
PHY–387 K. Solutions for problem set #4.

Problem 1(a):

Note: the magnetization M inside the magnet stays constant only in co-moving coordinates,

so if we allow the magnet to move, then M(x) at a fixed x may suddenly change as the

magnet’s edge goes through the point x. To prevent this complication, let’s assume the

magnet stays fixed in place, but the coil can move around the magnet.

Let’s calculate the net work — electric and mechanical — when the coil moves through

an infinitesimal distance while the current changes by an infinitesimal amount δI. Both of

these changes make the magnetic flux through the coil change by

δΦ = δ

∮

coil

A · dx =

∮

coil

δA(x) · dx +

∮

δ coil

A(x) · dx. (S.1)

As I explained in class (see also my notes on magnetic energy) the electric work by the power

supply needed to overcome the EMF induced by this δΦ is

δWel = I × δΦ = δ1Wel + δ2Wel (S.2)

where

δ1Wel =

∮

fixed coil

δA(x) · Idx (S.3)

is due to the magnetic field changing at fixed x while

δ2Wel =

∮

δ coil

(fixed A(x)) · I dx. (S.4)

is due to the coil’s displacement.

In addition to the net electric work (S.2), there is also the mechanical work δWmech due

to moving the coil against the Ampere forces on it. Microscopically, these Ampere forces

stem from the Lorentz forces on the electrons flowing through the coil. When the coil itself
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is moving, these Lorentz forces on the electrons also generate the motional EMF in the coil,

and hence are responsible for the δ2Wel part of the electric work on the coil. Thus altogether,

δWmech + δ2Wel = net work of the Lorentz forces on the electrons. (S.5)

But the Lorentz force on an electron has direction ⊥ to its velocity, so its work is zero.

Hence, the net work of the Lorentz forces on all the electrons is zero, so eq. (S.5) leads to

δWmech + δ2Wel = 0 (S.6)

and therefore

δWnet = Wmech + δ1Wel + δ2Wel = δ1Wel only. (S.7)

Note: Macroscopically, the Lorentz forces lead to the motional EMF in moving wires —

which can perform electric work — and also to the magnetic forces on the wires, which can

perform mechanical work. But the net work of these two effects is zero since it amounts to the

net work of all the microscopic Lorentz forces. Instead, the net effect of all the microscopic

Lorentz forces is converting the electric work into mechanical work or vice verse.

For the problem at hand this means eq. (S.7) and hence

δWnet = δ1Wel =

∮

fixed coil

δA(x) · Idx. (S.8)

Similarly to what I did in class, the RHS here can be expressed in terms of the magnetic H

and B fields as

∮

coil

δA · Idx −→
∫∫∫

δA · J d3x =

∫∫∫

whole
space

δB ·H d3x, (S.9)

thus

δWnet =

∫∫∫

whole
space

δB ·H d3x. (S.10)

Next, consider the relation between the magnetic fields H and B = µ0(H+M). When
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we vary the H(x) fields, the B(x) field varies by

δB(x) = µ0δH(x) + µ0δM(x) (S.11)

where the second term obviously vanishes for x outside the magnet. For x inside a regular

permanent magnet we might have δM 6= 0 in response to the δH, but the magnet in question

is assumed to be so hard that its magnetization M remains constant despite the varying H

field. Thus, for the problem at hand δM(x) = 0 for all x — both inside and outside the

magnet — and therefore

δB(x) = µ0δH(x) at all x. (S.12)

Consequently,

δWnet = µ0

∫∫∫

whole
space

H · δH d3x =
µ0
2

∫∫∫

whole
space

δ(H2) d3x = δU (S.13)

where

U =
µ0
2

∫∫∫

whole
space

H
2 d3x (S.14)

exactly as in eq. (2).

Finally, integrating eq. (S.13) over a finite process of changing the current and/or moving

the coil (and hence changing the H field all over the place), we get

W net = ∆U. (S.15)

Note that U is a function off the current state of the system but not of its past history, so

for every process which begins exactly where it started ∆U = 0 and hence net work is zero.

