PHY-387 K. Solutions for problem set #10.

Problem 2, preamble:

In this problem, we would need two coordinate systems for the two transverse dimensions of
the waveguide. First, (x,y) with the coordinate axes along the two short sides of the triangle.
Second, (&,7n) where £ axis is parallel to the triangle;s long side and 7 axis is normal to it.

Here is the diagram of the triangle and its mirror image showing the two coordinate systems:

(S.1)

In terms of (£,7n) coordinates, the mirror reflection off the long side of the triangle acts as

gimage = ‘|‘€origa Thimage = ~Torig » (82)

while in terms of (x,y) coordinates, it works according to

Limage — @ — Yorig s Yimage = @ — Zorig - (83)

Problem 2(a):

Suppose 1) (x,y) — or equivalently (&, n) — obeys the eigenvalue equation (V2 +1')%) =0
everywhere inside the original triangle as well as Neumann or Dirichlet conditions on the 3
sides of the triangle. Then obviously it’s extension to the image triangle according to eq. (2)

— or in terms of (£, 7n) coordinates

¢(€777 < 0) = i¢(+§7 —-n > 0)7 (84)

— also obeys the eigenvalue equation (V? +I')%y) = 0 everywhere inside the image triangle

as well as Neumann or Dirichlet conditions on its sides. In terms of the square made from



both triangles, this means 1) obeys the Neumann or Dirichlet conditions on all 4 sides of the
square as well as (V2 + I')2y = 0 everywhere inside the square, except maybe at the = 0

diagonal line separating the two triangles.

Thus, to make sure the extended v is a proper eigenstate of the —V? operator for the
whole square, we must make sure that V2t does not have ¢-like singularities along the
diagonal line, which means that 1) itself and its first derivatives 9i/0¢ and dv/0n must be
continuous at n = 0. Once this condition is satisfied, all the higher derivatives would also
be continuous — this is automatic for any ¢ obeying (V2 +I')2¢ = 0 on both sides of the

diagonal.

So let’s check the continuity of 1(£, ) and its first derivatives for both types of boundary
conditions. In the Dirichlet case, the boundary condition on the diagonal of the original

triangle is Yorig (£, = 0) = 0, hence in the image triangle

¢image(§a 7)) = _@borig(ga —TI) — 0 for n— 0. (85)

so on both sides of the diagonal i) vanishes for n — £0. This makes 1) itself continuous along
the diagonal, hence its derivative WRT ¢ is also continuous. As to the normal derivative

OYOn, the minus sign in eq. (S.5) means

0 0
8_77"7Z)image(€>77) - +a_nworig(§a_77)a (86)

so both ¥image and Yorig have the same value at n = 0. In other words, dy0n is also

continuous across the diagonal.

Now consider the Neumann boundary conditions. In this case, the plus sign in eq. (2),

— or equivalently

wimage(fﬂﬁ = "Hporig(fv _77)7 (S7>

— immediately leads to the continuity of v itself across the n = 0 diagonal, and hence to

the continuity of the tangent derivative 090§. As to the normal derivative, the Neumann



boundary conditions for the original triangle include

0
a_nworig(ga 7)) — 0 for n — +O> (88)

while eq. (2) leads to

0 0
a_nwimage(gan) = _8_n¢orig(€> —Tl) — 0f01"77 — —0. (89)

So the normal derivative is also continuous across the diagonal.

Thus, for both types of boundary conditions, the extended 1 and its first derivatives are
continuous across the diagonal, which makes it obey the (V2 + I'?)1) = 0 equation not only
on both sides of the diagonal but also on the diagonal itself. Altogether, the extended
obeys (V2 + FQ)zp = 0 across the whole square, and also obeys the appropriate boundary
conditions on all 4 sides of the squatre. Physically, this means that the eigenstate of the
triangle extended to the whole square by the mirror reflection (2) is indeed an eigenstate of

the whole square. Quod erat demonstrandum.

