
PHY–387 K. Solutions for problem set #6.

Problem 1(a):

In terms of the 3D retarded Green’s function

GR(x− y, tx − ty) =
δ(tx − ty − r/c)

4πr
where r = |x− y|, (S.1)

the wave generated by an instant line source at time ty = 0 is simply

Ψ(x, t) =

∫

line

dℓy G(x− y, t). (S.2)

For our purposes, let the source line be the whole x3 axis, then

Ψ(x, t) =

+∞
∫

−∞

dy3
δ(t− r/c)

4πr
=

∑

points y3
where r=ct

c

4πr

/

∣

∣

∣

∣

∂r

∂y3

∣

∣

∣

∣

. (S.3)

The solutions to the

r =
√

x21 + x22 + (x3 − y3)2 = ct (S.4)

condition depend on r2d =
√

x21 + x22: For r2d > ct there are no solutions, while for r2d < ct

there are two solutions at y3 = x3 ±
√

c2t2 − r22d, at which points

∂r

∂y3
=

(y3 − x3)

r
= ±

√

c2t2 − r22d

r = ct
=⇒

c

4πr

/

∣

∣

∣

∣

∂r

∂y3

∣

∣

∣

∣

=
c

4π
√

c2t2 − r22d

. (S.5)

Consequently,

Ψ(x, t) =
2cΘ(ct− r2d)

4π
√

c2t2 − r22d

, (S.6)

in perfect agreement with eq. (2) for the 2D wave of a point source.
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Problem 1(b):

This time, the instant source spans an entire plain, which we take to be the (y2, y3) plane,

so the wave generated by this source is

Ψ(x, t) =

∫∫

dy2 dy3
δ(t− r/c)

4πr
, (S.7)

or in polar coordinates (s, φ) centered at (x2, x3)

Φ(x1, t) =

∞
∫

0

ds s

2π
∫

0

dφ
cδ(ct− r(s))

4πr(s)
=

∞
∫

0

ds 2πs
cδ(ct− r(s))

4πr(s)
(S.8)

for r(s) =
√

s2 + x21 . (S.9)

For |x1| > ct satisfying the condition r(s) = ct is impossible, hence Ψ(x1, t) = 0. On the

other hand, for |x1| < ct there is a whole ring of solutions in the (y2, y3) plane corresponding

to s = +
√

c2t2 − x21, thus

Ψ =
2πsc

4πr

/ ∂r

∂s
=

sc

2r

/ s

r
=

c

2
. (S.10)

Altogether,

Ψ =
c

2
Θ(ct− |x1|), (S.11)

in perfect agreement with eq. (3) for the 1D wave of a point source.

Problem 2(a):

The densities (6) of charges and currents trivially obey the continuity equation:

∇ · J = δ′(t)∇ ·
(

p δ(3)(x)
)

= δ′(t) (p · ∇)δ(3)(x) = −
∂ρ

∂t
. (S.12)

As to the scalar potential in the Coulomb gauge, the formal solution of the first eq. (4) is

Φ =
1

ǫ0

−1

∇2
ρ = −

1

ǫ0
δ(t)

−1

∇2
(p · ∇)δ(3)(x). (S.13)
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Since the operators (p · ∇) and (−1/∇2) commute with each other, we have

−1

∇2
(p · ∇)δ(3)(x) = (p · ∇)

−1

∇2
δ(3)(x) = (p · ∇)

1

4πr
= −

p · n

4πr2
(S.14)

and consequently

Φ(x, t) = +δ(t)
p · n

4πǫ0 r2
. (S.15)

Problem 2(b):

For the current density as in eq. (6),

∇

(

−1

∇2
(∇ · J)

)

= δ′(t)∇
−1

∇2
(p · ∇)δ(3)(x), (S.16)

where all three operators — ∇, (p · ∇), and (−1/∇2) — commute with each other. Conse-

quently,

∇
−1

∇2
(p · ∇)δ(3)(x) = ∇(p · ∇)

−1

∇2
δ(3)(x) = ∇(p · ∇)

1

4πr
, (S.17)

and hence eq. (8) for the transverse current. As to eq. (9), it follows from eq. (8) and

∇i∇j
1

4πr
=

3ninj − δij
4πr3

−
δij
3

δ(3)(x).

