
POLARIZED SCATTERING OF EM WAVES

In a polarized scattering problem, we take the incident wave to be 100% polarized and

also detect the polarization of the scattered wave. Specifically, let the incident wave be a

plane wave in direction n0 polarized in direction e0 ⊥ n0, thus

Einc(x, t) = E0e0 exp(ikn0 · x− iωt). (1)

This wave creates harmonic current J(x)e−iωt in the scattering body, which in turn radiates

the scattered wave. In the far zone of this scattered wave, the electric field is

Esc(x, t) = −ikZ0E0
eikr−iωt

r

(
nx × (nx × F)

)
(2)

where

F(n0, e0;nx) =
µ0

4πE0

∫
d3y J(y) exp(iknx · y). (3)

Projecting the scattered electric field onto a particular polarization e ⊥ nx, we have

Esc[e] = e∗ · Esc = −ikZ0E0
eikr−iωt

r

(
e∗ · (n× (n× F))

)
, (4)

where

e∗ · (n× (n×F)) = (n×F) · (e∗×n) = (n · e∗)(F ·n) − n2(F · e∗) = 0 − e∗ ·F, (5)

thus

Esc[e] = +ikZ0E0
eikr−iωt

r
(e∗ · F). (6)

Consequently, comparing the scattered power in the direction n and polarization e

dP (n, e)

dΩ
= r2 × |Esc(n, e)|2

2Z0
(7)

to the incident power flux Sinc = |E0|2/2Z0, we find the polarized scattering cross-section to
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be

dσ

dΩ
(n0, e0 → n, e) =

1

Sinc

dP

dΩ
=

r2||Esc(n, e)|2

|E0|2

= k2Z2
0

∣∣e∗ · F(n0, e0;n)
∣∣2. (8)

For example, consider scattering off a small dielectric sphere of radius a � λ. The

incident wave’s electric field is approximately uniform over such a small sphere, so it induces

in the sphere the electric dipole moment

p ≈ αE(center) = αE0e0e
−iωt (9)

where α is the sphere’s polarizability,

α = 4πa3 × ε− 1

ε+ 2
ε0 . (10)

Neglecting the higher electric and magnetic multipole moments compared to this dipole

moment, we have

E0F = f ≈ fel.dipole = − iω
4π

pamplitude = − iω
4π
αE0e0 , (11)

hence

F = −iωα
4π

e0 , (12)

and therefore

dσ

dΩ
(n0, e0 → n, e) =

(
kZ0ωα

4π

)2 ∣∣e∗ · e0∣∣ (13)

Note that this polarized scattering cross-section depends on the polarization vectors of the

incident and scattering waves but seems to be independent of their directions n0 and n; but

there implicit dependence on the two wave’s directions through the constraints e0 ⊥ n0 and

e ⊥ n.
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As to the overall coefficient of the scattering cross-section, for the dielectric sphere

kZ0ωα

4π
= k2×cZ0×

(
α

4π
= a3

ε− 1

ε+ 2
ε0

)
= k2a3

ε− 1

ε+ 2
×
(
cZ0ε0 = 1

)
= k2a3

ε− 1

ε+ 2
, (14)

thus polarized scattering cross-section(
dσ

dΩ

)
polarized

= k4a6
(
ε− 1

ε+ 2

)2

× |e∗ · e0|2 . (15)

Now let’s work out the polarized cross-sections in the specific basis of planar polariza-

tions: one polarization tangent to the scattering plane and the other normal to that plane,

where the scattering plane is the plane spanning the directions n0 and n of both the incident

and the scattered waves. Without loss of generality, let the incident wave run in z direction

while the scattered wave run in the (zx) plane at angle θ to the incident wave. Then in this

coordinate system

n0 = (0, 0, 1),

e0(‖) = (1, 0, 0),

e0(⊥) = (0, 1, 0),

n = (sin θ, 0, cos θ),

e(‖) = (cos θ, 0,− sin θ),

e(⊥) = (0, 1, 0),

(16)

and therefore

|e∗ · e0|2 =


cos2 θ for ‖→‖,
0 for ‖→⊥,

0 for ⊥→‖,
1 for ⊥→⊥.

(17)

Consequently, the polarized partial scattering cross-sections (15) come out to be(
dσ

dΩ

)
(‖→⊥) =

(
dσ

dΩ

)
(⊥→‖) = 0,(

dσ

dΩ

)
(‖→‖) = k4a6

(
ε− 1

ε+ 2

)2

× cos2 θ,

and

(
dσ

dΩ

)
(⊥→⊥) = k4a6

(
ε− 1

ε+ 2

)2

〈〈 isotropic! 〉〉.

(18)

What about the un-polarized cross-sections? Suppose the detector of the scattered wave

measure only its total intensity and is blind to the wave’s polarization. At the same time,
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the incident wave is un-polarized, meaning: 50% of its power belong to one polarization

and 50% to the other polarization. In this case, we measure the un-polarized partial cross-

section which obtains by summing the polarized cross-sections over the scattered wave’s

polarizations and averaging over the incident wave’s polarizations,(
dσ

dΩ

)
unpol

=
1

2

(
dσ

dΩ

)
(‖→ any) +

1

2

(
dσ

dΩ

)
(⊥→ any)

=
1

2

((
dσ

dΩ

)
(‖→‖) +

(
dσ

dΩ

)
(‖→⊥) +

(
dσ

dΩ

)
(⊥→‖) +

(
dσ

dΩ

)
(⊥→⊥)

)
=

1

2
× k4a6

(
ε− 1

ε+ 2

)2

×
(

cos2 θ + 0 + 0 + 1
)

= k4a6
(
ε− 1

ε+ 2

)2

× 1 + cos2 θ

2
.

(19)

And the total scattering cross-section obtains by integrating this partial cross-section over

the 4π directions of the scattered waves,

σtot =

∫
d2Ω

(
dσ

dΩ

)
unpolarized

= k4a6
(
ε− 1

ε+ 2

)2

× 8π

3
. (20)

Finally, suppose the incident EM wave is unpolarized, but the detector of the scattered

wave is sensitive to its polarization. In this case, the detector will show the scattered wave to

be partially polarized, because one polarization of the incident wave scatters stronger than

the other. In terms of planar polarizations ‖ and ⊥ to the plane of scattering, the degree of

polarization for the scattered wave (in a particular direction) is

Π(θ) =
dP⊥ − dP‖
dP⊥ + dP‖

=
dσ(⊥)− dσ(‖)
dσ(⊥) + dσ(‖)

, (21)

which for the small dielectric ball evaluates to

Π(θ) =
1− cos2 θ

1 + cos2 θ
. (22)

Note the direction dependence of this degree of polarization: the wave scattered backward

or forward is unpolarized (Π = 0) while the wave scattered at 90◦ angle is 100% polarized

⊥ to the plane of scattering.
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