Problem 2(b):

In part (a) we saw that an eigenstate of the triangle extended to the whole square becomes an
eigenstate of the whole square for the same eigenvalue I'2. On the other hand, an eigenstate
of the whole square reduced to the original triangle becomes an eigenstate of that triangle
only if it happens to obey the boundary conditions on the triangle’s long side. Fortunately,
this condition can always be satisfied by superimposing two degenerate eigenstates of the
square related by the mirror symmetry (2). Specifically, let 1(z,y) be an eigenstate of the

square, then
w/<x7y> = ¢(a—y7a_x) (Sl())
is also an eigenstate with the same eigenvalue, and

U(z,y) = (z,y) £ ¢V'(z,y) (S.11)

obeys the Neumann conditions on the diagonal for the + sign and the Dirichlet condition

for the — sign, so unless ¥ = 0 then it is truly an eigenstate of the triangle.



This gives us a way to construct all of the triangle’s eigenstates starting from the square’s

eigenstates, so let’s do it first for the Neumann boundary conditions and the for the Dirichlet.

Neumann boundary conditions:

The eigenstates of the square with Neumann BC are products of cosine waves in z and y

directions,
mnx nmy
zpn]\{n = cos X cos ——
' a
2
2 T 2 2
Pmm - _2(m +n )7
a
where m and n are independent non-negative integers m,n = 0,1,2,3,.... The mirror

reflection (S.3) swaps m <> n, and it also multiplies the cosine product by the overall sign

(~1ym

)

wnj\{n(a_y,a—l‘) = CQSMXCOSHW(G—ZL‘)
b a a
= (_1)m+n % COS nnx % cos mmy (S.12)
a a

= (=)™ x wv{xm,

so the triangle’s eigenstates are

mmrx nmy nwx
x cos —= + (=1)""" x cos —~ X cos

a a a a

mmy

(5.13)

\II%H = cos

However, one has to be careful counting such eigenstates for the triangle. For m # n,
the square’s eigenstates wn]\{m and @Z)ﬂx ., are different states (albeit with the same eigenvalue),
but the corresponding triangle’s eignestates (S.13) become identical, \I/%m = :i:\Ilix m» S0 they
should be counted as one eigenstate rather than two. Thus, to avoid the double-counting of

the triangle’s eigenstates, we must restrict the list of \P%,n to m < n only, thus

N N N N N N N
’l/}()’() ) 1/}071 ) 1/}171 ) w(),Q ) ¢1,2 ) 1/}272 ) 1/}37() ) e (Sl4)



Dirichlet boundary conditions:

The eigenstates of the square with Dirichlet BC are products of sine waves in x and y

directions,
D . mwrr | nwy
Y = Sin . X sin —=,
2
2 T 2 2
Fm,n = _2(m +n )7
a
where m and n are independent positive integers m,n :X(, 1,2,3,4,.... The mirror reflec-
tion (S.3) swaps m <> n, and it also multiplies the sine product by the overall sign (—1)""
mm(a — nm(a —x
VP (a—y,a—z) = SiDMXSiD ( )
’ a a
nwx mm
= (=1)™"" x sin —= X sin Y (S.15)
a a

= (-)™" <yl
so the triangle’s eigenstates are

nmw nmx mm

UPm,n = sin x sin Y (—=1)™*™ x sin —~ x sin g (S5.16)
a a a a

However, the difference here vanishes for m = n so the triangle eigenstates obtain only for
m # n. Also, for m # n the square has two different (albeit degenerate) eigenstates @/}%n
and wgm, but for the triangle they are identical up to a sign. So to avoid double-counting

of the triangle’s eigenstates, we must restrict the list of 2/1,,1,27” to m < n only, thus

vio, vTs, Y3s, Vi, Ve, Yis, W50, .- (S.17)

Problem 2(c):
The TE waves have E, = 0 while the H,(z,y) is an eigenstate of the two-dimensional —V?

