
PHY–387 K. Solutions for problem set #8.

Problem 1(a):

For the electromagnetic fields as in eqs. (1), the space derivative ∇ acts as i(k+ iκ)nz while

the time derivative acts as −iω. Consequently, the Gauss law equations

∇ ·D = ∇ ·B = 0 =⇒ ∇ · E = ∇ ·H = 0 (S.1)

imply

i(k + iκ)nz · ~E = i(k + iκ)nz · ~H = 0, (S.2)

which means that both of the amplitude vectors ~E and ~H must lie in the (x, y) plane trans-

verse to the wave’s direction. Next, the induction law

∇×E = −∂B
∂t

= µ0
∂H

∂t
(S.3)

leads to

i(k + iκ)nz × ~E = +iωµ0 ~H =⇒ ~H =
(k + iκ)

µ0ω
nz × ~E . (S.4)

Likewise, the Maxwell–Ampere equation

∇×H = J +
∂D

∂t
= σE + ǫǫ0

∂E

∂t
(S.5)

leads to

i(k + iκ)n2 × ~H = σ~E − iωǫǫ0 ~E =
(

σ − iωǫǫ0

)

~E (S.6)

and hence

~E = − (k + iκ)

(ωǫǫ0 + iσ)
nz × ~H. (S.7)

To make sure eqs. (S.4) and (S.7) are consistent with each other, we need

~E = −nz × (nz × ~E) = − µ0ω

(kiκ)
nz × ~H = +

µ0ω × (ωǫǫ0 + iσ)

(k + iκ)2
~E (S.8)
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and therefore

(k + iκ)2 = µ0ω × (ωǫǫ0 + iσ) . (S.9)

For convenience, let’s define the complex refraction index according to

n(ω) =

√

ǫeff = ǫ +
iσ

ǫ0ω
. (S.10)

Then in terms of this complex index, eq. (S.9) becomes

(k + iκ)2 =
n2(ω)ω2

c2
=⇒ k =

ω

c
× Ren(ω), κ =

ω

c
× Imn(ω). (S.11)

Also, the relation (S.4) between the electric and the magnetic amplitudes of the wave becomes

~H =
n(ω)

Z0
nz × ~E (S.12)

where Z0 =
√

µ0

ǫ0
≈ 377 Ω is the vacuum impedance.

Problem 1(b):

Fresnel equations give us the reflection coefficient

r =
Ereflected
Eincident

(S.13)

as an analytic function of the incidence angle and the refraction indices. In particular, for an

EM wave striking the boundary head on from the vacuum side, the Fresnel equation gives

us

r =
n− 1

n+ 1
, (S.14)

and this formula is valid for any refraction index n of the second material, be it real or

complex.

• When n happens to be real, the reflection coefficient r is also real, which means that

the reflected wave has either the same phase or exactly opposite phase as the incident

wave.
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• When n happens to be purely imaginary, the reflection coefficient r is a unimodular

complex number, |r| = 1. Physically, this means 100% reflectivity R = |r|2 = 1, but

the phase of the reflected wave is shifted by arg(r) relative to the incident wave’s phase.

⋆ Generically, n is neither real nor imaginary. For such generic complex n, the reflectivity

is

R = |r|2 =
|n|2 + 1 − 2Re(n)

|n|2 + 1 + 2Re(n)
. (S.15)

In particular, for the complex n from eq. (S.10),

Re(n)

|n| = cos

(

phase(n) = 1
2
phase(n2) = 1

2
arccos

ǫ

|n|2
)

=

√

1

2
+

ǫ

2|n|2 , (S.16)

hence

2Re(n) =
√

2(ǫ+ |n|2) (S.17)

and therefore reflectivity

R =
|n|2 + 1 −

√

2(ǫ+ |n|2)
|n|2 + 1 +

√

2(ǫ+ |n|2)
= 1 − 2

√

2(ǫ+ |n|2)
|n|2 + 1 +

√

2(ǫ+ |n|2)
. (S.18)

Problem 1(c):

For good conductors, the imaginary part of n2,

Im(n2) =
σ

ǫ0ω
(S.19)

is very large for any radio-wave or microwave frequencies. For example, for the copper at

ω = 2π × 100 GHz we have Im(n2) ≈ 107, and even at the visible-light frequencies we

would get Im(n2) ∼ 1700. However, at the infrared and higher frequencies we would need

a frequency-dependent formula for the conductivity, so eq. (S.10) would no longer be valid.

