
PHY–387 K. Solutions for problem set #10.

Problem 2, preamble:

In this problem, we would need two coordinate systems for the two transverse dimensions of

the waveguide. First, (x, y) with the coordinate axes along the two short sides of the triangle.

Second, (ξ, η) where ξ axis is parallel to the triangle;s long side and η axis is normal to it.

Here is the diagram of the triangle and its mirror image showing the two coordinate systems:

ξ

η

x

y (S.1)

In terms of (ξ, η) coordinates, the mirror reflection off the long side of the triangle acts as

ξimage = +ξorig , ηimage = −ηorig , (S.2)

while in terms of (x, y) coordinates, it works according to

ximage = a − yorig , yimage = a − xorig . (S.3)

Problem 2(a):

Suppose ψ(x, y) — or equivalently ψ(ξ, η) — obeys the eigenvalue equation (∇2 +Γ)2ψ = 0

everywhere inside the original triangle as well as Neumann or Dirichlet conditions on the 3

sides of the triangle. Then obviously it’s extension to the image triangle according to eq. (2)

— or in terms of (ξ, η) coordinates

ψ(ξ, η < 0) = ±ψ(+ξ,−η > 0), (S.4)

— also obeys the eigenvalue equation (∇2 + Γ)2ψ = 0 everywhere inside the image triangle

as well as Neumann or Dirichlet conditions on its sides. In terms of the square made from
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both triangles, this means ψ obeys the Neumann or Dirichlet conditions on all 4 sides of the

square as well as (∇2 + Γ)2ψ = 0 everywhere inside the square, except maybe at the η = 0

diagonal line separating the two triangles.

Thus, to make sure the extended ψ is a proper eigenstate of the −∇2 operator for the

whole square, we must make sure that ∇2ψ does not have δ-like singularities along the

diagonal line, which means that ψ itself and its first derivatives ∂ψ/∂ξ and ∂ψ/∂η must be

continuous at η = 0. Once this condition is satisfied, all the higher derivatives would also

be continuous — this is automatic for any ψ obeying (∇2 + Γ)2ψ = 0 on both sides of the

diagonal.

So let’s check the continuity of ψ(ξ, η) and its first derivatives for both types of boundary

conditions. In the Dirichlet case, the boundary condition on the diagonal of the original

triangle is ψorig(ξ, η = 0) = 0, hence in the image triangle

ψimage(ξ, η) = −ψorig(ξ,−η) → 0 for η → 0. (S.5)

so on both sides of the diagonal ψ vanishes for η → ±0. This makes ψ itself continuous along

the diagonal, hence its derivative WRT ξ is also continuous. As to the normal derivative

∂ψ∂η, the minus sign in eq. (S.5) means

∂

∂η
ψimage(ξ, η) = +

∂

∂η
ψorig(ξ,−η), (S.6)

so both ψimage and ψorig have the same value at η = 0. In other words, ∂ψ∂η is also

continuous across the diagonal.

Now consider the Neumann boundary conditions. In this case, the plus sign in eq. (2),

— or equivalently

ψimage(ξ, η) = +ψorig(ξ,−η), (S.7)

— immediately leads to the continuity of ψ itself across the η = 0 diagonal, and hence to

the continuity of the tangent derivative ∂ψ∂ξ. As to the normal derivative, the Neumann
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boundary conditions for the original triangle include

∂

∂η
ψorig(ξ, η) → 0 for η → +0, (S.8)

while eq. (2) leads to

∂

∂η
ψimage(ξ, η) = − ∂

∂η
ψorig(ξ,−η) → 0 for η → −0. (S.9)

So the normal derivative is also continuous across the diagonal.

Thus, for both types of boundary conditions, the extended ψ and its first derivatives are

continuous across the diagonal, which makes it obey the (∇2 + Γ2)ψ = 0 equation not only

on both sides of the diagonal but also on the diagonal itself. Altogether, the extended ψ

obeys (∇2 + Γ2)ψ = 0 across the whole square, and also obeys the appropriate boundary

conditions on all 4 sides of the squatre. Physically, this means that the eigenstate of the

triangle extended to the whole square by the mirror reflection (2) is indeed an eigenstate of

the whole square. Quod erat demonstrandum.