operator for the Neumann boundary conditions at the triangle sides. As we saw in part (b),



such eigenstates have form

nm nwx
os Y 4 (—=1)™™Hy cos —— cos
a a a

mmy

H.(x,y) = Hy cos T (S.18)

for integers m and n such that n > m > 0, with the corresponding eigenstates being
2

70
2., = (m*+n? x — (S.19)
For the TE waves, this translates to TEy, , waves for integer m,n > 0 and m < n; however,
we cannot have H, = const # 0, so the T'Ej o wave does not exist. But all other combinations

of n > m > 0 are allowed, so the list of TE modes goes
TEo1, TE11, TEpa, TEi2, TEs2, TEpz, .... (S.20)
As to the cutoff frequencies of all these modes, they follow from the eigenvalues 'y,

c
Wmin(TEmm) = cl'mn = % X vV/m2+n?. (8.21)

Now, the TM waves have H, = 0 while the E,(z,y) is an eigenstate of the two-
dimensional —V? operator for the Dirichlet boundary conditions at the triangle sides. As

we saw in part (b), such eigenstates have form

mrxr . nwy . nwr . mnuy
sin —= — (=1)™""Ey sin —~ sin
a a a

E.(x,y) = Epsin (S.22)

for positive integers m and n with n > m > 0. Thus, the TM modes are TM,, ,, are restricted

to these combinations of m and n, so the list of TM modes goes
TMLQ , TMLg , TM273 , TM174 , TMQA , TM374 , TM175 , e (SQ?))

In terms of m and n, the eigenvalues I';, ,, are exactly the same

2

F%mn = (m?® +n?) x ) (S.19)

as for the TE modes, hence similar cutoff frequencies
Q(TMpmn) = T = — x V/m2+n2. (S.24)
a

For completeness sake (although it was not a requires part of this problem), let me list



the first baker’s dozen of modes in the order of increasing cutoff frequencies, or rather the

first 13 levels of Q = wpin:

modes Q) in units of (7¢/a)
TEo1 1

TE1. V21414
TEo2 2

TE12, TMi V5 ~ 2.236
TEq 2 V8 ~ 2.828
TEo3 3

TE13, TM; 3 V10 = 3.162
TEo3, TMa3 V13 = 3.606
TEo4 4

TE14, TMy4 V1T ~ 4.123
TE33 VI8 ~ 4.243
TEg 4, TMa 4 V20 ~ 4.472
TE34, TM34, TEg5 5

Problem 3, preamble:

The attenuation rate of any particular mode obtains as

" (power loss)/length (S.25)

(net power)

where

kw

or? / (€0|Ez\2 or uo\Hz|2) da dy (S.26)

(net power) =

cross
section

(assuming no dielectric inside the waveguide, just vacuum or air), and
(power loss) R

perimeter



In these formulae,

Ry = — S.28
S 0_5 ( )
is the surface resistivity of the waveguide walls,
kw wVw? — Q2
ﬁ = cX T, (829)
and
1
cxX py = Zy, cXe = —, (S.30)
Zy

where Zy = 377 () is the wave impedance of the vacuum. Altogether, all these formulae lead

to

R Q0?2 y $IH2| de
o = —
Zo  wvw? =02 [[(|H:|? or |E.|?/Z8) dx dy

(S.31)

Also, the simplest way to integrate |H,|? or |E,|? over the triangle is to extend the
integrand to the square (1) using the mirror reflection (2), integrate over the whole square,

and then divide by 2, thus

triangle square

J] (1P or 2Py ady = 5 [[ (8P o £ 23) drdy
« a (8.32)
1
— 5/dx/dy(|H|2 or |E.|*/Z3).

0 0

Indeed, by the mirror symmetry, the integral over the image triangle is exactly equal to the
integral over the original triangle, so the over the whole square is simply 2 x the integral

over the original triangle.