Problem 2(c):

Let’s start with the first lemma (10). In spherical coordinates (r, θ, φ) for z, the LHS of

eq. (10) — which I am going to denote L1 — becomes

L1
def
=

∫∫∫

whole
space

d3z
δ′(t− |z|/c)

|z|
× F (z) =

∞
∫

0

dr r2
∫∫

4π

d2Ω(θ, φ)
δ′(t− r/c)

r
× F (r, θ, φ)

=

∞
∫

0

dr δ′(t− r/c)× r G(r)

(S.18)
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where

G(r)
def
=

∫∫

4π

d2Ω(θ, φ)F (r, θ, φ). (S.19)

Next,

δ′(t− r/c) = −c2δ′(r − ct), (S.20)

and consequently

L1 = −c2
∞
∫

0

dr δ′(r − ct)× r G(r) = +c2
∞
∫

0

dr δ(r − ct)×
d

dr

(

rG(r)
)

. (S.21)

where the second equality obtains from integration by parts, — which is the standard pro-

cedure for handling the derivatives of the delta functions. The remaining integral involving

the ordinary delta function δ(r − ct) yields

L1 = +c2
[

d

dr

(

rG(r)
)

=

(

1 + r
d

dr

)

G(r)

]

r=ct

(S.22)

provided r = ct is within the integration range 0 < ct < ∞, but zero otherwise. In other

words,

L1 = c2Θ(t)

[(

1 + r
d

dr

)

G(r)

]

r=ct

(S.23)

where Θ(t) is the step-function: 1 for t > 0 but 0 for t < 0. Finally, plugging eq. (S.19) for

G(r) into eq. (S.23) completes the proof of the first Lemma (10).

As to the second Lemma (11), it’s the good old Mean Value Theorem of electrostatics:

Averaging a Coulomb potential of a point charge over a spherical surface yields the potential

at the sphere’s center provided the charge is outside the sphere. For the charge inside the

sphere, the averaging yields a potential of a similar charge moved to the center of the sphere.
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The simplest way to prove the mean value theorem is via the multipole expansion (once

you know how it works),

1

|x+Rn|
=

∞
∑

ℓ=0

[min(|x|, R)]ℓ

[max(|x|, R)]ℓ+1
× Pℓ(− cos θ) (S.24)

where θ is the angle between the unit vector n and the vector x. Let’s plug the expan-

sion (S.24) into the angular integral (10) and integrate term by term: without the radial

factor,

1

4π

∫∫

4π

d2ΩnPℓ(− cos θ) =
1

2

+1
∫

−1

d cos θPℓ(− cos θ) = δℓ,0 , (S.25)

so only the ℓ = 0 term contributes to the net integral. Consequently,

1

4π

∫∫

4π

d2Ωn
1

|x+Rn|
=

[min(|x|, R)]0

[max(|x|, R)]1
=

1

max(|x|, R)
. (S.26)

which completes the proof of the mean value theorem (11).

Problem 2(d):

The formal solution of the wave equation (4) for the vector potential obtains via the retarded

Green’s function as

A(x, tx) =
µ0
4π

∫∫∫

whole
space

d3y

∫

dty
δ(tx − ty − |x− y|/c)

|x− y|
JT (y, ty) (S.27)

where JT is the transverse current (8). Since the time-dependence and the y dependence of

this transverse current factorize as

JT (y, ty) = δ′(ty)× J0(y), (S.28)

J0(y) = p δ(3)(y) + ∇(p · ∇)
1

4π|y|
. (S.29)
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the time integral in eq. (S.27) yields

∫

dty δ(tx − ty − |x− y|/c)× δ′(ty) = δ′(tx − |x− y|/c) (S.30)

and hence

A(x, t) =
µ0
4π

∫∫∫

whole
space

d3y
δ′(tx − |y− x|/c)

|y− x|
J0(y). (S.31)

Now consider the two terms in the current (S.29):

J0(y) = J1(y) + J2(y),

J1(y) = p δ(3)(y),

J2(y) = ∇(p · ∇)
1

4π|y|
.