Problem 2(b):

In part (a) we saw that an eigenstate of the triangle extended to the whole square becomes an

eigenstate of the whole square for the same eigenvalue Γ2. On the other hand, an eigenstate

of the whole square reduced to the original triangle becomes an eigenstate of that triangle

only if it happens to obey the boundary conditions on the triangle’s long side. Fortunately,

this condition can always be satisfied by superimposing two degenerate eigenstates of the

square related by the mirror symmetry (2). Specifically, let ψ(x, y) be an eigenstate of the

square, then

ψ′(x, y) = ψ(a− y, a− x) (S.10)

is also an eigenstate with the same eigenvalue, and

Ψ(x, y) = ψ(x, y) ± ψ′(x, y) (S.11)

obeys the Neumann conditions on the diagonal for the + sign and the Dirichlet condition

for the − sign, so unless Ψ ≡ 0 then it is truly an eigenstate of the triangle.
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This gives us a way to construct all of the triangle’s eigenstates starting from the square’s

eigenstates, so let’s do it first for the Neumann boundary conditions and the for the Dirichlet.

Neumann boundary conditions:

The eigenstates of the square with Neumann BC are products of cosine waves in x and y

directions,

ψN
m,n = cos

mπx

a
× cos

nπy

a
,

Γ2
m,n =

π2

a2
(m2 + n2),

where m and n are independent non-negative integers m,n = 0, 1, 2, 3, . . .. The mirror

reflection (S.3) swaps m ↔ n, and it also multiplies the cosine product by the overall sign

(−1)n+m,

ψN
m,n(a− y, a− x) = cos

mπ(a− y)

a
× cos

nπ(a− x)

a

= (−1)m+n × cos
nπx

a
× cos

mπy

a

= (−1)m+n × ψN
n,m ,

(S.12)

so the triangle’s eigenstates are

ΨN
m,n = cos

mπx

a
× cos

nπy

a
+ (−1)m+n × cos

nπx

a
× cos

mπy

a
. (S.13)

However, one has to be careful counting such eigenstates for the triangle. For m 6= n,

the square’s eigenstates ψN
m,n and ψN

n,m are different states (albeit with the same eigenvalue),

but the corresponding triangle’s eignestates (S.13) become identical, ΨN
m,n = ±ΨN

n,m, so they

should be counted as one eigenstate rather than two. Thus, to avoid the double-counting of

the triangle’s eigenstates, we must restrict the list of ΨN
m,n to m ≤ n only, thus

ψN
0,0 , ψN

0,1 , ψN
1,1 , ψN

0,2 , ψN
1,2 , ψN

2,2 , ψN
3,0 , . . . . (S.14)
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Dirichlet boundary conditions:

The eigenstates of the square with Dirichlet BC are products of sine waves in x and y

directions,

ψD
m,n = sin

mπx

a
× sin

nπy

a
,

Γ2
m,n =

π2

a2
(m2 + n2),

where m and n are independent positive integers m,n = 0 , 1, 2, 3, 4, . . .. The mirror reflec-

tion (S.3) swaps m↔ n, and it also multiplies the sine product by the overall sign (−1)n+m,

ψD
m,n(a− y, a− x) = sin

mπ(a− y)

a
× sin

nπ(a− x)

a

= (−1)m+n × sin
nπx

a
× sin

mπy

a

= (−1)m+n × ψD
n,m ,

(S.15)

so the triangle’s eigenstates are

ΨDm,n = sin
mπx

a
× sin

nπy

a
− (−1)m+n × sin

nπx

a
× sin

mπy

a
. (S.16)

However, the difference here vanishes for m = n so the triangle eigenstates obtain only for

m 6= n. Also, for m 6= n the square has two different (albeit degenerate) eigenstates ψD
m,n

and ψD
n,m, but for the triangle they are identical up to a sign. So to avoid double-counting

of the triangle’s eigenstates, we must restrict the list of ψD
m,n to m < n only, thus

ψD
1,2 , ψD

1,3 , ψD
2,3 , ψD

4,1 , ψD
4,2 , ψD

4,3 , ψD
5,0 , . . . . (S.17)

Problem 2(c):

The TE waves have Ez ≡ 0 while the Hz(x, y) is an eigenstate of the two-dimensional −∇2

operator for the Neumann boundary conditions at the triangle sides. As we saw in part (b),
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such eigenstates have form

Hz(x, y) = H0 cos
mπx

a
cos

nπy

a
+ (−1)m+nH0 cos

nπx

a
cos

mπy

a
(S.18)

for integers m and n such that n ≥ m ≥ 0, with the corresponding eigenstates being

Γ2
m,n = (m2 + n2)× π2

a2
. (S.19)