By definition, this means that the work of changing the current near the magnet is reversible

and that all of it goes towards changing the magnetic energy U .
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Problem 1(b):

First, consider the system of a coil and a magnet as in part (a) but let’s move the magnet

instead of moving the coil. In this case, the direct calculation on the electric and mechanical

work and relating them to the fields is more complicated, but by the relative motion principle,

the net work should be exactly as if we were moving the coil relative to the fixed magnet.

Indeed, by the Faraday’s law the EMF and hence the electric work depends only on the δΦ

which depends only on the relative motion of the coil and the magnet. As to the mechanical

work, it also depends only on the relative motion as long as the forces between the coil and

the magnet obey the third law of Newton. Altogether, the magnetic energy (2) stores the net

electric+mechanical work of the system, regardless of what’s moving, the coil or the magnet.

Moreover, as far as the permanent magnet is concerned, the coil is just an electromagnet,

and we may just as well replace it with another permanent magnet, it won’t affect the force

or the torque on the original magnet. Thus, for a system of two permanent magnets (each

having a constant magnetization), the magnetic energy (2) acts as the potential energy for

their motion (including both the linear motion and the rotation).

Finally, thanks to the superposition principle for the H field, the potential energy of a

system of several permanent magnets also have form (2). Indeed, let Hi(x) be the magnetic

field generated by the magnet#i, then

Hnet(x) =
∑

i

Hi(x) (S.16)

and hence

H
2
net(x) =

∑

i

H
2
i (x) + 2

∑

i<j

Hi(x) ·Hj(x). (S.17)

In particular, for just 2 magnets

H
2
net = H

2
1 + H

2
2 + 2H1 ·H2

and hence the magnetic energy (2) becomes

U(1 + 2) =
µ0
2

∫∫∫

whole
space

H
2
1 d

3
x +

µ0
2

∫∫∫

whole
space

H
2
2 d

3
x + µ0

∫∫∫

whole
space

H1 ·H2 d
3
x. (S.18)
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Moreover, the first two terms here do not depend on the relative positions of the two magnets,

so as far as the two magnets motion (linear and rotational) is concerned, these two terms

are constants, thus

U(1 + 2) = const + µ0

∫∫∫

whole
space

H1 ·H2 d
3
x. (S.19)

Consequently, by the superposition principle, the potential energy of a system of N > 2

permanent magnets obtains as

U(1 + · · ·+N) =
∑

i<j

µ0

∫∫∫

whole
space

Hi ·Hj d
3
x + const

=
µ0
2

∫∫∫

whole
space

H
2
net d

3
x + const.

(S.20)

In other words, up to an irrelevant constant, the potential energy of N permanent magnets

also obtains from eq. (2).

Problem 1(c):

Eq. (3) follows from integration by parts. Indeed,

H ·B = H · (∇×A) = ∇ · (A×H) − A · (H×
←

∇)

= ∇ · (A×H) + A · (∇×H) = ∇ · (A×H) + A · J,
(S.21)

hence for any volume V with boundary S
∫∫∫

V

H ·B d3x =

∫∫

S

(H×A) · d2a +

∫∫∫

V

A · J d3x. (S.22)

When V extends to the whole space and its surface S recedes to infinity, the surface integral

vanishes and we end up with

∫∫∫

whole
space

H ·B d3x =

∫∫∫

whole
space

J ·A d3x. (S.23)

For the problem at hand, there are permanent magnets but no conduction currents anywhere
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in the system, J = 0 at all x, so the RHS in the last formula vanishes, thus

∫∫∫

whole
space

H ·B d3x = 0. (3)

