
SEPARATION OF VARIABLES METHOD

Separation of variables is a method for solving partial differential equations — such as

Laplace, Poisson, or Schrödinger equations — is volumes whose boundaries line up with the

coordinate surfaces. For example, a rectangular box in Cartesian coordinates (x, y, z), the

space outside a sphere in spherical coordinates (r, θ, φ), or a cylindrical cavity in cylindrical

coordinates (ρ, φ, z). In these notes I focus on the Laplace equation — solving the electrostatic

boundary problem in a suitable volume V, with no charges inside V but unknown charges

outside V or on its surface.

The basic idea of the separation of variables method is to look for the solutions (of the

Laplace equation subject to non-trivial boundary conditions) in the product form

Φ(x, y, z) = f(x)g(y)h(z), (1.a)

or Φ(r, θ, φ) = f(r)g(θ)h(φ), (1.b)

or Φ(ρ, φ, z) = f(ρ)g(φ)h(z). (1.c)

More generally, one starts by looking for infinite series of such product solutions to the Laplace

equation subject to the homogeneous boundary conditions (such as Φ = 0 at some boundaries),

and then looks for the linear combination of such product solutions that would also satisfy the

remaining non-homogeneous boundary conditions (such as Φ(x) = given Φb(x) at the remaining

boundaries).

But instead of developing a general theory of the separation-of-variables method, I am going

to explain it by giving a few specific examples.

A 2D Cartesian Coordinate Example

Let’s start with an effectively 2D problem where the potential Φ(x, y, z) depends on the x

and y coordinates but does not depend on the z. Specifically, consider an infinite slot

0 ≤ x ≤ a, 0 ≤ y < ∞, −∞ < z < +∞ (2)

between 2 conducting and grounded walls (where Φ = 0) at x = 0 and at x = a. There are

no electric charges within the slot, but there are some unknown charges outside the slot, and
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also unknown surface charges on the wall. On the other hand, somebody have measured the

potential at the front boundary y = 0 of the slot and found that it depends only on the x

coordinate across the slot but not on the vertical z coordinate,

@y = 0, Φ(x, 0, z) = known Φb(x only). (3)

And since the slot’s geometry is symmetries WRT translations in the z direction, we presume

the potential inside the slot to also be independent on z.

Mathematically, this gives us a 2D boundary problem inside the yellow semi-infinite strip

0 ≤ x ≤ a, 0 ≤ y < ∞ on the following diagram:

x

y

Φ = 0 Φ = 0

given Φb(x)

Φ(x, y) ??

Φ

0

(4)

Specifically, we looking for Φ(x, y) which obeys:

△2dΦ =
∂2Φ

∂x2
+

∂2Φ

∂y2
= 0,[1]

@x = 0 and @x = a : Φ = 0, and for y → +∞ : Φ → 0[2]

Φ(x, y = 0) = given Φb(x).[3]

In the separation-of-variables method, we start by focusing on the homogeneous conditions [1]

and [2] — but not the inhomogeneous condition [3] — and look for the solutions of the product

2



form

Φ(x, y) = f(x)× g(y). (5)

For a potential of this form, its 2D Laplacian is

△2dΦ(x, y) = f ′′(x)g(y) + f(x)g′′(y), (6)

hence

△2dΦ

Φ
=

f ′′(x)

f(x)
+

g′′(y)

g(y)
. (7)

Consequently, the Laplace equation for the potential requires

f ′′(x)

f(x)
+

g′′(y)

g(y)
= 0 ∀x, y, (8)

and since the first term on the LHS here depends only on x while the second term depends only

on y, the only way they can add up to zero for all x and y if both terms are constants. Thus,

f ′′(x)

f(x)
= −C,

g′′(y)

g(y)
= +C,















for the same constant C. (9)

At the same time, the homogeneous boundary conditions [2] translate into conditions for the

f(x) and g(y) as

f(x = 0) = f(x = a) = 0,

lim
y→+∞

g(y) = 0.
(10)

In particular, the f(x) obeys the ordinary differential equation f ′′(x) + Cf(x) = 0, whose

general solution is a combination of since and cosine waves (for C > 0) or hyperbolic sinh and

cosh (for C < 0). However, the boundary conditions requiring nodes at both x = 0 and x = a
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select the sine waves of particular wave numbers, specifically

f(x) = sin
nπx

a
(11)

for an integer n = 1, 2, 3, . . ., and hence

C = +
(nπ

a

)2
> 0. (12)

Consequently, the g(y) function obeys g′′(y) = Cg(y) for a positive C, so the general solution

is a combination of a sinh and a cosh, or equivalently

g(y) = A× exp
(

−
nπy

a

)

+ B × exp
(

+
nπy

a

)

. (13)

However, the asymptotic condition g → 0 for y → +∞ forces B = 0 so g(y) is a decaying

exponential only.