For the TE waves, this translates to TEm,n waves for integer m,n ≥ 0 and m ≤ n; however,

we cannot have Hz = const 6= 0, so the TE0,0 wave does not exist. But all other combinations

of n ≥ m ≥ 0 are allowed, so the list of TE modes goes

TE0,1 , TE1,1 , TE0,2 , TE1,2 , TE2,2 , TE0,3 , . . . . (S.20)

As to the cutoff frequencies of all these modes, they follow from the eigenvalues Γm,n:

ωmin(TEm,n) = cΓm,n =
πc

a
×
√

m2 + n2 . (S.21)

Now, the TM waves have Hz ≡ 0 while the Ez(x, y) is an eigenstate of the two-

dimensional −∇2 operator for the Dirichlet boundary conditions at the triangle sides. As

we saw in part (b), such eigenstates have form

Ez(x, y) = E0 sin
mπx

a
sin

nπy

a
− (−1)m+nE0 sin

nπx

a
sin

mπy

a
(S.22)

for positive integers m and n with n > m > 0. Thus, the TM modes are TMm,n are restricted

to these combinations of m and n, so the list of TM modes goes

TM1,2 , TM1,3 , TM2,3 , TM1,4 , TM2,4 , TM3,4 , TM1,5 , . . . . (S.23)

In terms of m and n, the eigenvalues Γm,n are exactly the same

Γ2
m,n = (m2 + n2)× π2

a2
(S.19)

as for the TE modes, hence similar cutoff frequencies

Ω(TMm,n) = cΓm,n =
πc

a
×
√

m2 + n2 . (S.24)

For completeness sake (although it was not a requires part of this problem), let me list
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the first baker’s dozen of modes in the order of increasing cutoff frequencies, or rather the

first 13 levels of Ω = ωmin:

modes Ω in units of (πc/a)

TE0,1 1

TE1,1

√
2 ≈ 1.414

TE0,2 2

TE1,2, TM1,2

√
5 ≈ 2.236

TE2,2

√
8 ≈ 2.828

TE0,3 3

TE1,3, TM1,3

√
10 ≈ 3.162

TE2,3, TM2,3

√
13 ≈ 3.606

TE0,4 4

TE1,4, TM1,4

√
17 ≈ 4.123

TE3,3

√
18 ≈ 4.243

TE2,4, TM2,4

√
20 ≈ 4.472

TE3,4, TM3,4, TE0,5 5

Problem 3, preamble:

The attenuation rate of any particular mode obtains as

α =
(power loss)/length

(net power)
(S.25)

where

(net power) =
kω

2Γ2

∫

cross

section

(

ǫ0|Ez|2 or µ0|Hz|2
)

dx dy (S.26)

(assuming no dielectric inside the waveguide, just vacuum or air), and

(power loss)

length
=

Rs

2

∮

perimeter

|H|2 dℓ. (S.27)
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In these formulae,

Rs =
1

σδ
(S.28)

is the surface resistivity of the waveguide walls,

kω

Γ2
= c× ω

√
ω2 − Ω2

Ω2
, (S.29)

and

c× µ0 = Z0, c× ǫ0 =
1

Z0
, (S.30)

where Z0 = 377 Ω is the wave impedance of the vacuum. Altogether, all these formulae lead

to

α =
Rs

Z0
× Ω2

ω
√
ω2 − Ω2

×
∮

|H2| dℓ
∫∫(

|Hz|2 or |Ez|2/Z2
0

)

dx dy
(S.31)

Also, the simplest way to integrate |Hz|2 or |Ez|2 over the triangle is to extend the

integrand to the square (1) using the mirror reflection (2), integrate over the whole square,

and then divide by 2, thus

∫∫

triangle

(

|H|2 or |Ez|2/Z2
0

)

dx dy =
1

2

∫∫

square

(

|H|2 or |Ez|2/Z2
0

)

dx dy

=
1

2

a
∫

0

dx

a
∫

0

dy
(

|H|2 or |Ez|2/Z2
0

)

.

