PHY-387 K. Solutions for problem set #1.

Problem 2(a):
The boundary problem of the form

O(z,y,2) = 0 forr=0orz=Lory=0o0ry=Lorz=0, (S.1)
O(x,y,2) = given Op(z,y) for z =1L, (S.2)

is best solved using separation of variables in Cartesian coordinates: First, we look for

solutions of the Laplace equation in the form
®(z,y,2) = Alx)B(y)C(2) (5-3)

which obey the homogeneous boundary conditions (S.1), and then we look for a linear com-
bination of such solutions which also obeys the in-homogeneous boundary condition (S.2).

As explained in class, for the potential in the form (S.3), the Laplace equation becomes

A'(x) = aAx), B'(y) = bBly), C"(z) = <C(2),

for some constants a, b, ¢ such that a +b+ ¢ = 0, (S.4)
while the homogeneous boundary conditions (S.1) translate to
A(0) = A(L) = 0, B(0) = B(L) =0, C(0) = 0. (S.5)

Solving the equations (S.4) with boundary conditions (S.5), we obtain

mmnmx

A(z) = sin for an integer m =1,2,3,...,
B(y) = sin % for an integer n =1,2,3, ..., (S.6)

C(z) = sinh(kppz) for K,?nm = (mn/L)*> + (nm/L)2.

Consequently, a most general solution of the Laplace equation plus the homogeneous



boundary conditions (S.1) has form

mrx nmw
O(z,y,2) = Zam,n sinT sinTy sinh (K, n2) (S.7)
m,n
for some real coefficients oy, . Adding the in-homogeneous boundary conditions (S.2) fixes
the values of these coefficients to whatever it takes to get

Z Qm.p SID ? sin% sinh(kmnl) = given Op(z,y). (S.8)
m,n

For the problem at hand, the boundary potential (1) at the cube’s lid amounts to

3 4
Oy(x,y) = Vysin %m sin %y’ (S5.9)
so we may immediately determine
az 4 x sinh(k3 4L) = Vp, all other oy, = 0, (S.10)

and therefore

A7y 5 sinh(kg42)
L sinh(k34L) "

3
O(z,y,2) = Vo x sin% X sin (S.11)

Finally,
K3g = (37/L)* + (4r/L)* = (r/L)? x (3*+4*=5%) = kg4 = 57/L, (S.12)

and consequently

Ay " sinh(57z/L)
L sinh(57)

3
O(z,y,2) = Vo x sin%m X sin (S.13)



Problem 2(b):
The best coordinate system for the hollow cylindrical pipe in question are the cylindrical
coordinates (r, ¢, z). In these coordinates, we have homogeneous boundary (and boundary-

like) conditions

O(r,¢,z) = 0 for r = R and for z — +o0,
periodic ®(r, ¢, 2) = (r, ¢+ 2r, 2), (8.14)

smooth ®(r, ¢, z) for r — 0,

as well as the inhomogeneous boundary condition

O(r,¢,z) = given $y(r, ¢) for z = 0, (S.15)

in our case

Oy(r,0) = Vo x Ji(kr) x cos ¢ (S.16)

where Jj is the Bessel function .J,, for n = 1.

As explained in the textbook, we start by looking at the solutions of the Laplace equation

and the homogeneous boundary conditions (S.14) in the form
O(r,¢,2) = A(r) x B(g) x C(2), (5.17)

and then we look for a linear combination of such solutions which also obeys the inhomoge-

neous boundary condition (S.15). For the potential of the form (S.17), the Laplace equation

becomes
2 "(r '(r " "(z
chq) - i(&ﬁ - ;414((7“)) - 7;2%((5)) * C(;(i)) =0 (818)
which calls for
1 n?
A'(r) + ;A'(r) — T—QA(T’) = E2A(r), (S.19)
B"(¢) = —n’B(9), (5.20)



C"(2) = —k*C(2), (S.21)

for some constants n? and k?, while the homogeneous boundary conditions (S.14) become
A(r=R) = 0, smooth A(r) for r — 0,

(¢) = B¢+ 2m), (S.22)

(

C(z) — 0for z — 4o00.