Altogether, a product solution to the conditions [1] and [2] has form

Φ(x, y) = (const)× sin
nπx

a
× exp

(

−
nπy

a

)

(14)

for an integer n = 1, 2, 3, . . .. Note an infinite series of such solutions. And since the condi-

tions [1] and [2] are homogeneous, and linear combination of their solutions is also a solution.

Consequently, the more general solutions to the conditions [1] and [2] have form

Φ(x, y) =

∞
∑

n=1

An × sin
nπx

a
× exp

(

−
nπy

a

)

(15)

for some real coefficients An. In fact any solution to the 2D Laplace equation [1] in the strip

subject to the boundary conditions [2] can be written as a series (15) with some coefficients

An. But for the sake of brevity, let me simply state this theorem but skip the proof.

Now let’s go back to the complete boundary problem, including the inhomogeneous con-

dition [3] — the known potential Φb(x) at the front boundary y = 0. It is this condition
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which determine the coefficients An in eq. (15). Indeed, for y = 0 all exponential factors in the

series (15) become 1, thus

Φ(x, y = 0) =
∞
∑

n=1

An × sin
nπx

a
(16)

hence the boundary condition [3] becomes

∞
∑

n=1

An × sin
nπx

a
= given Φb(x). (17)

In other words, the An are the Fourier coefficients of the given boundary potential Φb(x)

expanded into the sine waves,

An =
2

a

a
∫

0

dxΦb(x)× sin
nπx

a
. (18)

In particular, for a Φb(x) being a sine wave — or a combination of a few sine waves — there is

only one — or only a few — non-zero coefficients An, so the series (15) becomes a finite sum.

For example, consider

Φb(x) = V0 × sin3
πx

a

=
3V0
4

× sin
πx

a
−

V0
4

sin
3πx

a
.

(19)

Comparing this boundary potential to the Fourier series (17), we immediately — without

performing any integrals — identify

A1 =
3V0
4

, A3 = −
V0
4

, all other An = 0, (20)

and therefore, in the interior of the slot

Φ(x, y) =
3V0
4

× sin
πx

a
× exp

(

−
πy

a

)

−
V0
4

× sin
3πx

a
× exp

(

−
3πy

a

)

. (21)

For other kinds of boundary potentials Φb(x), the Fourier series (17) has an infinite number

of terms, and the coefficients An obtain as Fourier integrals (18). For an example, suppose the
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from wall of the slot at y = 0 is conducting but not grounded and insulated from the side walls

at x = 0 and x = a; instead, it’s held a a constant but non-zero potential

Φb(x) = V0 6= 0 (same at all 0 < x < a). (22)

In this case, the coefficients An obtain as

An =
2V0
a

a
∫

0

dx sin
nπx

a
=

2V0
nπ

nπ
∫

0

dα sin(α)

=
2V0
nπ

(

1 − cos(nπ)
)

=
2V0
nπ

×

{

2 for odd n,

0 for even n.

(23)

Consequently, inside the slot

Φ(x, y) =
oddn
∑

n=1,3,5,...

4V0
nπ

× sin
nπx

a
× exp

(

−
nπy

a

)

. (24)

There happens to be an analytic formula for this infinite sum, namely

Φ(x, y) =
2V0
π

arctan

(

sin(πx/a)

sinh(πy/a)

)

, (25)

but it’s easier to understand the physical behavior of the potential (24) with a 3D plot:

(26)

And here are the cross-sectional profiles of Φ(x) at specific fixed y’s, namely (y/a) = 0.01, 0.11,
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0.21, 0.31, 0.41, 0.51, 0.61, 0.71, 0.81, and 0.91:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(27)

As you can see, at small y ≪ a — near the front of the slot — the profile is almost constant

like the Φb(x) except for the sharp bends down to zero at x = 0 and also at x = a. But as we

go deeper into the slot — to larger y — we get lower and more rounded profiles with slower

rises at the x = 0 and x = a ends. And for larger y’s — deeper and deeper into the slot — the

profiles start looking just like the sine wave sin(πx/a) with smaller and smaller amplitudes.