(S.32)

Indeed, by the mirror symmetry, the integral over the image triangle is exactly equal to the

integral over the original triangle, so the over the whole square is simply 2 × the integral

over the original triangle.
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Problem 3(a):

As we saw in problem 1, the lowest cutoff frequency among the TE waves belongs to the

TE0,1 mode with

Hz = H0 cos
πy

a
− H0 cos

πx

a
, (S.33)

Γ =
π

a
, Ω =

πc

a
, (S.34)

and hence

Hx = −ika
π
H0 sin

πx

a
, (S.35)

Hy = +
ika

π
H0 sin

πy

a
. (S.36)

For this mode,

a
∫

0

dx

a
∫

0

dy |Hz|2 = |H0|2
a
∫

0

dx

a
∫

0

dy
(

cos2
πx

a
+ cos2

πy

a
− 2 cos

πx

a
cos

πy

a

)

= |H0|2
(

a2

2
+
a2

2
− 2× 0

)

= |H0|2a2

(S.37)

and therefore

∫∫

triangle

dx dy |Hz|2 =
|H0|2a2

2
. (S.38)

Next, let’s integrate |H|2 over the perimeter, i.e. over the 3 sides of the triangle. Over

the vertical side at x = 0 we have

Hx = 0, Hy = +
ikaH0

π
sin

πy

a
, Hz = H0

(

cos
πy

a
− 1

)

, (S.39)
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hence

a
∫

0

dy |H|2 =
k2a2|H0|2

π2
×

a
∫

0

dy sin2
πy

a

+ |H0|2 ×
a
∫

0

dy

[

(

cos
πy

a
− 1

)2
= cos2

πy

a
− 2 cos

πy

a
+ 1

]

=
k2a2|H0|2

π2
× a

2
+ |H0|2 ×

[a

2
− 2× 0 + a

]

= a|H0|2 ×
(

3

2
+
k2a2

2π2

)

.

(S.40)

Likewise, for the horizontal side of the triangle at y = 0 we also get

a
∫

0

dx |H|2 = a|H0|2 ×
(

3

2
+
k2a2

2π2

)

. (S.41)

Finally, along the diagonal side of the triangle

y = a − x, dℓ =
√
2 dx,

while

Hz = −2H0 cos
πx

a
, (S.42)

Hx = −Hy =
ikaH0

π
sin

πx

a
, (S.43)

|H|2 = |H0|2 ×
(

4 cos2
πx

a
+

2k2a2

π2
sin2

πx

a

)

, (S.44)

which integrates to

∫

|H|2 dℓ =
√
2|H0|2 ×

a
∫

0

dx

(

4 cos2
πx

a
+

2k2a2

π2
sin2

πx

a

)

=
√
2|H0|2 ×

(

4× a

2
+

2k2a2

π2
× a

2

)

.

(S.45)
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Altogether, the perimeter integral evaluates to

∮

|H|2 dℓ = a|H0|2 ×
(

(3 + 2
√
2) + (1 +

√
2)× k2a2

π2

)

. (S.46)

In this formula, (3 + 2
√
2) = (1 +

√
2)2 while

k2a2

π2
=

k2

Γ2
=

ω2 − Ω2

Ω2
, (S.47)

so we end up with

∮

|H|2 dℓ = a|H0|2 × (1 +
√
2)× ω2 +

√
2Ω2

Ω2
. (S.48)

Finally, plugging the perimeter integral (S.48) and the area integral (S.38) into eq. (S.31)

for the attenuation rate, we get

α =
Rs

Z0
× Ω2

ω
√
ω2 − Ω2

×
∮

|H2| dℓ
∫∫

|Hz|2 dx dy

=
Rs

Z0
× Ω2

ω
√
ω2 − Ω2

× a|H0|2 × (1 +
√
2)× ω2 +

√
2Ω2

Ω2

/ |H0|2a2
2

= 2(
√
2 + 1)

Rs

aZ0
× ω2 +

√
2Ω2

ω
√
ω2 − Ω2

.

(S.49)

Problem 3(b):

The lowest cutoff frequency among the TM waves belongs to the TM1,2 mode with

Ez = E0 sin
πx

a
sin

2πy

x
+ E0 sin

2πx

a
sin

πy

a
, (S.50)

Γ =

√
5π

a
, Ω =

√
5πc

a
, (S.51)

and hence

Hx = −iH1

(

2 sin
πx

a
cos

2πy

a
+ sin

2πx

a
cos

πy

a

)

, (S.52)

Hy = +iH1

(

cos
πx

a
sin

2πy

a
+ 2 cos

2πx

a
sin

πy

a

)

. (S.53)

Hz ≡ 0, (S.54)

for
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H1 =
ωµ0(π/a)

Γ2
E0 =

E0

Z0
× ω√

5Ω
. (S.55)