Thanks to this formula, the magnetic energy (2) may be written in the form (4). Indeed,

using

µ0H = B − µ0M (S.24)

we obtain

U − const =
µ0
2

∫∫∫

whole
space

H
2 d3x =

1

2

∫∫∫

whole
space

H ·B d3x − µ0
2

∫∫∫

whole
space

H ·M d3x (S.25)

where the first term on the RHS is zero by eq. (3), thus

U = −µ0
2

∫∫∫

whole
space

H ·M d3x + const. (S.26)

Formally, the integral here is over the whole space, but theM factor in the integrand vanishes

outside the magnets. Consequently,

U − const = −µ0
2

∫∫∫

all magnets

H ·M d3x

= −µ0
2

magnets
∑

i

∫∫∫

magnet#i

H ·M d3x

= −µ0
2

magnets
∑

i,j

∫∫∫

magnet#i

Hj(x) ·Mi(x) d
3
x

(S.27)

where Hj(x) denotes the magnetic field H(x) due to the magnet#j and likewise the mag-

netization Mi(x).
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Finally, in the double sum on the last line of eq. (S.27) the terms with i = j are self-

interaction energies of the individual magnets. Such terms do not depend on the relative

positions or orientations of the magnets, so as far as the net potential energy is concerned,

they are constants. Adding these constants to all the other constants in U , we arrive at

U = −µ0
2

magnets
∑

i6=j

∫∫∫

magnet#i

Hj(x) ·Mi(x) d
3
x + const. (4)

Quod erat demonstrandum.

Problem 1(d):

When the distance between the two magnets is much larger than either magnet’s size, the

H1(x) field of the first magnet does not change much within the second magnet, so we may

approximate it as constant,

for x ∈ magnet#2, H1(x) ≈ H1(2) = const. (S.28)

Consequently, in eq. (4) for the two magnets

∫∫∫

magnet#2

H1(x) ·M2(x) d
3
x ≈ H1(2) ·

∫∫∫

magnet#2

M2(x) d
3
x = H1(2) ·m2 (S.29)

where m2 is the net magnetic moment of the second magnet. Likewise,

∫∫∫

magnet#1

H2(x) ·M1(x) d
3
x ≈ H2(1) ·m1. (S.30)

Therefore, eq. (4) for the two magnets becomes

U − const = −µ0
2

(

H1(2) ·m2 + H2(1) ·m1

)

= −1

2

(

B1(2) ·m2 + B2(1) ·m1

)

. (S.31)

Now let’s take a closer look at the two terms in this formula. In the dipole approximation,

B1(2) =
µ0
4πr3

(

3(n ·m1)n − m1

)

(S.32)

where r is the distance between the two magnets while n is the unit vector pointing from
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the first magnet towards the second. Consequently,

B1(2) ·m2 =
µ0
4πr3

(

3(n ·m1)(n ·m2) − (m1 ·m2)
)

, (S.33)

and likewise

B2(1) ·m1 =
µ0
4πr3

(

3(n′ ·m1)(n
′ ·m2) − (m1 ·m2)

)

, (S.34)

where n
′ is the unit vector from the second magnets towards the first, thus n

′ = −n. But

the RHS here is even with respect to n
′ so we may just as well reverse its direction and use

−n
′ = +n instead of the n

′. But then, the RHS of (S.34) becomes exactly as in eq. (S.33),

thus

B2(1) ·m1 = B1(2) ·m2 . (S.35)

Combining this equality with eq. (S.31), we immediately obtain

U − const = −B2(1) ·m1 = −B1(2) ·m2 . (5)

For completeness sake, let me write the magnetic energy in explicit form using eq. (S.33),

U = − µ0
4πr3

(

3(n ·m1)(n ·m2) − (m1 ·m2)
)

+ const, (S.36)

although for the purposes of this homework all we need is eq. (5).

