
PHY–387 K. Solutions for problem set #1.

Problem 2(a):

The boundary problem of the form

Φ(x, y, z) = 0 for x = 0 or x = L or y = 0 or y = L or z = 0, (S.1)

Φ(x, y, z) = given Φb(x, y) for z = L, (S.2)

is best solved using separation of variables in Cartesian coordinates: First, we look for

solutions of the Laplace equation in the form

Φ(x, y, z) = A(x)B(y)C(z) (S.3)

which obey the homogeneous boundary conditions (S.1), and then we look for a linear com-

bination of such solutions which also obeys the in-homogeneous boundary condition (S.2).

As explained in class, for the potential in the form (S.3), the Laplace equation becomes

A′′(x) = aA(x), B′′(y) = bB(y), C ′′(z) = cC(z),

for some constants a, b, c such that a+ b+ c = 0, (S.4)

while the homogeneous boundary conditions (S.1) translate to

A(0) = A(L) = 0, B(0) = B(L) = 0, C(0) = 0. (S.5)

Solving the equations (S.4) with boundary conditions (S.5), we obtain

A(x) = sin
mπx

L
for an integer m = 1, 2, 3, . . . ,

B(y) = sin
nπy

L
for an integer n = 1, 2, 3, . . . ,

C(z) = sinh(κm,nz) for κ2m,n = (mπ/L)2 + (nπ/L)2.

(S.6)

Consequently, a most general solution of the Laplace equation plus the homogeneous
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boundary conditions (S.1) has form

Φ(x, y, z) =
∑
m,n

αm,n sin
mπx

L
sin

nπy

L
sinh(κm,nz) (S.7)

for some real coefficients αm,n. Adding the in-homogeneous boundary conditions (S.2) fixes

the values of these coefficients to whatever it takes to get

∑
m,n

αm,n sin
mπx

L
sin

nπy

L
sinh(κm,nL) = given Φb(x, y). (S.8)

For the problem at hand, the boundary potential (1) at the cube’s lid amounts to

Φb(x, y) = V0 sin
3πx

L
sin

4πy

L
, (S.9)

so we may immediately determine

α3,4 × sinh(κ3,4L) = V0, all other αn,m = 0, (S.10)

and therefore

Φ(x, y, z) = V0 × sin
3πx

L
× sin

4πy

L
×

sinh(κ3,4z)

sinh(κ3,4L)
. (S.11)

Finally,

κ23,4 = (3π/L)2 + (4π/L)2 = (π/L)2 × (32 + 42 = 52) =⇒ κ3,4 = 5π/L, (S.12)

and consequently

Φ(x, y, z) = V0 × sin
3πx

L
× sin

4πy

L
× sinh(5πz/L)

sinh(5π)
. (S.13)
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Problem 2(b):

The best coordinate system for the hollow cylindrical pipe in question are the cylindrical

coordinates (r, φ, z). In these coordinates, we have homogeneous boundary (and boundary-

like) conditions

Φ(r, φ, z) = 0 for r = R and for z → +∞,

periodic Φ(r, φ, z) = Φ(r, φ+ 2π, z),

smooth Φ(r, φ, z) for r → 0,

(S.14)

as well as the inhomogeneous boundary condition

Φ(r, φ, z) = given Φb(r, φ) for z = 0, (S.15)

in our case

Φb(r, φ) = V0 × J1(kr)× cosφ (S.16)

where J1 is the Bessel function Jn for n = 1.

As explained in the textbook, we start by looking at the solutions of the Laplace equation

and the homogeneous boundary conditions (S.14) in the form

Φ(r, φ, z) = A(r)×B(φ)× C(z), (S.17)

and then we look for a linear combination of such solutions which also obeys the inhomoge-

neous boundary condition (S.15). For the potential of the form (S.17), the Laplace equation

becomes

∇2Φ

Φ
=

A′′(r)

A(r)
+

A′(r)

rA(r)
+

1

r2
B′′(φ)

B(φ)
+

C ′′(z)

C(z)
= 0, (S.18)

which calls for

A′′(r) +
1

r
A′(r) − n2

r2
A(r) = k2A(r), (S.19)

B′′(φ) = −n2B(φ), (S.20)
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C ′′(z) = −k2C(z), (S.21)

for some constants n2 and k2, while the homogeneous boundary conditions (S.14) become

A(r = R) = 0, smooth A(r) for r → 0,

B(φ) = B(φ+ 2π),

C(z) → 0 for z → +∞.