So for the purposes of this problem, let’s limit ourselves to the radio-wave or microwave

frequencies, and for these frequencies Im(n2) ≫ 1 for any metal, semimetal, or even a good

electrolyte like the sea water.
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Anyway, a good conductor has a very large Im(n2), hence

|n|2 ≈ Im(n2) ≫
√

2(ǫ+ |n|2) ≫ 1, (S.20)

so we may approximate the RHS of eq. (S.18) for the reflectivity as

R ≈ 1 − 2
√

2|n|2
|n|2 = 1 − 2

√
2

|n| ≈ 1 − 2
√
2

√

Im(n2)
. (S.21)

The RHS here is related to the ratio of the conductor’s skin depth

δ =

√

2

µ0σω
(S.22)

and the wavelength in vacuum

λ0 =
2πc

ω
, (S.23)

both at the same frequency ω. Indeed,

λ20
δ2

=
4π2c2

ω2
× µ0σω

2
=

2π2σ

ω
×

(

c2µ0 =
1

ǫ0

)

=
2π2σ

ǫ0ω
= 2π2 Im(n2). (S.24)

Consequently, in eq. (S.21) Im(n2) becomes λ20/2π
2δ2 and therefore

R ≈ 1 − 2
√
2

√

λ20/2π
2δ2

= 1 − 4πδ

λ0
, (S.25)

exactly as in eq. (2)
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Problem 1(d):

The USW frequency band reserved for the FM radio broadcasts all over the world is from 88

to 108 MHZ, so let work with (ω/2π) = 100 MHz. At this frequency, the vacuum wavelength

is λ0 = 3 meters, while the skin depth is sea water of conductivity σ = 5

Ω

/m is only

δ =

√

2

µ0σω
= 0.7 mm. (S.26)

Consequently,

1 − R ≈ 4πδ

λ0
= 3× 10−3, (S.27)

thus the sea water reflects 99.7% of the radio-wave’s energy.

Problem 2(a):

Fourier transforming the macroscopic Maxwell equations from time to frequency gives us

∇ ·D(x, ω) = ρ(x, ω), (S.28)

∇× E(x, ω) = +iωB(x, ω), (S.29)

∇ ·B(x, ω) = 0, (S.30)

∇×H(x, ω) = Jnet(x, ω) = Jcond(x, ω) + Jdisp(x, ω) (S.31)

= σc(ω)E(x, ω). (3)

Let’s rewrite eq. (3) for the net conduction + displacement current in tersm of the electric

displacement field D rather than the tension field E,

Jnet = σc(ω)E =
σc(ω)

ǫ(ω)ǫ0
D (S.32)

and then take the divergenses of both sides of this equation:

∇ · Jnet(x, ω) =
σc(ω)

ǫ(ω)ǫ0
∇ ·D(x, t). (S.33)

On the RHS here, ∇ ·D = ρ by the Gauss Law (S.28), while the LHS must vanish by the
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Maxwell–Ampere Law (S.31),

∇ · Jnet = ∇ · (∇×H) = 0, (S.34)

thus eq. (S.33) becomes an equation for the electric charge density, or rather for its Fourier

transform ρ(x, ω):

σc(ω)

ǫ(ω)ǫ0
ρ(x, ω) = 0. (S.35)

Finally, multiplying this equation by the non-singular ǫ(ω)ǫ0, we arrive at

for all x and all ω, σc(ω)ρ(x, ω) = 0. (5)

Quod erat demonstrandum.