(S.32)

Plugging them into the integral (S.31) leads to

A(x, t) = A1(x, t) + A2(x, t) (S.33)

where the first term is

A1 =
µ0
4π

∫∫∫

whole
space

d3y
δ′(tx − |y − x|/c)

|y − x|
J1(y)

=
µ0p

4π

∫∫∫

whole
space

d3y
δ′(tx − |y − x|/c)

|y − x|
δ(3)(y)

=
µ0p

4π|x|
δ′(tx − |x|/c),

(S.34)

a flash spreading out in all directions at the speed of light. This flash vanishes for t < |x|/c,

so we may ignore it for this part of the problem, although we will need it later in part (f).
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The second term in the vector potential (S.33) is

A2 =
µ0
4π

∫∫∫

whole
space

d3y
δ′(tx − |y − x|/c)

|y − x|
J2(y)

=
µ0
4π

∫∫∫

whole
space

d3y
δ′(tx − |y − x|/c)

|y − x|
∇y(p · ∇y)

1

4π|y|

=
µ0
4π

∫∫∫

whole
space

d3z
δ′(tx − |z|/c)

|z|
∇y(p · ∇y)

1

4π|x+ z|

(S.35)

where on the last line I have changed the integration variable from y to z = x−y. Formally,

the space derivatives inside this integral are WRT y = x+z, but since they act on a function

which depends only on the y = x+ z, we may change them to x-derivatives for a fixed z,

[

∇y(p · ∇y)
1

4π|y|

]

y=x+z

= ∇x(p · ∇x)
1

4π|x+ z|
. (S.36)

Consequently, the integral (S.35) becomes

A2(x, tx) =
µ0
4π

∫∫∫

whole
space

d3z
δ′(tx − |z|/c)

|z|
∇x(p · ∇x)

1

4π|x+ z|

=
µ0
4π

∇x(p · ∇x)

∫∫∫

whole
space

d3z
δ′(tx − |z|/c)

|z|

1

4π|x+ z|
.

(S.37)

The remaining integral on the second line here looks like the LHS of the Lemma (10) for

F (z) =
1

4π|x+ z|
, (S.38)

hence

∫∫∫

whole
space

d3z
δ′(tx − |z|/c)

|z|

1

4π|x+ z|
= c2Θ(t)

[(

1 + r
∂

∂r

)
∫∫

d2Ωn
1

4π|x+ rn|

]

r=ct

.

(S.39)

Note: in this formula r and n are the magnitude and the direction of z rather than x.
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Next, the angular integral in eq. (S.39) obtains from the Lemma (11):

∫∫

d2Ωn
1

4π|x+ rn|
=

1

max(r, |x|)
=

{

(1/r) for r > |x|,

(1/|x|) for r < |x|.
(S.40)

Consequently,

for r = ct > |x|,
(

1 + r
∂

∂r

)
∫∫

d2Ωn
1

4π|x+ rn|
=

(

1 + r
∂

∂r

)

1

r
= 0, (S.41)

for r = ct < |x|,
(

1 + r
∂

∂r

)
∫∫

d2Ωn
1

4π|x+ rn|
=

(

1 + r
∂

∂r

)

1

|x|
=

1

|x|
, (S.42)

and therefore

∫∫∫

whole
space

d3z
δ′(tx − |z|/c)

|z|

1

4π|x+ z|
= c2Θ(t)Θ(|x| − ct)

1

|x|
. (S.43)

Plugging this formula back into eq. (S.37), we arrive at

A2(x, t) =
c2µ0
4π

Θ(t)∇(p · ∇)
Θ(|x| − ct)

|x|
(S.44)

where c2µ0 = 1/ǫ0.