(S.22)

As explained in the textbook, solving these equations and boundary conditions gives us

B(φ) = α cos(nφ) + β sin(nφ)

for an integer n,

A(r) = Jn(kr) 〈〈Bessel function #n 〉〉

for k such that Jn(kR) = 0,

C(z) = exp(−kz).

(S.23)

Consequently, the general solution of the Laplace equations plus homogeneous boundary

conditions has form

Φ(r, φ, z) =
∑
n,m

(
αn,m cos(nφ) + βn,m sin(nφ)

)
× Jn(km(n)× r)× exp(−km(n)× z) (S.24)

for some real coefficients αn,m and βn,m, where

km(n) =
1

R
×
(
mth zero of the Bessel function Jn

)
. (S.25)

The values of the coefficients αn,m and βn,m follow from the inhomogeneous boundary con-

dition at z = 0, namely whatever it takes to get∑
n,m

(
αn,m cos(nφ) + βn,m sin(nφ)

)
× Jn(km(n)× r) = given Φb(r, φ). (S.26)

For the problem at hand, we are given

Φb(r, φ) = V0 × J1(kr)× cosφ (S.27)

where k is one of the km(1) (since we are told that J1(kR) = 0), say k = km0(1). Therefore,
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we immediately identify

α1,m0 = V0 , all other αn,m = 0, all βn,m = 0, (S.28)

so the solution inside the pipe is

Φ(r, φ, z) = V0 × J1(km0(1)× r)× cosφ× exp(−km0(1)× z). (S.29)

Problem 2(c):

To keep our notations simple, let’s use the spherical coordinates with the origin at the sphere’s

center and the “north pole” θ = 0 pointing in the direction of the asymptotic electric field

E0. In these spherical coordinates, we have a Dirichlet boundary condition Φ(r, θ, φ) = 0 for

r = R, and the asymptotic condition

Φ(r, θ, φ) −−−→
r→∞

−E0z = −E0r cos θ. (S.30)

To solve this problem, we first use the axial symmetry to look for a φ-independent Φ(r, θ),

then separate the variables to look for solutions in the form

Φ(r, θ) = A(r)×B(θ), (S.31)

and ultimately look for a linear combinations of such solutions which has the right asymptotic

behavior (S.30).

As explained in class, the Laplace equation for potential of the form (S.31) becomes

A′′(r) +
2

r
A′(r) − `(`+ 1)

r2
A(r) = 0, (S.32)

B′′(θ) +
1

tan θ
B′(θ) + `(`+ 1)B(θ) = 0. (S.33)

where in lieu of the boundary conditions B(θ) must be non-singular at both θ = 0 and at

θ = π. The solutions of these conditions exist only for integer ` = 0, 1, 2, 3, . . ., and have
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form

B(θ) = P`(cos θ) (S.34)

where P`(x) is the Legendre polynomial of degree `. As to eq. (S.32) for the A(r), the general

solution is

A(r) = α× r` +
β

r`+1
(S.35)

for some coefficients α and β. However, the Dirichlet boundary condition on the conducting

sphere’s surface — which translates to A(r = R) = 0, — requires

α×R` +
β

R`+1
= 0, (S.36)

hence β = −R2`+1 × α and therefore

A(r) = α×
(
r` − R2`+1

r`+1

)
. (S.37)

Altogether, the general axially-symmetric potential outside the conducting sphere has

form

Φ(r, θ) =
∞∑
`=0

α` ×
(
r` − R2`+1

r`+1

)
× P`(cos θ) (S.38)

for some coefficients α`. To find these coefficients, we look at the asymptotic behavior of the

potential (S.38) at long distances from the sphere, r � R:

Φ(r, θ) −−−→
r→∞

∞∑
`=0

α` × r` × P`(cos θ). (S.39)

Matching this asymptotic behavior to the uniform electric field (S.30), — which we may
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rewrite as

Φ(r, θ) −−−→
r→∞

−E0 × r × P1(cos θ) (S.40)

since P1(x) = x, — we immediately see that we want

α1 = −E0 , all other α` = 0. (S.41)

Consequently, the potential (S.38) at finite distances of the sphere is

Φ(r, θ) = −E0

(
r − R3

r2

)
× cos θ. (S.42)

Finally, the electric field E = −∇Φ outside the sphere is best obtained in vector or index

notations:

Φ = −(E0 · n)

(
r − R3

r2

)
, (S.43)

E = −∇Φ =
(
∇(n · E0)

)(
r − R3

r2

)
+ (n · E0)∇

(
r − R3

r2

)
=

E0 − (E0 · n)n

r

(
r − R3

r2

)
+ (n · E0)

(
1 +

2R3

r3

)
n

= E0 +
R3

r3
(
3(E0 · n)n − E0

)
. (S.44)

Problem 3(intro):

The separation of variables method in spherical coordinates was explained in class, but let

me briefly repeat it here. For a region of space bounded by a sphere or 2 concentric spheres

and containing no electric charges, we look for solutions of the Laplace equation in the form

Φ(r, θ, φ) = A(r)×B(θ, φ). (S.45)

For these kinds of potentials, the Laplace equation becomes

A′′(r) +
2

r
A′(r) − `(`+ 1)

r2
A(r) = 0, (S.46)
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L2B(θ, φ) − `(`+ 1)B(θ, φ) = 0, (S.47)

and the B(θ, φ) factor is subject to boundary-like conditions

B(θ, φ+ 2π) = B(θ, φ) and B is smooth for θ → 0 and θ → π. (S.48)

As you (should have) learned in a Quantum Mechanics class, eq. (S.47) subject to condi-

tions (S.48) has solutions only for integer ` = 0, 1, 2, . . ., and the solutions are the spherical

harmonics Y`,m(θ, φ) for m = −`, 1− `, . . . , `− 1, `. As to the eq. (S.46) for the A(r) factor,

the general solution is

A(r) = α× r` +
β

r`+1
(S.49)

for some coefficients α and β.

Consequently, without specifying the boundary conditions at the spherical boundaries,

the most general solution of the Laplace equation can be written as

Φ(r, θ, φ) =
∞∑
`=0

+∑̀
m=−`

(
α`,mr

` +
β`,m
r`+1

)
× Y`,m(θ, φ) (S.50)

for some coefficients α`,m and β`,m.

Problem 3(a):

Now, let’s apply eq. (S.50) to the problem at hand. In our case, the volume in question is

everywhere outside a sphere of radius R — which serves as the inner boundary, — and we

are given the potential Φb(θ, φ) which we should have at that boundary. There is no outer

boundary — the volume in question extends to infinity in all directions, — but there is an

implicit asymptotic condition of Φ(x) → 0 for r → ∞. Therefore, for any direction (θ, φ),

the expansion of the potential in powers of r should contain no positive powers of r but only
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negative powers, which means that in the series (S.50) we must have

α`,m = 0 for all `,m. (S.51)

Thus, the series (S.50) becomes

Φ(r, θ, φ) =
∞∑
`=0

+∑̀
m=−`

β`,m
r`+1

× Y`,m(θ, φ) (S.52)

where the coefficients β`,m obtain from the boundary condition at the sphere of radius R.

Specifically,

for r = R, Φ(R, θ, φ) =
∑
`,m

β`,m
R`+1

× Y`,m(θ, φ)

should be = given Φb(θ, φ).