Now consider the forces and the torques on the magnets stemming from the magnetic

energy (5). Most generally, given the potential energy U as a function of the two bodies as

a function of their positions and orientations, the forces follow as gradients

F1 = −∇(1)U(x1,x2, orientations), F2 = −∇(2)U(x1,x2, orientations), (S.37)

where the gradient ∇(1) is taken WRT the x1 while the x2 and both orientations are held

fixed, and likewise for the ∇(2). For the potential energy (5), this means

F1 = +∇(1)

(

m1 ·B2(x1)
)

, F2 = +∇(2)

(

m2 ·B1(x2)
)

, (S.38)

in perfect agreement with eq. (6) for the force on a magnetic dipole.
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Finally, the torques on the magnets follow from the variation of the potential energy

under infinitesimal rotations of the respective magnets. In particular, to get the torque on

the first magnet, we rotate it through infinitesimal angle δ~α while keeping the orientation of

the second magnets and both magnet’s positions fixed. Thus

for δm = δ~α×m, δm2 = 0, δx1 = δx2 = 0, δU = −δ~α · ~τ1 , (S.39)

and likewise for the torque on the second magnet. For the potential energy U , infinitesimally

rotating the first magnet while keeping everything else fixed results in

δU = δ
(

−B2(1) ·m1

)

= −B2(1) ·
(

δ~α×m1

)

= −δ~α ·
(

m1 ×B2(1)
)

, (S.40)

which gives us the torque

~τ1 = m1 ×B2(1). (S.41)

Likewise, the torque on the second magnet is

~τ2 = m2 ×B1(2), (S.42)

and both of these torques are in perfect agreement with eq. (6) for the torque on a magnetic

dipole. Quod erat demonstrandum.

Problem 2(a-b):

Let’s assume all features of an ideal transformer — no hysteresis in the core, no eddy currents,

no ohmic resistance in the wires — except for k = 1. Instead, let’s allow for any magnetic

coupling coefficient k between 0 and 1. Consequently,

M21

L2
=

M21√
L1L2

×
√

L1

L2
= k × 1

n
and

M12

L1
=

M12√
L1L2

×
√

L2

L1
= k × n. (S.43)

We shall use these ratios in a moment, but first we need the relations between the currents

and the voltages in the two coils of the transformer.
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By the Faraday law and Lenz rule, the electromotive forces in two magnetically coupled

coils are

E1 = −L1 ×
dI1
dt

+ M12 ×
dI2
dt

, E2 = −L2 ×
dI2
dt

+ M21 ×
dI1
dt

. (S.44)

where the plus signs of the mutual inductance terms reflect opposite directions of the currents

I1 and I2 in the two coils. Also, the primary coil acts as a load to the current I1 while the

secondary coil acts as a power supply to the current I2, hence

V1 = −E1 but V2 = +E2 , (S.45)

and therefore

V1 = −E1 = +L1 ×
dI1
dt

− M12 ×
dI2
dt

,

V2 = +E2 = −L2 ×
dI2
dt

+ M21 ×
dI2
dt

.

(S.46)

For the AC currents and voltages which depend on time according to

I(t) = Re
(

I × ejωt
)

, V (t) = Re
(

V × ejωt
)

, (S.47)

with complex amplitudes I or V , eqs. (S.46) become

V1 = +jωL1 × I1 − jωM12 × I2 , (S.48)

V2 = −jωL2 × I2 + jωM21 × I1 . (S.49)

Also, for a linear load of impedance Z2,

V2 = Z2 × I2 . (S.50)

Everything else follows from solving the linear equations (S.48), (S.49), and (S.50).
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Combining eqs. (S.49) and (S.50), we obtain

Z2 × I2 = V2 = −jωL2 × I2 + jωM21 × I1 = −jωL2 × I2 + jωL2 ×
k

n
× I1 (S.51)

and hence the current ratio

I2
I1

=
k

n
× jωL2

jωL2 + Z2
. (S.52)