Problem 2(b):

Strictly speaking, eq. (6) is valid only for ω’s which are small compared to the frequencies

of the electronic resonances in the ion cores stripped of their conduction electrons. But for

the present exercise I am treating eq. (6) as exact.

Given eq. (6) for the complex conductivity σc(ω), eq. (5) for the (Fourier-transformed)

charge density perturbations becomes

ǫbǫ0
γ0 − iω

(ω2
p − iγ0ω − ω2)ρ(x, ω) = 0. (S.36)

and hence

(ω2
p − iγ0ω − ω2)ρ(x, ω) = 0. (7)

Note: this is an algebraic equation for the ω-dependence of the Fourier-transformed charge

density, and it holds for every point x regardless of any other point y. In terms of the

original time-dependent charge density oscillation ρ(x, t), eq. (S.36) becomes a second-order

ordinary differential equation

(

∂2

∂t2
+ γ0

∂

∂t
+ ω2

p

)

ρ(x, t) = 0. (8)
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Problem 2(c):

Eq. (8) governs the time dependence of ρ(x, t) at each x, independently from all other

locations in space. Specifically, for each x we have the damped harmonic oscillator equation

of the form

ψ̈(t) + γ0ψ̇(t) + ω2
pψ(t) = 0 (S.37)

for ψ(t) = ρ(x, t). The general solution of this equation is

ψ(t) = Re
[

ψ0e
−iω′te−γ0t/2

]

, (S.38)

oscillations with frequency

ω′ =
√

ω2
p − 1

4
γ20 ≈ ωp , (S.39)

dumping rate γ0, and initial complex amplitude ψ0. Consequently, solving eq. (8) for the

charge density oscillations gives us

ρ(x, t) = Re
[

ρ0(x) e
−iω′t e−γ0t/2

]

(S.40)

for some initial complex amplitude ρ0(x). Thus, the charge density perturbations oscillate

in place with frequency ω′ ≈ ωp while their intensity |ρ|2 decays at the rate γ0. Quod erat

demonstrandum..

Problem 3(a):

Let Ψ(x, t) be a component of the electric or the magnetic field in a 1D wave propagating

through some linear and uniform but dispersive medium. The Fourier transform ψ(x, ω) of

this wave obeys the second-order equation

(

ω2n2(ω)

c2
+

∂2

∂x2

)

ψ(x, ω) = 0, (S.41)

whose general solution at any fixed ω is a superposition of sine and cosine waves of wave

number k = nω/c, or equivalently

ψ(x, ω) = A(ω)× exp(+iωn(ω)x/c) + B(ω)× exp(−iωn(ω)x/c). (S.42)

for some arbitrary coefficients A(ω) and B(ω).
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Eq. (9) follows from eq. (S.42) via Fourier transform from ψ(x, ω) back to ψ(x, t).

Problem 3(b):

Given eq. (9) for ψ(x, t), let’s take its complex conjugate:

ψ(x, t) =

+∞
∫

−∞

dω

2π
exp(−iωt)





A(ω)× exp(+iωn(ω)x/c)

+B(ω)× exp(−iωn(ω)x/c)



 , (6)

ψ∗(x, t) =

+∞
∫

−∞

dω

2π
exp(+iωt)





A∗(ω)× exp(−iωn∗(ω)x/c)

+B∗(ω)× exp(+iωn∗(ω)x/c)





〈〈 changing int. variable ω = −ω′ 〉〉

=

+∞
∫

−∞

dω′

2π
exp(−iω′t)





A∗(−ω′)× exp(+iω′n∗(−ω′)x/c)

+B∗(−ω′)× exp(−iω′n∗(−ω′)x/c)



 , (S.43)