The reason for this behavior becomes clear when we write the potential as the series (24):

All the exponentials exp(−nπy/a) shrink with increasing y, but the exponentials with larger

n shrink faster that the exponentials with smaller n. Consequently, for large y/a the leading

n = 1 term completely dominates the potential, and we end up with

V ≈
4V0
π

× exp(−πy/a)× sin(πx/a) for y >∼ a, (28)

a sine wave with a decreasing amplitude, exactly as we see on the plot (27).
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A 3D Cartesian Coordinate Example

For a 3D example of the separation-of-variables method, consider a pipe with a rectangular

a×b cross-section, but unlike a slot from the previous example, all 4 sides the pipe are conducting

and grounded. On the other hand, the length of this pipe is infinite in only one direction, so in

the obvious (x, y, z) coordinates, the interior of the pipe is limited to

0 < x < a, 0 < y < b, 0 < z < +∞, (29)

and the pipe has a rectangular opening at z = 0. Similar to the previous example, there are

no electric charges inside the pipe but there unknown charges outside it and on the pipe’s wall,

and we are given the measured potential Φb(x, y, z = 0) across the pipe’s opening; our task is

to find the potential Φ(x, y, z) throughout the pipe’s interior.

Mathematically, we are looking at the potential Φ(x, y, z) in the region (29) which obeys

the following conditions:

[1] Φ obeys the 3D Laplace equation, △Φ(x, y, z) = 0;

[2] Φ vanishes on the 4 grounded walls of the pipe,

Φ(x, y, z) = 0 when x = 0, or x = a, or y = 0, or y = b, (30)

and deep inside the pipe, the potential asymptotes to zero, Φ(x, y, z) → 0 for z → +∞;

[3] at the pipe’s opening z = 0 the potential matches the given boundary potential,

Φ(x, y, z = 0) = given Φb(x, y). (31)

Using the separation-of-variables method, we start by looking at the potentials of the form

Φ(x, y, z) = f(x)× g(y)× h(z) (32)

which obeys the Laplace equation [1] and the homogeneous boundary conditions [2] — but

don’t worry about the inhomogeneous condition [3]. Eventually, we shall find an infinite series

of such solutions, and then we shall look for a linear combination of these solutions that happens

to obey the condition [3].
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So let’s start with the Laplace equation. In 3D,

△Φ =
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2

〈〈 for Φ as in eq. (32) 〉〉

= f ′′(x)× g(y)× h(z) + f(x)× g′′(y)× h(z) + f(x)× g(y)× h′′(z),

(33)

hence

△Φ

Φ
=

f ′′(x)

f(x)
+

g′′(y)

g(y)
+

h′′(z)

h(z)
, (34)

and we want this expression to vanish for all x, y, z. But the first term here depends only on

the x coordinate, the second — only on the y, and the third — only on the z, so the only way

they can add up to zero for all independent x, y, z is if each one of these terms is a constant.

Thus,

f ′′(x)

f(x)
= C1 = const,

g′′(y)

g(y)
= C2 = const,

h′′(z)

h(z)
= C3 = const,

and C1 + C2 + C3 = 0.

(35)

Next, the homogeneous boundary conditions [2] for the potential translate to the boundary

conditions of the f , g, and h functions as

f(x = 0) = f(x = a) = 0,

g(y = 0) = g(y = b) = 0,

h(z) → 0 for z → +∞.

(36)

Altogether, the f(x) function obeys

f ′′(x) − C1 × f(x) = 0, f(0) = f(a) = 0, (37)

exactly as in the previous 2D examples, so it has the same solutions:

f(x) = sin
mπx

a
, C1 = −(mπ/a)2 < 0, (38)
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for an integer m = 1, 2, 3, . . .. Likewise, the g(y) function obeys similar conditions

g′′(y) − C2 × g(y) = 0, g(0) = g(b) = 0, (39)

so it also has similar solutions:

g(y) = sin
nπy

b
, C2 = −(nπ/b)2, (40)

for an integer n = 1, 2, 3, . . .. Note: the two integersm and n in eqs. (38) and (40) are completely

independent from each other.