Problem 3(a):
As we saw in problem 1, the lowest cutoff frequency among the TE waves belongs to the

TEo,1 mode with

H, = Hy cos 2 — Hy COSE, (S.33)
a a
r-=2 o= (S.34)
a a
and hence

ika . TT
H, = —— Hy sin —, (S.35)

T a

k

Hy= +2% Hysin 2. (S.36)

T a

For this mode,

a a a a

/da:/dy|Hz|2 = |H0\2/d:1:/dy (c052E +cos? T~ 92c0s T cos E)
a a a a

0 0
PR (8.37)
5 + — 2 X 0)

and therefore

H 2.2
// do dy | L2 = % (S.38)

triangle

Next, let’s integrate |H|? over the perimeter, i.e. over the 3 sides of the triangle. Over

the vertical side at x = 0 we have

kaH,
Tl sinW—y, H, = Hy (cosﬂ—y - 1), (S.39)
a




hence

a

a
k:2 2H 2
/dy|H|2 _ %x/dy sinz%

™

0 0
’ 2
+ |Ho? X/dy [(COSE — 1) = o2 _2c0s™Y 41
/ a a a (S5.40)
k2a?|Ho> a 5 TG
= T xS |H) x[§—2xo+a}
3 k%a?
= alH* x (= + — ).
alHol X<2+ 27r2)

Likewise, for the horizontal side of the triangle at y = 0 we also get

a
3 k%a?
0

Finally, along the diagonal side of the triangle
Yy = a — =, dt = V2dx,

while

H, = —2H, COSE, (S.42)
a
kaH,
Hy = —H, = 2220 i ™2 (S.43)
s a
2/{72 2
H? = |Hol? x <4cos”—x - inQE), (S.44)
T a
which integrates to
/ 2k*a’
H?dl = V2|Ho|> x [dz 4c02 2 4 T gin2 T
v ‘ (S.45)
0 .
a 2k
= \/§|]J0|2 X <4 X 5 + 7-(2 X 5)



Altogether, the perimeter integral evaluates to

]{‘HP‘M = alHy|* x <(3+2\/§) + (1++v2) x kif) : (S.46)
In this formula, (3 +2v/2) = (1 ++/2)? while
so we end up with
7{|H|2de = alHo|* x (14 V2) x ‘*’MTfQQ (S.48)

Finally, plugging the perimeter integral (S.48) and the area integral (S.38) into eq. (S.31)

for the attenuation rate, we get

Rs Q? y $IH2| ¢
a = —
Zo  wvw?2—02  [[|H.]?dxdy
Rs 02 5 w? +20%  / |Hp|*a?
= 2 X oyor—ap <l < (4 V) x =, ) (5.49)
2 292
_ ooz B ¥ V20
aZy  wyVw? — 02
Problem 3(b):
The lowest cutoff frequency among the TM waves belongs to the TM; 2 mode with
. T . 21y . 2mx . Ty
E., = Epsin— sin—= + FEjsin — sin — (S.50)
a x a a
r = @, Q= \/gm, (S.51)
a a
and hence
, . TT 2my . 2mx Y
H, = —iH; | 2sin — cos —= + sin — cos — | , (S.52)
a a a a
2 2
H, = +iH; <cosE sin =Y 4 2cos 2~ sin W—y) : (S.53)
a a a a
H, =0, (S.54)
for

11



wpo(m/a) Ey w
————Fk) = — X —. S.55
N (55

For this wave, the area integral evaluates to

2 2
/ |EZ\2d:L’dy = \EOP/da:/dy <sm7r—3j s1n—7ry + sin—mg sin W—y)
T a T

square

Hy =

a

2
= |E0|2/dx sin? 72 x /dy sin? =Y
a a

0 0
a a
2
+ \E()P/dx sin2$ x/dy sinz% (S.56)
0 0
a a
2 2
+ 2|E0|2/d:c sin 2o sin — - x /dy sin =Y sin 7Y
a a a a
0 0
a a a a
= |Eo)> x = x = + |Egf’x = x = 4+ 2|Eg)* x0x0
\0\><2><2—|—|0\><2><2+ |Ep|” x 0 x
2
a
— ‘EO‘QX?
and therefore
E0|2a2
— E. | dxdy = | : S.57
e s [ 1E-Randy = (557
triangle square

Next, the perimeter integral. Along the vertical side of the triangle at x = 0, we have

2
a a
hence
a a 2 2
Javimp = i fay (smiy . zsmf_y)
a a
0
/ S.59
2 ) .
= |H|* [dy (siHQLy + 4sin? ™ — 4sin 2 sin W_y) ( )
a a a a

0
5
- \H1|2< +4><5—4 o) = SalH[.