For the later use in part (f), let me write down the entire vector potential for all times

t = tx,

A(x, t) = A1(x, t) + A2(x, t) =
µ0

4π|x|
p δ′(t− |x|/c) +

Θ(t)

4πǫ0
∇(p · ∇)

(

Θ(|x| − ct)

|x|

)

.

(S.45)

But for the current part (d) we assume t < |x|/c, so the vector potential simplifies to

A(x, t) =
Θ(t)

4πǫ0
∇(p · ∇)

1

|x|
= Θ(t)

3(p · nx)nx − p

4πǫ0 |x|3
. (S.46)
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Problem 2(e):

At times t < |x|/c — before the light pulse from the dipole flash (6) reaches the point x, —

the vector potential (S.46) is a pure gradient of some scalar field,

A = ∇

(

Θ(t)

4πǫ0

−(p · nx)

|x|2

)

, (S.47)

so its curl B = ∇ × A must vanish, B = 0. Thus, the magnetic field does not propagate

faster than light.

As to the electric field

E = −∇Φ −
∂

∂t
A, (S.48)

the vector potential (S.46) is a step function of time: It turns on at t = 0 and then stays

constant until the light pulse of the dipole flash reaches the point x. Consequently, at

t < |x|/c,

∂A

∂t
= +δ(t)∇(p · ∇)

1

4πǫ0 |x|
. (S.49)

At the same time, in part (a) we found the scalar potential to be

Φ(x, t) = −δ(t) (p · ∇)
1

4πǫ0 |x|
, (S.50)

hence

E = −∇Φ −
∂

∂t
A = 0. (S.51)

Thus, the superluminal terms in the scalar and the vector potentials cancel each other from

the electric field! Consequently, the electric field — just like the magnetic field — does not

propagate faster than light.
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Problem 2(f):

The scalar potential Φ(x, t) flashes at t = 0 and then vanishes, so at all later times t > 0

both magnetic and the electric field obtain solely from the vector potential A(x, t). In the

solutions to part (d), I have written down eq. (S.45) for the vector potential at all times,

both before the light front passes through the point in question and afterward. To simplify

the notations in that formula, let me redefine r = |x| (instead of r = |z| we have used in

part (d)), then eq. (S.45) becomes

A(x, t) =
µ0
4π r

p δ′(t− r/c) +
Θ(t)

4πǫ0
∇(p · ∇)

(

Θ(r − ct)

r

)

. (S.52)

From this formula we see that for t > r/c — after the light front has moved on — the vector

potential drops to zero, so there are no EM fields left over behind the light front,

for t > r/c, E(x, t) = 0 and B(x, t) = 0. (S.53)

On the other hand, the vector potential (S.52) is non-zero — and quite singular — right at

the light front r = t/c. To get all the singularities right, we should remember that the space-

derivative operator ∇(p · ∇) acts not only on the 1/r factor but also on the step function

Θ(r − ct) in the numerator, thus

∇i

(

Θ(r − ct)

r

)

= ni

(

δ(r − ct)

r
−

Θ(r − ct)

r2

)

, (S.54)

∇j∇i

(

Θ(r − ct)

r

)

=
δij − njni

r

(

δ(r − ct)

r
−

Θ(r − ct)

r2

)

+ njni

(

δ′(r − ct)

r
−

2δ(r − ct)

r2
+

2Θ(r − ct)

r3

)

= ninj
δ′(r − ct)

r

− (3ninj − δij)

(

δ(r − ct)

r2
−

Θ(r − ct)

r3

)

, (S.55)
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∇(p · ∇)

(

Θ(r − ct)

r

)