(S.53)

To solve this equation, we use the orthogonality of the spherical harmonics:∫∫
d2Ω(θ, φ)Y ∗`,m(θ, φ)Y`′,m′(θ, φ) = δ`,`′δm,m′ , (S.54)

hence given eq. (S.53), we must have∫∫
d2Ω(θ, φ)Y ∗`,m(θ, φ)× Φb(θ, φ) =

∑
`′,m′

β`′,m′

R`′+1
×
∫∫

d2Ω(θ, φ)Y ∗`,m(θ, φ)Y`′,m′(θ, φ)

=
∑
`′,m′

β`′,m′

R`′+1
× δ`,`′δm,m′

=
β`,m
R`+1

.

(S.55)

Consequently,

β`,m = R`+1 ×
∫∫

d2Ω(θ, φ)Y ∗`,m(θ, φ)× Φb(θ, φ)

= R`−1 ×
∫∫
sphere

d2y Y ∗`,m(ny)× Φb(y),
(S.56)

where the second line follows from

d2y ≡ d2Area(y) = R2 × d2Ω(θ, φ) for y spanning the sphere of radius R. (S.57)

Finally, let’s plug the coefficients (S.56) into eq. (S.52) for the potential outside the
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sphere:

Φ(r, θ, φ) =
∑
`,m

Y`,m(θ, φ)

r`+1
×

β`,m = R`−1
∫∫
sphere

d2y Y ∗`,m(ny)× Φb(y)


=

∫∫
sphere

d2yΦb(y)×
∑
`,m

R`−1

r`+1
× Y`,m(θ, φ)Y ∗`,m(ny),

(S.58)

or in other words,

Φ(x) =

∫∫
sphere

d2yΦb(y)× F (x,y) (3)

for

F (x,y)
def
=

∞∑
`=0

R`−1

|x|`+1
×

+∑̀
m=−`

Y`,m(nx)Y ∗`,m(ny). (4)

Quod erat demonstrandum.

Problem 3(b):

First, let’s complete eq. (8) using eq. (7):

∞∑
`=0

(2`+ 1)t` × P`(c) =

(
2t

∂

∂t
+ 1

) ∞∑
`=0

t` × P`(c)

〈〈 plugging in eq. (7) 〉〉

=

(
2t

∂

∂t
+ 1

)
1√

1− 2ct+ t2

= 2t× c− t
(1− 2ct+ t2)3/2

+
1√

1− 2ct+ t2

=
2t(c− t) + (1− 2ct+ t2)

(1− 2ct+ t2)3/2

=
1− t2

(1− 2ct+ t2)3/2
.

(8∗)
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Next, let’s use eq. (6) to sum over m in eq. (4):

F (x,y) =
∞∑
`=0

R`−1

r`+1
×

+∑̀
m=−`

Y`,m(nx)Y ∗`,m(ny)

〈〈where r = |x| 〉〉

=
∞∑
`=0

R`−1

r`+1
× 2`+ 1

4π
P`(nx · ny)

=
1

4πRr

∞∑
`=0

(2`+ 1)(R/r)` × P`(nx · ny).

(S.59)

Physically, c = (nx · ny) is the cosine of the angle between the directions of the vectors x

and y, so we always have |c| ≤ 1. At the same time x is outside the sphere of radius R while

y is on the surface of that sphere, hence

r = |x| > R = |y| =⇒ t =
R

r
< 1. (S.60)

Consequently, eq. (7) — and hence also eq. (8∗) — are valid for c = (nx ·ny) and t = (R/r),

so applying eq. (8∗) to the series on the bottom line of eq. (S.59), we get

F (x,y) =
1

4πRr

∞∑
`=0

(2`+ 1)(t = R/r)` × P`(c = nx · ny)

=
1

4πRr
× 1− (t = R/r)2

[1 − 2(t = R/r)(c = nx · ny) + (t = R/r)2]3/2

=
1

4πRr
× r(r2 −R2)

[r2 − 2rR(nx · ny) + R2]3/2

=
r2 −R2

4πR
× 1

[x2 − 2x · y + y2]3/2

=
x2 −R2

4πR
× 1

|x− y|3
.

(5)

Quod erat demonstrandum.
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