By symmetry, the integral over the horizontal side of the triangle at y = 0 yields exactly the

12



same result,

a
5
/dx|H|2 = §a|H1|2. (S.60)
0

As to the diagonal side of the triangle, we have
y = a — x, dt = \V2dx, (S.61)

while the magnetic field components are

2 2
H, = -H, = —iH; (QSinH cos T _ 6in 2™ cos H) = 21H, sin?’@, (S5.62)
a a a a a
hence
a
/\HPCM — 8|H > x V2 [do sin® =
a
0
5 S.63
= 8V2|H 2 x 2 (563)
16
5v/2
= Ta|H1|2

Altogether, over the whole perimeter
5(2 2
f\HPdﬁ = %\[) x aHy|?, (S.64)

or in terms of the electric amplitude Ey,

2 2 | Epl? 2
%\Hﬁde: +V2 Bl w

5 2 X0z (S.65)

Finally, plugging this perimeter integral (S.65) and the area integral (S.57) into eq. (S.31)

for the attenuation rate, we get

R 02 y $|H2| de
a = —
Z0 " wvwr =02 (1/Z2) [[|E:)? dx dy
2 2 |E 2 2 E 2.2
_ B @ 24 V2[Efa? [Eofa® (S.66)
20 wvw? — Q2 2 z; Q2 472

_ oAV B

aZy w? — 2

13



Problem 3, postscript:

When comparing the attenuation rates (S.49) and (S.66) for the two modes of the the same
waveguide, keep in mind that these modes have different cutoff frequencies, 1 = (7¢/a) for
the TEp1 mode vs. {2y = \/5(7‘['0/(1) for the TM; 2 mode. When both attenuation rates are

expressed in terms of w/€); — and also the surface resistivity at the same frequency €, —

we get
R4(2 2 2Q
a(TEo1) = 2(vV2+1) S(Zl) WV , (S.67)
azo ”le(uﬂ_Q%)
Rs(Q /20 w?
a(TMy9) = 2(vV2+1) s(Zl) X ~ : (S.68)
a0 \/wﬁl(w2—59%)
Graphically,
o)
e
5
TEO’l TMLQ
4 A
\
\
3 AN
1 N
\
\
2 \
\\
N
1 SN
0 w
0 1 2 3 4 5 6
Problem 4:

The TEq 1,1 mode of the cylindrical cavity has

Y]
le ~ 1.84 7'(2
D= w=ofl?+ o, (S.69)

14



and magnetic fields

H, = HyJi(I'p) cos¢ sin%z, (S.70)
7TH0 Tz
H, = Tq J{(Tp) cos ¢ cos —- . (S.71)
H, r
H, ——ﬂrdo Jllgpp) sin(¢) cos%x. (S.72)
Integrating |H|? over the cavity’s volume, we get
d 27 R
///|Hz|2d3x = |Hp|?* x /dz sin? % X /dgb cos® ¢ x /dppJ%(l"p)
0 0
1 ]{1
= |H0|2X_X7TXP2 /de'ZL'Jl (873)
0
) 2m R
7| Hol\* 9 T2 2
// |H, | d’x = (F—d) x/dz cos” ~— x/dgb Ccos gbx/d,op(J{(Tp))
0 0 0
22 d . Jia
T 0 2
= TFam X3 XTXT3 drx (Ji(z))", (S.74)
0
‘H | 9 d 2m R 7 (F ) 9
2 13 410 2 Tz 2 1 p
//|Hy| d°x = < T ) x/dzcos Fx/dqﬁcos qu/dpp( T, )
0 0 0
Ynp 41 R
rap X5 XTX 12 dx x o (S.75)
0
Combining the last two integrals here, we get
Jia

w2|Hol? wd 1 2 J?(z
///|Ht|2d3x - F|2d2‘ X5 X9 dr x <(J{(x)) + 1352 >) (5.76)

