom initially in the excited 2p state drops to the ground 1s state

while emitting a photon. Calculate the matrix element of the electric dipole operator be-

tween these two states and hence the transition rate (in the electric dipole approximation).

For the sake of definiteness, let the initial 2p state be |n = 2, ℓ = 1, m = 0〉 with the wave

function

Ψ2p(x) =
1√

32πa5
rer/2a cos θ (1)

while the final 1s state |n = 1, ℓ = 0, m = 0〉 has wavefunction

Ψ1s(x) =
1√
πa3

e−r/a, (2)

where

a =
4πǫ0 h̄

2

e2me
=

h̄

αmec
≈ 0.53 Å (3)

is the Bohr radius. For simplicity, ignore the electron’s spin.

2. In a hydrogen-like atom or ion, the closest quantum analogues of circular electron orbits

are the states |n, ℓ,m〉 with m = ℓ = n− 1. For n ≫ 1, the wave function of such a state

is strongly peaked in a thin torus around the classical circular orbit. (This is FYI, you do

not need to prove this.)

Show that the only allowed transition from such a state to a lower-energy state is to a

similar state |n′, ℓ′, m′〉 with m′ = ℓ′ = n′ − 1 for n′ = n − 1. Consequently, if an atom is
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initially in such a state with large n, then it de-excites down to the ground state through

a cascade of transitions

|n, n− 1, n− 1〉 → |n− 1, n− 2, n− 2〉 → |n− 2, n− 3, n− 3〉 →

→ · · · → |3, 2, 2〉 → |2, 1, 1〉 → |1, 0, 0〉 .
(4)

This cascade is the quantum analogy of the classical circular orbit spiraling down to the

nucleus.

3. A few metastable nuclear isomers have extraordinarily long lifetimes. I have discussed

the technetium Tc
99m

, Tc
97m

, and Tc
95m

isomers in class, but there is also cobalt Co
58m1

(half-life of 9 hours), hafnium Hf
178m2

72
(half-life of 31 years), holmium Ho

166m1

67
(half-life of

1200 years), and and most remarkably tantalum Ta
180m

73
— its half-life is estimated to be

so longer than 1015 years but nobody have actually seen it decay! Most of these metastable

nuclei decays by emission of γ rays or by internal conversion, — the nucleus emits a γ-

ray photon but the atomic electrons immediately absorb it and use its energy to kick an

electron out. The exception is holmium Ho
166m1

67
whose γ-decay rate is so slow that it’s

preempted by the β-decay to erbium Er
166

.

The extraordinarily slow γ-decay rate by all these metastable nuclear states are due to

high-order multipoles involved in the transitions. Your task is to find which multipole

order is responsible for the γ decays (or internal conversions) of cobalt Co
58m1

, hafnium

Hf
178m2

72
, and tantalum Ta

180m

73
.

Look up Wikipedia articles “isotopes of Cobalt”, “isotopes of Hafnium”, and “isotopes of

Tantalum” to find out the angular momenta and the parities of the 3 isomers in question

as well as the angular momenta and the parities of the states they decay to. (If you Google

up a better source for this information, let me know.) Once you have these data, use the

selection rules to find the lowest multipole order — electric or magnetic — allowed for each

transition and hence the power of the small (kR) factor suppressing the transition rate.

4. Next, a reading assignment for the students who have missed the make-up class on Novem-

ber 15: my notes on long antennas.
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5. Consider a linear antenna that’s precisely one wavelength long L = λ. The antenna is fed

at a point at distance L/4 from one end rather than at in the middle,

generator

3

4
L

1

4
L

I0e
−iωt

I0e
−iωt

For simplicity, approximate the current in the antenna by a sine wave with nodes at both

ends, thus

I(z) = −I0 sin
2πz

L = λ
z

I

(5)

Note: this sine wave is different from the current waves in the center-fed antennas, so

the radiation pattern of this antenna is quite different from the L = λ center-fed antenna

discussed in class.

(a) Calculate the f(n) for this antenna without using the multipole expansion.

(b) Plot the angular dependence of the power (per solid angle) emitted by the antenna in

question in the direction n as a function of the angle θ between that direction and the

antenna’s axis.

(c) Calculate the net power emitted by the antenna and hence the antenna’s radiation

resistance. Note: the integral here requires special functions or numeric integration.

Don’t try to do it by hand but use Mathematica or equivalent software.
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Although the antenna in question is too long to trust the multipole expansion, let’s use it

anyway and see how far off the mark we would get by using just the leading multipoles. In

terms of the multipole expansion,

f(n) =

∞∑
m=0

fm(n), (6)

fm(n) =
(−ik)m

4πm!

∫∫∫

antenna

d3y J(y) (n · y)m. (7)

(d) Use symmetries of the antenna in question to argue that it has zero magnetic multipole

moments for all ℓ, while the electric multipole moments vanish for all odd ℓ. Thus, the

only multipole moments for this antenna are the electric quadrupole, electric 16-pole,

electric 64-pole, etc..

To avoid the messy indexologies of the higher multipole moments, it is easier to directly

calculate the fm(n) for the antenna in question. In light of part (d), the fm should vanish

for all even m = 0, 2, 4, 6, . . ..

(e) Verify this, then calculate the three leading non-zero terms fm(n) for the odd m =

1, 3, 5.

(f) Use successive approximations

fα(n) = f1(n),

fβ(n) = f1(n) + f3(n),

fγ(n) = f1(n) + f3(n) + f5(n),

(8)

to calculate the dP/dΩ and the net power emitted by the antenna. Compare the

angular power distributions (dP/dΩ)α, (dP/dΩ)β, and (dP/dΩ)γ you get from these

approximations to the (dP/dΩ) from part (b), and plot them all on the same graph.

Also, compare the net powers Pα, Pβ, and Pγ from the α, β, γ approximations to the

exact net power from part (c).
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