Sy

As explained in the textbook, solving these equations and boundary conditions gives us

B(g) = acos(ng) + Bsin(ng)
for an integer n,
A(r) = Jp(kr) ((Bessel function #n ) (S5.23)
for k such that J,(kR) = 0,
C(z) = exp(—kz).
Consequently, the general solution of the Laplace equations plus homogeneous boundary

conditions has form

O(r, ¢, 2) = Z(Ozmm cos(n@) + Bpmsin(ng)) x Jn(kp(n) x r) X exp(—kp(n) x z) (S.24)

for some real coefficients o, ,, and By, where

km(n) = 1 x (m

7 8 zero of the Bessel function In). (S.25)

The values of the coefficients o, 1, and 3,4, follow from the inhomogeneous boundary con-

dition at z = 0, namely whatever it takes to get

Z(amm cos(np) + Bnm sin(ngb)) X Jp(km(n) x r) = given ®y(r, ¢). (S.26)

n,m
For the problem at hand, we are given
Py(r,¢) = Vo x Ji(kr) x cos ¢ (S.27)

where k is one of the k(1) (since we are told that Jy(kR) = 0), say k = ky,,(1). Therefore,



we immediately identify
O{l’mo - VO 5 all OtheI‘ O{n7m - ()7 all /Bn’m - 0, (S-28)
so the solution inside the pipe is

D(r,p,2) = Vo X Ji(km(1) X 1) X cosd X exp(—Fkm, (1) X 2). (S.29)

Problem 2(c):

To keep our notations simple, let’s use the spherical coordinates with the origin at the sphere’s
center and the “north pole” # = 0 pointing in the direction of the asymptotic electric field
Eop. In these spherical coordinates, we have a Dirichlet boundary condition ®(r, 6, ¢) = 0 for

r = R, and the asymptotic condition
O(r,0,9) —— —FEgz = —Eprcosd. (S.30)
r—00

To solve this problem, we first use the axial symmetry to look for a ¢-independent ®(r,6),

then separate the variables to look for solutions in the form
O(r,0) = A(r) x B(6), (S.31)

and ultimately look for a linear combinations of such solutions which has the right asymptotic

behavior (S.30).

As explained in class, the Laplace equation for potential of the form (S.31) becomes

A + 2y - L ae) — o (3.32)
B'(6) + —B(0) + ((+1)BE) = 0 (3.33)

where in lieu of the boundary conditions B(6) must be non-singular at both = 0 and at

6 = m. The solutions of these conditions exist only for integer ¢ = 0,1,2,3, ..., and have



form

B(0) = Py(cos0) (S.34)

where Py(z) is the Legendre polynomial of degree £. As to eq. (S.32) for the A(r), the general

solution is

B

V4
A(r) = axr® + pranY

(.35)

for some coefficients av and . However, the Dirichlet boundary condition on the conducting

sphere’s surface — which translates to A(r = R) = 0, — requires
p
ax R+ me = O (S.36)
hence § = —R2*! x o and therefore
R2€+1
l
A(?") = X (7’ — m) . (S37)

Altogether, the general axially-symmetric potential outside the conducting sphere has

form

o0 R%-l—l
O(r,0) = Zag X (rﬁ s, ) X Py(cos0) (S.38)
=0

for some coefficients ay. To find these coefficients, we look at the asymptotic behavior of the

potential (S.38) at long distances from the sphere, r > R:

oo
l
O(r, 0) — éz_%ozg X 1" X Pp(cosh). (S.39)

Matching this asymptotic behavior to the uniform electric field (S.30), — which we may



rewrite as

O(r,0) —— —Ep x r x Py(cosf) (S.40)
r—00
since Pj(z) = z, — we immediately see that we want
ap = —Ey, all other ay = 0. (S.41)

Consequently, the potential (S.38) at finite distances of the sphere is
R3
O(r,0) = —Ep <r — —2> X cosf. (S.42)
r

Finally, the electric field E = —V® outside the sphere is best obtained in vector or index

notations:
® = —(Ey-n) (r —~ g’) (S.43)
E = -V® = (V(n-Ey)) (r — f—;) + (n EO)V<r —~ g)
() 02,
= Ey + T—3(3(Eo-n)n — Ey). (S.44)

Problem 3(intro):

The separation of variables method in spherical coordinates was explained in class, but let
me briefly repeat it here. For a region of space bounded by a sphere or 2 concentric spheres

and containing no electric charges, we look for solutions of the Laplace equation in the form
B(r,0,6) = A(r) x B(6,9). (S.45)

For these kinds of potentials, the Laplace equation becomes

gA,(r) e+

r r2

A"(r) + A(r) = 0, (S.46)



L’B(6,¢) — (({+1)B(#,¢) = 0, (S.47)
and the B(0, ¢) factor is subject to boundary-like conditions
B0, +27) = B(#,¢) and B issmooth for § — 0 and § — 7. (S.48)

As you (should have) learned in a Quantum Mechanics class, eq. (S.47) subject to condi-
tions (S.48) has solutions only for integer £ = 0, 1,2, ..., and the solutions are the spherical
harmonics Yy, (0, ¢) form = —0,1 —¢,... £ —1,{. As to the eq. (S.46) for the A(r) factor,

the general solution is

(S.49)

for some coefficients a and .