Now let’s pick any particular positive integers m and n. For any choice of these integers,

we have

C3 = −C1 − C2 = +(mπ/a)2 + (nπ/b)2 > 0, (41)

so let’s define

κm,n
def
= +

√

C3 = +
√

(mπ/a)2 + (nπ/b)2 . (42)

In terms of this κm,n, the conditions for the h(z) function become

h′′(z) − κ2m,n × h(z) = 0, h(z) → 0 for z → +∞, (43)

with the only solution to these conditions being

h(z) = exp
(

−κm,n × z
)

. (44)

Altogether, we see that all the product solutions to the conditions [1] and [2] for the potential

inside the pipe have form

Φ(x, y, z) = const× sin
mπx

a
× sin

nπy

b
× exp(−κm,nz) (45)

for positive integers m and n. Similar to the 2D example we got an infinite but discrete set of

solutions, although in the present 3D case we got a double series labeled by two independent
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integers m and n rather than a single series. And since the conditions [1] and [2] are linear

and homogeneous, any linear combination of the product solutions (45) is also a solution, so a

general non-product solution has form

Φ(x, y, z) =

∞
∑

m=1

∞
∑

n=1

Am,n × sin
mπx

a
× sin

nπy

b
× exp(−κm,nz) (46)

for some constant coefficients Am,n. Again, a theorem says that any solution to [1] and [2] has

form (46) for some real coefficients Am,n, but for brevity’s sake let me skip the proof of this

theorem.

In particular, the solution for the full problem — including the inhomogeneous boundary

condition at the z = 0 opening of the pipe — must have the form (46) for some coefficients

Am,n, and the values of such coefficients follow from the given boundary potential Vb(x, y) at

z = 0. To find these coefficient, let’s evaluate eq. (46) for z = 0: Since exp(−κm,nz) = 1 for

z = 0 regardless of the value of κm,n, we get

Φ(x, y, z = 0) =
∞
∑

m=1

∞
∑

n=1

Am,n × sin
mπx

a
× sin

nπy

b
= should be = given Φb(x, y). (47)

The double sum in this formula looks like a double Fourier expansion of Φb(x, y) into sine waves

of x and of y, so the coefficients Am,n obtain from the corresponding Fourier integrals as

Am,n =
4

ab

a
∫

0

dx

b
∫

0

dyΦb(x, y)× sin
mπx

a
× sin

nπy

b
. (48)

Example:

Suppose the pipe has a square cross-section a× a (thus b = a), and the boundary potential at

the pipe’s opening is a double-sine wave

Φb(x, y) = V0 × sin
3πx

a
× sin

4πy

a
. (49)

In this case, we do not need to perform the integrals (48) to find the Fourier coefficients Am,n.
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Instead, we simply compare eq. (49) to the Fourier series (47):

∞
∑

m=1

∞
∑

n=1

Am,n × sin
mπx

a
× sin

nπy

b
= V0 × sin

3πx

a
× sin

4πy

a
, (50)

which immediately tells us that

A3,4 = V0 while all other Am,n = 0. (51)

Consequently, the double sum (46) for the potential inside the pipe has only one non-zero term,

thus

V (x, y, z) = V0 × sin
3πx

a
× sin

4πy

a
× exp(−κ3,4z), (52)

where

κ3,4 =
√

(3π/a)2 + (4π/a)2 = (π/a)×
√

32 + 42 = (π/a)× 5. (53)

Altogether,

V (x, y, z) = V0 × sin
3πx

a
× sin

4πy

a
× exp

(

−5πz

a

)

. (54)

Separation of Variables in Spherical Coordinates

Boundary problems in volumes V with spherical or conical boundaries are often solved

using separation of variables in spherical coordinates (r, θ, φ). In these notes we shall stick to

the spherical boundaries only, so V can be a spherical cavity, or the space outside of a sphere,

or a shell between two concentric spheres.

Let’s start with a spherical cavity of radius R; there are no electric charges inside the cavity

but there are some unknown charges outside the cavity and on its walls; and we happen to know

the potential at the cavity’s spherical boundary r = R. Thus, we seek the potential Φ(r, θ, φ)

such that

△Φ = 0,[1]

Φ(r = R, θ, φ) = given Φb(θ, φ).[2]
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In addition, there are pseudo-boundary conditions for the potential as a function Φ(r, θ, φ) of

the spherical coordinates:

Φ is periodic in φ : Φ(r, θ, φ+ 2π) = Φ(r, θ, φ),

[3] Φ is finite and regular at the sphere’s poles at θ = 0 and θ = π,

Φ is finite and regular at the coordinate center r = 0.