As to the voltages,

V2 = Z2 × I2 = Z2 ×
jωL2

jωL2 + Z2
× k

n
× I1 = kn× Z2

jωL2 + Z2
× jωL1 I1 (S.53)

while

V1 = +jωL1 × I1 − jωM12 × I2 = jωL1 × I1 ×
(

1 − M12

L1
× I2

I1

)

=

(

1 − kn× k

n
× jωL2

jωL2 + Z2
=

Z2 + (1− k2)× jωL2

jωL2 + Z2

)

× jωL1 I1

(S.54)

and hence voltage ratio

V2
V1

= kn× Z2

Z2 + (1− k2)× jωL2
. (S.55)

Eqs. (S.52) and (S.55) for the ratios of currents and voltages in the two coils are valid

for any k and any load impedance Z2. Now let’s suppose k ≈ 1 so that 1 − k2 ≪ 1. Then,

for low enough load impedance |Z2| ≪ ωL2, the current ratio (S.52) becomes

I2
I1

≈ k

n
≈ 1

n
. (S.56)

Also, if the impedance Z2 is not too low, |Z2| ≫ (1−k2)×ωL2, then the voltage ratio (S.55)

becomes

V2
V1

≈ kn ≈ n. (S.57)

Note that the two conditions (10) on the load impedance Z2 are compatible only for k ≈ 1

so that (1− k2) ≪ 1.
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Finally, for an ideal transformer with k = 1, the voltage ratio (S.55) becomes n regardless

of the impedance load, while the current ratio is as in eq. (7), and for |Z2| ≪ ωL2 becomes

approximately 1/n.

Problem 2(c):

Consider a toroidal core with two coils would around it. For the sake of definiteness, suppose

each coils is densely wound and each covers the entire surface area of the core, with the

primary coil being wound around the core itself while the secondary coil is wound around the

primary coil. Since the wires in the coils have finite diameter, the secondary coil has slightly

wider diameter than the primary coil, which is in turn slightly wider than the ferromagnetic

core itself. For the future reference, let R be the the long radius of the toroidal core, and

let’s define the following integrals over the cross-sections of the core and the coils:

ac
2πR

=

∫∫

core

d2a

2πs
,

a1
2πR

=

∫∫

gap#1

d2a

2πs
,

a2
2πR

=

∫∫

gap#2

d2a

2πs
, (S.58)

where s is the distance from the symmetry axis of the toroid, gap#1 is the space between the

core and the primary coil, and gap#2 is space between the primary and the secondary coils.

For a long thin torus, ac, a1, and a3 are simply the cross-sectional areas of — respectively

— the core, the first gap, and the second gap. For a shorter fatter torus we need more

complicated formulae, but for the problem at hand we do not need their details, all we need

are the notations ac, a1, and a2 for the integrals (S.58).

Now let’s turn on the current I1 in the primary coil while the secondary coil has no

current. By the Ampere’s Law and the rotational symmetry of the torus, the H field inside

the primary coil is

H =
N1I1
2πs

ntoroidal (S.59)

while outside the primary coil H = 0. As to the magnetic induction field B, it’s µµ0H in

the core but only µ0H outside the core. Consequently, the magnetic flux through the core
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of the transformer is

Φcore =

∫∫

core

B · d2a = µµ0N1I1

∫∫

core

d2a

2πs
= µµ0N1I1 ×

ag
2πR

(S.60)

while there is a much smaller flux through the gap between the core and the primary coil,

Φgap#1 =

∫∫

gap#1

B · d2a = µ0N1I1

∫∫

gap#1

d2a

2πs
= µ0N1I1 ×

a1
2πR

. (S.61)

Both of these fluxes go through both coils, N1 times through the primary coil and N2 times

through the secondary coil, and there is no extra flux through the gap#2 between the coils.