= n(n · p)
δ′(r − ct)

r

− (3n(n · p) − p)

(

δ(r − ct)

r2
−

Θ(r − ct)

r3

)

. (S.56)

At the same time,

µ0
4π r

p δ′(t− r/c) = −
µ0c

2

4πr
p δ′(r − ct) = −

p

4πǫ0
δ′(r − ct), (S.57)

so putting all terms together, at the light front r = ct,

A(x, t) =
1

4πǫ0

[

(n(n · p) − p)
δ′(r − ct)

r
+ (3n(n · p) − p)

(

δ(r − ct)

r2
−

Θ(r − ct)

r3

)]

.

(S.58)

Problem 2(g):

We saw in part (e) that before the light front E = B = 0, and in part (f) we saw that after

the light front A = 0 and hence also E = B = 0. Thus, the electric and the magnetic fields

of the instant dipole flash exist only at the light front r = ct. To find them, we simply need

to take one more space or time derivative of the vector potential (S.58).

In particular, the time derivative is rather simple:

−
∂

∂t
Θ(r− ct) = cδ(r− ct), −

∂

∂t
δ(r− ct) = cδ′(r− ct), −

∂

∂t
δ′(r− ct) = cδ′′(r− ct),

(S.59)

hence the electric field is

E(x, t) = −
∂A

∂t
=

c

4πǫ0









(n(n · p) − p)
δ′′(r − ct)

r

+ (3n(n · p) − p)

(

δ′(r − ct)

r2
−

δ(r − ct)

r3

)









. (S.60)

As to the magnetic field, we can simplify taking the curl of the vector potential (S.58)
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by noting that

n(n · p) − p

r
= ∇(n · p) =⇒ ∇×

n(n · p) − p

r
= 0, (S.61)

hence

∇×

(

n(n · p) − p

r
δ′(r − ct)

)

= ∇
(

δ′(r − ct)
)

×
n(n · p) − p

r

= δ′′(r − ct)n×
n(n · p) − p

r
=

p× n

r
δ′′(r − ct).

(S.62)

Likewise,

3n(n · p) − p

r3
= ∇

(

−
n · p

r2

)

=⇒ ∇×
3n(n · p) − p

r3
= 0, (S.63)

hence

∇×

(

3n(n · p) − p

r3

(

rδ(r − ct) − Θ(r − ct)
)

)

=

= ∇
(

rδ(r − ct) − Θ(r − ct)
)

×
3n(n · p) − p

r3

=
(

rδ′(r − ct)
)

n×
3n(n · p) − p

r3

=
p× n

r2
δ′(r − ct).

(S.64)

Altogether,

B = ∇×A[from eq. (S.58)] =
p× n

4πǫ0

[

δ′′(r − ct)

r
+

δ′(r − ct)

r2

]

. (S.65)
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Problem 3:

The Poynting theorem (20) for the energy works similarly for both uniform and non-uniform

media, as long as they are perfectly linear and the permittivity ǫ and the permeability µ

do not depend on time or frequency. Indeed, for D = ǫǫ0D with a time- or frequency-

independent ǫ,

∂

∂t

(

1
2E ·D) = E ·

∂D

∂t
= D ·

∂E

∂t
, (S.66)

and likewise for B = µµ0H with a time- or frequency-independent µ,

∂

∂t

(

1
2H ·B) = H ·

∂B

∂t
= B ·

∂H

∂t
, (S.67)

Thus, the time derivative of the EM energy (16) is

∂u

∂t
= E ·

∂D

∂t
+ H ·

∂B

∂t
= E ·

(

∇×H − J) + H ·
(

−∇×E
)

= −J ·E − ∇ · (E×H),

(S.68)

hence for the energy flow density S = E × H as in eq. (17) and the EM power density

P = J ·E as in eq. (14), we have

∂u

∂t
+ ∇ · S + P = 0. (S.69)

Quod erat demonstrandum.