〈〈 rename ω′ → ω 〉〉

ψ∗(x, t) =

+∞
∫

−∞

dω

2π
exp(−iωt)





A∗(−ω)× exp(+iωn∗(−ω)x/c)

+B∗(−ω)× exp(−iωn∗(−ω)x/c)



 . (S.44)

Requiring ψ(x, t) to be real for all x and all t means that

∀x, t : ψ∗(x, t)[from eq. (S.44)] = ψ(x, t)[from eq. (9)], (S.45)

and by inspection of these two formulae, having

∀ω : n∗(−ω) = n(+ω), A∗(−ω) = A(+ω), B∗(−ω) = B(+ω), (S.46)

is a sufficient and necessary condition. Quod erat demonstrandum.

Problem 3(c):

Given eq. (9) for ψ(x, t), the ψ itself and its x derivative at x = 0 are given by

ψ(0, t) =

+∞
∫

−∞

dω

2π
exp(−iωt)×

(

A(ω) +B(ω)
)

, (S.47)
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∂

∂x
Ψ(0, t) =

+∞
∫

−∞

dω

2π
exp(−iωt)× iωn(ω)

c
×
(

A(ω)− B(ω)
)

. (S.48)

Inverting these Fourier transforms gives us

(

A(ω) +B(ω)
)

=

+∞
∫

−∞

dt exp(+iωt)× ψ(0, t), (S.49)

iωn(ω)

c
×
(

A(ω)− B(ω)
)

=

+∞
∫

−∞

dt exp(+iωt)× ∂

∂x
ψ(0, t), (S.50)

and hence eqs. (10) for the A(ω) and B(ω).

Problem 4:

To prove that under the assumptions at hand, the group velocity of an EM wave is less

than c, I am going to show that

(a) vgroup < vphase ,

and (b) vgroup × vphases < c2.
(S.51)

Together, these two points immediately lead to vgroup < c.

My starting point is the refraction coefficient n(ω) =
√

ǫ(ω)µ(ω) and its frequency

dependence. Given eq. (11) and µ ≈ 1, we have

n2(ω) ≈ 1 +
Ne2

meǫ0

∑

i

fi
ω2
i − ω2 − iωγi

, (S.52)

which at frequencies not too close to any of the resonances ωi — i.e., in the regime of normal

dispersion — becomes

n2(ω) ≈ 1 +
Ne2

meǫ0

∑

i

fi
ω2
i − ω2

. (S.53)

As I have explained in class, the phase velocity and the group velocity of the EM waves
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follow from this refraction index according to

vphase =
ω

k
=

c

n
,

vgroup =
dω

dk
=

c

n + ω(dn/dω)
.

(S.54)

In the normal dispersion regime, the refraction index has positive derivative,

dn2

dω
=

Ne2

meǫ0

∑

i

2fiω

(ω2
i − ω2)2

> 0, (S.55)

hence

c

vgroup
= n + ω

dn

dω
> n =

c

vphase
(S.56)

and therefore vgroup < vphase. This proves point (a).

To prove point (b), consider the product

c

vphase
× c

vgroup
= n×

(

n + ω
dn

dω

)

= n2 +
ω

2
× dn2

dω
. (S.57)

For the refraction index (S.53),

(

1 +
ω

2

d

dω

)

n2(ω) = 1 +
Ne2

meǫ0

∑

i

fi

(

1 +
ω

2

d

dω

)

1

ω2
i − ω2

= 1 +
Ne2

meǫ0

∑

i

fi

(

1

ω2
i − ω2

+
ω2

(ω2
i − ω2)2

)

= 1 +
Ne2

meǫ0

∑

i

fi
ω2
i

(ω2
i − ω2)2

= 1 +
∑

(positive terms) > 1,

(S.58)

hence

c

vphase
× c

vgroup
> 1 =⇒ vgroup × vphase < c2. (S.59)

This proves point (b) and hence vgroup < c.
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