Consequently

Φ1 = N1(Φcore + Φgap#1), Φ2 = N2(Φcore + Φgap#1),

and hence

L1 =
Φ1

I1
= N1 ×

µag + a1
2πL

µ0N1 , (S.62)

M21 =
Φ2

I1
= N2 ×

µag + a1
2πL

µ0N1 . (S.63)

In particular,

M21

L1
=

N2

N1
. (S.64)

Now let’s turn off the current in the primary core and turn on the current I2 in the

secondary core. This time, the magnetic intensity field inside the secondary coil — including

both the core and the two gaps (between the coils, and between the primary and the core)

— is

H =
N2I2
2πs

ntoroidal , (S.65)

while the magnetic induction field B is µµ0H inside the core but only |mu0H outside it.
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Consequently, the magnetic flux through the core is

Φcore =

∫∫

core

B · d2a = µµ0N2I2

∫∫

core

d2a

2πs
= µµ0N2I2 ×

ac
2πR

, (S.66)

the flux through the gap#1 between the core and the primary coil is much smaller

Φgap#1 =

∫∫

gap#1

B · d2a = µ0N2I2

∫∫

gap#1

d2a

2πs
= µ0N2I2 ×

a1
2πR

, (S.67)

and there is also a similarly small flux through the gap#2 between the coils,

Φgap#2 =

∫∫

gap#2

B · d2a = µ0N2I2

∫∫

gap#2

d2a

2πs
= µ0N2I2 ×

a1
2πR

. (S.68)

This time, the fluxes through the core and through the gap#1 go through both coils, but

the flux through the gap#2 goes only through the secondary coil. Consequently,

Φ1 = N1 × (Φcore + Φgap#1) but Φ2 = N2 × (Φcore + Φgap#1 + Φgap#2), (S.69)

and hence

L2 =
Φ2

I2
= N2 ×

µag + a1 + a2
2πR

µ0N2 , (S.70)

M12 =
Φ1

I2
= N1 ×

µag + a1
2πR

µ0N2 . (S.71)

Note that eqs. (S.63) and (S.71) yield exactly the same mutual conductivities M12 = M21.

On the other hand, instead of

M12

L2
=

N1

N2
(S.72)

similarly to eq. (S.64), this time we get

M12

L2
=

N1

N2
× µac + a1

µac + a1 + a2
. (S.73)
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In terms of the magnetic coupling coefficient k, this means that

k2 =
M12

L2
× M21

L1
=

µac + a1
µac + a1 + a2

. (S.74)

For a ferromagnetic core with high permeability µ ≫ 1, we have

1 − k2 =
a2

µac + a1 + a2
≈ a2

ac
× 1

µ
−→ 0 for µ → ∞ (S.75)

and hence k → 1. But a small portion of the magnetic flux through the outer secondary coil

which misses the inner primary coil leads to k being not quite 1, just close to it.

For other geometries of the two coils on the same ferromagnetic core — for example, each

coil covering only a segment of the core — the exact analysis is different, but the overall

picture is similar: A small fraction of the magnetic flux created by the current in one coil

passes outside the other coil, and that’s why

M21

L1
<

N2

N1
or

M12

L2
<

N1

N2
or both, (S.76)

and hence k < 1. But for a high-permeability core, most of the flux goes through the core

and hence through both coils. Only an O(1/µ) fraction of the flux goes comes from outside

the core, and only a part of that outside-the-core flux misses the other coil. Consequently,

1 − k2 = O(1/µ) → 0 =⇒ k → 1 for µ → ∞. (S.77)

Finally, consider the stepping ratio n. For the geometry where the secondary coil is

would around the primary coil, we have eq. (S.64) for

M21

L1
=

M21√
L1L2

×
√

L2

L1
= k × n (S.78)

and hence

n =
N2

N1
× 1

k
≈ N2

N1
. (S.79)

Likewise, for the geometry where the primary coils is wound around the secondary coil we
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would get

n =
N2

N1
× k ≈ N2

N1
. (S.80)

Other geometries might yield other exact formulae, but in the µ → ∞ and hence k → 1

limit they all yield

n =
N2

N1
. (S.81)

Quod erat demonstrandum.
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