15



where

1

o\\»,
==

Altogether,

dx x <(J{(w))2 +

((integrating by parts ))

1,1

g1
Jia J2
(w1(2)71 + /dm < )(271(2) + i) + 1£x))
0
0 ((because Ji(j11) =0) (S.77)
Jia
Jix) | Ni(x)
d _ 1 _ 1
+ / zxJi(z < Ji () . 2
0
( by the Bessel equation )
Jia
/dxle(x) x Ji(x),
0
the same integral as in eq. (S.73). Numerically,
Jia
o o / drz J(z) ~ 0.4046. (S.78)
0
[Zf”“ dx = [H X5 X5+ g X5 X
B 5 wC e
= [Hol" X o3 (1 dgrg) (S.79)

= |Hy|* x dR? x

wC
2(j11)?

TR

<1+ (jild)2>'

Next, let’s integrate the |H|? over the surface of the cavity. At each endcup disk (at

16



z =0 and at z = d) we have H, = 0 while

HP + [HyP = (

hence

/ IH|? d®x

endcup

W‘H()|
I'd

2w

r'd )2 x Pp/dgb {(J{(rp)f cos?p +

o

On the other hand, at the sidewall at p = R

hence

HE = Hol*(1(j10)" % < 26 sin® -

which integrates to

IH|? d*x

sidewall

H
sz

Ar

2

Hy Ji(j1,1) x cos ¢ sin i

2 2
FENE o2 o o J1AP)
) X {(Jl(l“p)) cos” ¢ + L

4

0,
wHy N (ji’l) X sin ¢ cos =
I'd jil d’

= [Hol(A(i1,))" % < 1

s
1+ 5
( (9171

2R2
)4d2

17
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TZ m2R2

+

2m Rd w2 R2

X sin’ ¢ cos

JZ(Tp)

(Tp)?

2m Rd

X
T

) x Rd|Ho|?

4

sin? gb}

9 T2

d

)

sin? qb} ,

7).

(S.80)

(S.81)

(S.85)

(S.86)



where

A Y (1)) ~ 0.3386. (S.87)
Altogether,
Am Amd  R3 2m3C R4
HP @x = [Hol* x | 5 Rd + 5o — + 7 | - S.88
] = 1o 2Lt d UL o

surface

Taking the ratio of the volume integral (S.79) to the surface integral (S.88), we find (after
a bit of algebra)

SC R4
JHEéEx e+ e
JREEx ERd + G5 + (2?,3%5_5

C L+ e (R/d)? (S.89)
= 772 X ir°C
A(J1,1) 1+ 4(R/d) + m(R/d)i*’
1 + 2.911(R/d)?
1 + 0.8588 (R/d)? + 4.105 (R/d)3"

(ji,l)

=~ 0.3525 R x

At the same time, for the TE; 11 mode

20 <j{’1>2 m le N2 2
Tt = Ty (i)AR/) (5.90)
hence
¢ = w0 JHP &~
) lﬂH'Q o (S.91)
213/2 :
~ 0.649 x (1 4 2911 (R/d)%)

1 + 0.8588 (R/d)% + 4.105 (R/d)?"
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PS: FYL here is the plot of this geometric factor G as a function of the d/R ratio:

10G
10A

o
-
N
w
N
o1
(@]
~
oo
(o]
5\(
=v/j¥

Note: the plot line is colored blue for (d/R) < 2.03 and red for (d/R) > 2.03; the TEq 1,
mode has the lowest frequency only for the red part of the line. Over the red part, the

geometric factor varies in a fairly narrow range between 0.85 and 0.65.
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