As to the Poynting-like theorem (21) for the momentum, the momentum density (18)

and the stress tensor (19) work for both uniform and non-uniform media (as long as they

are perfectly linear), but the EM force density (15) needs to be modified for a non-uniform

media.
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To see how this works, let’s take the time derivative of the momentum density (18):

∂

∂t

(

g = D×B
)

=
∂D

∂t
×B + D×

∂B

∂t
=

(

∇×H − J)×B + D×
(

−∇× E
)

= −J×B − B× (∇×H) − D× (∇×E).

(S.70)

In components,

[

−B × (∇×H)
]

i
= −ǫijkǫkℓmBj∇ℓHm = −(δiℓδjm − δimδjℓ)Bj∇ℓHm

= −Bj∇iHj + Bj∇jHi ,
(S.71)

where

Bj∇iHj = µµ0Hj∇iHj = 1
2µµ0∇i(H

2)

= ∇i(
1
2µµ0 ·H

2) − 1
2µ0H

2∇i(µ)

= ∇i(
1
2B ·H) − 1

2µ0H
2∇i(µ),

(S.72)

while

Bj∇jHi = ∇j(BjHi) − Hi

(

∇jBj = 0
)

= ∇j(BjHi), (S.73)

so together

[

−B × (∇×H)
]

i
= −∇i(

1
2B ·H) + 1

2µ0H
2∇iµ + ∇j(BjHi). (S.74)

In a similar way,

[

−D× (∇× E)]i = −Dj∇iEj + Dj∇jEi

= −∇i

(

1
2D · E

)

+ 1
2ǫ0E

2∇iǫ

+ ∇j(DjEi) − Ei

(

∇jDj = ρ).

(S.75)

Plugging these formulae back into eq. (S.70), we arrive at

∂gi
∂t

= −
(

ρE + J×B
)

i
+ 1

2µ0B
2∇iµ + 1

2ǫ0E
2∇iǫ

+ ∇j

(

BjHi + DjEi

)

− ∇i

(

1
2B ·H + D ·E

)

.
(S.76)
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The last line in this formula is obviously the “divergence” of the stress tensor,

∇j

(

Tij = HiBj + EiDj − 1
2

(

H ·B+ E ·D)δij

)

, (S.77)

so if we want the momentum conservation equation

∂gi
∂t

− ∇jTij + fi = 0 (21)

to work, then (minus) the top line of eq. (S.76) should be identified as the force density

f = ρE + J×B − 1
2µ0H

2∇(µ) − 1
2ǫ0E

2∇(ǫ). (S.78)

In a uniform medium, the last two terms in the force (S.78) disappear, and the remaining

force density is precisely as in eq. (15). This completes part (a) of the problem.

For a non-uniformed medium, we just saw that the EM momentum density and the

EM stress tensor work unmodified, but the force density should be modified according to

eq. (S.78). Physically, the extra terms stem from the attraction of dielectrics to the regions

of strong electric fields, and likewise of the attraction of the ferromagnetic or paramagnetic

materials to the strong magnetic fields. Indeed, earlier in class we saw that the net force on

a piece of dielectric is

F =
ǫ0
2

∫∫∫

dielectric

(ǫ(x)− 1)∇(E2(x)) d3x. (S.79)

The integral here can be extended to the integral over the whole space, which allows us to

integrate by parts, thus

F = −
ǫ0
2

∫∫∫

E2(x)∇(ǫ(x)) d3x , (S.80)

in perfect agreement with the third term in the force density (S.78). Likewise, the net force
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on a piece of magnetic material is

F =
µ0
2

∫∫∫

piece

(µ(x)− 1)∇(H2(x)) d3x =
µ0
2

∫∫∫

whole
space

(µ(x)− 1)∇(H2(x)) d3x

= −
µ0
2

∫∫∫

H2(x)∇(µ(x)) d3x

(S.81)

in perfect agreement with the fourth term in the force density (S.78).
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