In the separation of variables method, we start by looking at product potentials

Φ(r, θ, φ) = f(r)× Y(θ, φ) (55)

that obey the Laplace equation [1] and the pseudo-boundary conditions [3], but put the outer

boundary condition [2] aside for a moment. In spherical coordinates, the Laplace operator acts

as

△Φ(r, θ, φ) =
∂2Φ

∂r2
+

2

r

∂Φ

∂r
−

1

r2
L2Φ (56)

where

L2 = −
∂2

∂θ2
−

1

tan θ

∂

∂θ
−

1

sin2 θ

∂2

∂φ2
(57)

is a differential operator in the angular coordinates (θ, φ). Its name L2 stems from it being the

vector square of the first-order operator L = −ix × ∇, which you should recognize from the

quantum mechanics class: L — or rather h̄L — is the orbital angular momentum operator in

the coordinate basis.

Back to the Laplace operator (56), when acting on the product potential (55) it yields

△
(

f(r)Y(θ, φ)
)

= f ′′(r)× Y(θ, φ) +
2f ′(r)

r
× Y(θ, φ) −

f(r)

r2
× L2Y(θ, φ), (58)

hence

r2△Φ

Φ
=

r2f ′′(r) + 2rf ′(r)

f(r)
−

L2Y(θ, φ)

Y(θ, φ)
. (59)

For a potential obeying the Laplace equation this expression should vanish for all r, θ, φ, but

since the first term on the RHS depends only on the radius r while the second term depends
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only on the angular coordinates, both terms must be constants. Thus,

r2f ′′(r) + 2rf ′(r) = C × f(r), (60)

L2Y(θ, φ) = C ×Y(θ, φ), (61)

for the same constant C.

The angular equation (61) is the eigenvalue/eigenstate equation for the L2 operator. Specif-

ically, it’s the eigenvalue/eigenstate equation in the space of functions that are periodic in φ

and regular at the poles θ = 0 and θ = π. In principle, we should solve this equation using

one more factorization Y(θ, φ) = g(θ) × h(φ), turning the PDE (61) into ODEs for g(θ) and

h(φ), and applying the pseudo-boundary conditions. But in the interest of brevity, let me skip

all this process and simply use what you (should) already know from the quantum mechanics

class: The spectrum of the orbital angular momentum2 operator L2 comprises

C = ℓ(ℓ+ 1) for integer ℓ = 0, 1, 2, 3, . . . . (62)

And for each such ℓ, there are 2ℓ + 1 independent eigenstates Yℓ,m(θ, φ) called the spherical

harmonics labeled by integer m running from −ℓ to +ℓ by 1. Here are some important features

of the spherical harmonics:

• The Yℓ,m have form Yℓ,m(θ, φ) = (const) × Pℓ(m)(cos θ) × exp(imφ) where the Pℓ(m)(x)

are called the associate Legendre polynomials, even though some of them are not really

polynomials. Instead, Pℓ(m)(cos θ) = (sin θ)|m| × degree (ℓ− |m|) polynomial of cos θ.

• For m 6= 0 the spherical harmonics are complex; by convention, Y ∗
ℓ,m = (−1)mYℓ,−m.

Also, all the harmonics with m 6= 0 vanish at the poles θ = 0 and θ = π.

• The only harmonics which do not vanish at the poles are the Yℓ,0. These harmonics are

independent of φ and are proportional to the regular Legendre polynomials Pℓ(cos θ), but

have different normalization: Yℓ,0(θ, \φ) =
√

(2ℓ+ 1)/4π × Pℓ(cos θ).

• The spherical harmonics are orthogonal to each other and normalized to 1. That is

∫∫

Y ∗
ℓ,m(θ, φ) Yℓ′,m′(θ, φ) d2Ω(θ, φ) = δℓ,ℓ′δm,m′ . (63)

• Any smooth, single-valued function g(θ, φ) can be decomposed into a series of spherical
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harmonics,

g(θ, φ) =
∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

Cℓ,mYℓ,m(θ, φ) for Cℓ,m =

∫∫

g(θ, φ) Y ∗
ℓ,m(θ, φ) d

2Ω(θ, φ). (64)

• Let F (r, θ, φ) = rℓ×Yℓ,m(θ, φ). Then in Cartesian coordinates, F (x, y, z) is a homogeneous

polynomial in x, y, z of degree ℓ. Moreover, F (x, y, z) obeys the Laplace equation△F = 0.