Consequently, without specifying the boundary conditions at the spherical boundaries,

the most general solution of the Laplace equation can be written as

O(r,0,¢) = Y Z <a£mr + 5”1) Y (0, 6) (S.50)

{=0 m=—¢

for some coefficients ay ,, and By,

Problem 3(a):

Now, let’s apply eq. (S.50) to the problem at hand. In our case, the volume in question is
everywhere outside a sphere of radius R — which serves as the inner boundary, — and we
are given the potential ®,(6, ) which we should have at that boundary. There is no outer
boundary — the volume in question extends to infinity in all directions, — but there is an
implicit asymptotic condition of ®(x) — 0 for r — oco. Therefore, for any direction (6, ¢),

the expansion of the potential in powers of  should contain no positive powers of  but only



negative powers, which means that in the series (S.50) we must have
apm = 0 forall £,m. (S.51)

Thus, the series (S.50) becomes

o(r,0,0) Z Z %ﬁ X Yi.m(6, 9) (S.52)

where the coefficients 3, obtain from the boundary condition at the sphere of radius R.

Specifically,

Bﬁm
forr=R, ®(R,0,0) = = X Yy (0,0)
%; R+ (S.53)

should be = given ®4(0, ¢).

To solve this equation, we use the orthogonality of the spherical harmonics:

// d*(0,0) Y (0,0) Yy (0,0) = S0.00mm, (S.54)

hence given eq. (S.53), we must have

J[906.0) Y5 (0.0) x 04i6.0) = 3 25 [[a0060.0) Y50 (6.0 Ve 16,0

o.m!
B@,m’
= Z Rg/_H X 5&6’5771,777/
0m'
. 6Z,m
R+
(S.55)
Consequently,
Bun = R x [[8006,0)Y;,(6.0) x 0406,
B . (S.56)
= R[] @y < )

sphere

where the second line follows from

d*y = d*Area(y) = R? x d*Q(0,¢) for y spanning the sphere of radius R.  (S.57)

Finally, let’s plug the coefficients (S.56) into eq. (S.52) for the potential outside the



sphere:

Vim0, ) *
ar0,0) = 3 MmO (g g J] @y Vi) < )

or in other words,

for

Quod erat demonstrandum.

Problem 3(b):
First, let’s complete eq. (8) using eq. (7):

oo

i(% + 1)75Z x Pyc) = <2t% + 1) Ztﬁ x Py(c)
1=0

=0
(( plugging in eq. (7))

0 1
= (2= 4+1) —m ——
( ot ) V1—2ct+t2

_ ¢
— 2 ¢

1

2t(c —t) + (1 — 2ct + t2)
(1 —2ct +12)3/2
11—t

(1 — 2t +12)3/2°

10

X +
(1—2ct+12)3/2 /T —2ct +12

(.58)



Next, let’s use eq. (6) to sum over m in eq. (4):

Z T X Z Yy (150) Y7 (1y)

m=—/
{ Where r=|x|)
0
R 2011 (S.59)
) (=0 7T g Fe(nx-ny)
o0
= 47TRT Z (20 4+ 1)(R/r)" x Py(nx - ny).

Physically, ¢ = (nx - ny) is the cosine of the angle between the directions of the vectors x
and y, so we always have |c| < 1. At the same time x is outside the sphere of radius R while

y is on the surface of that sphere, hence
R
=|x >R=10y = t=— <1 (S.60)
r

Consequently, eq. (7) — and hence also eq. (8*) — are valid for ¢ = (nx-ny) and t = (R/7),
so applying eq. (8%) to the series on the bottom line of eq. (S.59), we get

F(X7y) - 47TR7”22£+1 t—R/T) XPg(C:nxny)
=0
_ 1— (t = R/r)?
47 Rr [1 — 2(t=R/r)(c=nx-ny) + (t=R/r)?3/2
2 _ p2
4mRr = [r? — 2rR(nx - ny) + R2J3/2
B 7“2 - R2 y 1
. 47R [x2 — 2x-y + y2]3/2
x? — R? 1

X :
AR x—y3

Quod erat demonstrandum.
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