Now consider the radial equation (60) for C = ℓ(ℓ+ 1):

r2 × f ′′(r) + 2r × f ′(r) − ℓ(ℓ+ 1)f(r) = 0. (65)

This differential equation is invariant under rescaling of the radius, r → const× r, so let’s look

for the solutions f(r) that are eigenstates of this symmetry, namely

f(r) = rα (66)

for a constant power α. For such radial profiles

r × f ′(r) = α× rα, r2 × f ′′(r) = α(α− 1)× rα, (67)

hence eq. (65) becomes

α(α− 1)× rα + 2α× rα − ℓ(ℓ+ 1)× rα =
(

α(α + 1) − ℓ(ℓ+ 1)
)

× rα = 0, (68)

which makes f(r) = rα a solution provided

α(α + 1) − ℓ(ℓ+ 1) = 0 ⇐⇒ α = +ℓ or α = −(ℓ + 1). (69)

This, we have two independent solutions — rℓ and r−ℓ−1 — of the linear second-order equa-

tion (65), so a general solution is a linear combination

f(r) = (const A)× rℓ + (const B)×
1

rℓ+1
. (70)

Altogether, a general product solution of the Laplace equation in the spherical coordinates
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has form

Φ(r, θ, φ) =

(

A× rℓ +
B

rℓ+1

)

× Yℓ,m(θ, φ) (71)

for some integer ℓ and m. And since the Laplace equation [1] and the pseudo-boundary con-

ditions [3] for the spherical coordinates are all linear, any linear combination of the product

solutions (71) —

Φ(r, θ, φ) =
∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

(

Aℓ,m × rℓ +
Bℓ,m

rℓ+1

)

× Yℓ,m(θ, φ) (72)

is also a solution. Moreover, any solution of [1] and [3] has form (72) for some constant

coefficients Aℓ,m and Bℓ,m, but again I am going to skip the proof of this theorem.

Spherical Cavity

The values of the coefficients Aℓ,m and Bℓ,m for the specific solution of the complete bound-

ary problem follow from the given boundary potential Φb(θ, φ) at the spherical boundary or

boundaries. Let’s start with a particularly simple case of V being a spherical cavity of radius R.

In this case, there is only one spherical boundary at r = R but there is also a pseudo-boundary

at the coordinate center r = 0. Since there are no electric charges inside the cavity — and

in particular no charges at the center — the potential Φ(r, θ, φ) must be finite and regular at

r = 0. In terms of eq. (72), this means

all Bℓ,m = 0 (73)

and therefore

Φ(r, θ, φ) =
∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

Aℓ,m × rℓ × Yℓ,m(θ, φ), (74)

where the remaining coefficients Aℓ,m follow from the given boundary potential at r = R.

Indeed,

Φ(r = R, θ, φ) =
∑

ℓ,m

Aℓ,m ×Rℓ × Yℓ,m(θ, φ) = should be = given Φb(θ, φ), (75)

and since the spherical harmonics form a complete orthonormal basis for functions of the angular
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coordinates, we have

Φb(θ, φ) =

∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

Cℓ,mYℓ,m(θ, φ) for Cℓ,m =

∫∫

Φb(θ, φ)× Y ∗
ℓ,m(θ, φ) d

2Ω(θ, φ). (64)

Comparing the last two formulae, we immediately see that

Aℓ,m × Rℓ = Cℓ,m (76)

and hence

Aℓ,m =
Cℓ,m

Rℓ
=

1

Rℓ

∫∫

Φb(θ, φ)× Y ∗
ℓ,m(θ, φ) d2Ω(θ, φ). (77)

In particular, if the boundary potential Φb(θ, φ) happens to be a polynomial function of

sin θe+iφ, sin θe−iφ, and cos θ, then it’s a linear combination of a finite number of spherical

harmonics with coefficient obtaining by inspection without any integrals. In such a case there

are only a finite number of non-zero Aℓ,m coefficients, and the series (74) has only a finite

number of terms. But for more general boundary potentials, the series (64) and hence (74) do

have infinitely many non-zero terms, and to obtain their coefficients we do have to evaluate the

integrals (77).

Space Outside a Sphere

For a different example, let V span the whole space outside a sphere of radius R, with a

known boundary potential Φ(r = R, θ, φ) = Φb(θ, φ) on that sphere’s surface. Again we have

only one spherical boundary here, but we must supplement it with an asymptotic condition for

the potential at r → ∞. The simplest asymptotic condition is zero potential at infinity,

lim
r→∞

Φ(r, θ, φ) = 0 ∀θ, φ, (78)

which immediately requires all the Aℓ,m coefficients in the series (15) to vanish. Hence,

Φ(r, θ, φ) =
∑

ℓ,m

Bℓ,m

rℓ+1
× Yℓ,m(θ, φ), (79)
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where the remaining coefficients Bℓ,m follow from the boundary potential on the sphere’s surface:

Φ(r = R, θ, φ) =
∑

ℓ,m

Bℓ,m

Rℓ+1
× Yℓ,m(θ, φ) = should be = given Φb(θ, φ). (80)

To find these coefficients, we again expand the boundary potential into spherical harmonics

Φb(θ, φ) =
∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

Cℓ,mYℓ,m(θ, φ) for Cℓ,m =

∫∫

Φb(θ, φ)× Y ∗
ℓ,m(θ, φ) d

2Ω(θ, φ), (64)

and comparing the last two formulae we see that this time we need

Bℓ,m = Rℓ+1 × Cℓ,m = Rℓ+1 ×

∫∫

Φb(θ, φ)× Y ∗
ℓ,m(θ, φ) d

2Ω(θ, φ). (81)

But a different asymptotic condition at r → ∞ may lead to a different solution with some

of the Aℓ,m 6= 0 to make

Φ(r, θ, φ) −−−→
r→∞

∑

ℓ,m

Aℓ,mrℓYℓ,m(θ, φ) = should = given Φasymptotic(r, θ, φ). (82)

For example, in problem 2(c) of the homework set#1, the asymptotic electric field is uniform

E0. Assuming the direction of this asymptotic field is +z, this means

Φasymptotic(x, y, z) = −E0 × z, (83)

or in spherical coordinates

Φasymptotic(r, θ, φ) = −E0 × r × cos θ = −E0 × r ×

√

4π

3
Y1,0(θ, φ). (84)

Matching this asymptotics to eq. (82), we see that for this problem we need

A1,0 = −

√

4π

3
E0, while all other Aℓ,m = 0. (85)

As to the Bℓ,m coefficients, they follow from the given boundary potential at r = R, but now

you need to account A1,0 6= 0 when calculating the Bℓ,m.
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Spherical Shell

Finally consider a shell between two concentric spheres of radii R1 < R2. This time we

don’t have to worry about the limits r → 0 or r → ∞, but instead we have two boundary

potentials

Φ(r = R1, θ, φ) = Φb1(θ, φ) and Φ(r = R2, θ, φ) = Φb2(θ, φ). (86)

Let’s expand both boundary potentials into spherical harmonics:

Φb1(θ, φ) =
∑

ℓ,m

C
(1)
ℓ,mYℓ,m(θ, φ)

for C
(1)
ℓ,m

=

∫∫

Φb1(θ, φ)× Y ∗
ℓ,m(θ, φ) d2Ω(θ, φ),

Φb2(θ, φ) =
∑

ℓ,m

C
(2)
ℓ,mYℓ,m(θ, φ)

for C
(2)
ℓ,m

=

∫∫

Φb2(θ, φ)× Y ∗
ℓ,m(θ, φ) d2Ω(θ, φ).

(87)

Then matching these expansions to the expansion of the potential between the spheres

Φ(r, θ, φ) =
∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

(

Aℓ,m × rℓ +
Bℓ,m

rℓ+1

)

× Yℓ,m(θ, φ) (72)

in the limiting cases of r = R1 and r = R2, we see that for each (ℓ,m) the coefficients Aℓ,m and

Bℓ,m obtain from solving a couple of linear equations



















Rℓ
1 × Aℓ,m +

1

Rℓ+1
1

× Bℓ,m = C
(1)
ℓ,m =

∫∫

Φb1(θ, φ)× Y ∗
ℓ,m(θ, φ) d

2Ω(θ, φ),

Rℓ
2 × Aℓ,m +

1

Rℓ+1
2

× Bℓ,m = C
(2)
ℓ,m

=

∫∫

Φb2(θ, φ)× Y ∗
ℓ,m(θ, φ) d

2Ω(θ, φ).

(88)
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