For this wave, the area integral evaluates to

∫∫

square

|Ez|2 dx dy = |E0|2
a
∫

0

dx

a
∫

0

dy

(

sin
πx

a
sin

2πy

x
+ sin

2πx

a
sin

πy

x

)2

= |E0|2
a
∫

0

dx sin2
πx

a
×

a
∫

0

dy sin2
2πy

a

+ |E0|2
a
∫

0

dx sin2
2πx

a
×

a
∫

0

dy sin2
πy

a

+ 2|E0|2
a
∫

0

dx sin
πx

a
sin

2πx

a
×

a
∫

0

dy sin
2πy

a
sin

πy

a

= |E0|2 ×
a

2
× a

2
+ |E0|2 ×

a

2
× a

2
+ 2|E0|2 × 0× 0

= |E0|2 ×
a2

2

(S.56)

and therefore
∫∫

triangle

|Ez|2
Z2
0

dx dy =
1

2Z2
0

∫∫

square

|Ez|2 dx dy =
|E0|2a2
4Z2

0

. (S.57)

Next, the perimeter integral. Along the vertical side of the triangle at x = 0, we have

Hx = 0, Hy = iH1

(

sin
2πy

a
+ 2 sin

πy

a

)

, (S.58)

hence

a
∫

0

dy |H|2 = |H1|2
a
∫

0

dy

(

sin
2πy

a
+ 2 sin

πy

a

)2

= |H1|2
a
∫

0

dy

(

sin2
2πy

a
+ 4 sin2

πy

a
− 4 sin

2πy

a
× sin

πy

a

)

= |H1|2
(a

2
+ 4× a

2
− 4× 0

)

=
5

2
a|H1|2 .

(S.59)

By symmetry, the integral over the horizontal side of the triangle at y = 0 yields exactly the
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same result,
a
∫

0

dx |H|2 =
5

2
a|H1|2 . (S.60)

As to the diagonal side of the triangle, we have

y = a − x, dℓ =
√
2 dx, (S.61)

while the magnetic field components are

Hx = −Hy = −iH1

(

2 sin
πx

a
cos

2πx

a
− sin

2πx

a
cos

πx

a

)

= 2iH1 sin3
πx

a
, (S.62)

hence
∫

|H|2 dℓ = 8|H1|2 ×
√
2

a
∫

0

dx sin6
πx

a

= 8
√
2 |H1|2 ×

5a

16

=
5
√
2

2
a|H1|2.

(S.63)

Altogether, over the whole perimeter

∮

|H|2 dℓ =
5(2 +

√
2)

2
× a|H1|2, (S.64)

or in terms of the electric amplitude E0,

∮

|H|2 dℓ =
2 +

√
2

2

|E0|2a
Z2
0

× ω2

Ω2
. (S.65)

Finally, plugging this perimeter integral (S.65) and the area integral (S.57) into eq. (S.31)

for the attenuation rate, we get

α =
Rs

Z0
× Ω2

ω
√
ω2 − Ω2

×
∮

|H2| dℓ
(1/Z2

0)
∫∫

|Ez|2 dx dy

=
Rs

Z0
× Ω2

ω
√
ω2 − Ω2

× 2 +
√
2

2

|E0|2a
Z2
0

ω2

Ω2

/ |E0|2a2
4Z2

0

= 2
√
2(
√
2 + 1)

Rs

aZ0
× ω√

ω2 − Ω2

(S.66)
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Problem 3, postscript:

When comparing the attenuation rates (S.49) and (S.66) for the two modes of the the same

waveguide, keep in mind that these modes have different cutoff frequencies, Ω1 = (πc/a) for

the TE0,1 mode vs. Ω2 =
√
5(πc/a) for the TM1,2 mode. When both attenuation rates are

expressed in terms of ω/Ω1 — and also the surface resistivity at the same frequency Ω1, —

we get

α(TE0,1) = 2(
√
2 + 1)

Rs(Ω1)

aZ0
× ω2 +

√
2Ω1

√

ωΩ1(ω2 − Ω2
1)
, (S.67)

α(TM1,2) = 2(
√
2 + 1)

Rs(Ω1)

aZ0
×

4
√
20ω2

√

ωΩ1(ω2 − 5Ω2
1)
. (S.68)

Graphically,

0 1 2 3 4 5 6
0

1

2

3

4

5

6

ω
Ω1

α

TE0,1 TM1,2

Problem 4:

The TE1,1,1 mode of the cylindrical cavity has

Γ =
j′1,1 ≈ 1.84

R
, ω = c

√

Γ2 +
π2

d2
, (S.69)
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and magnetic fields

Hz = H0 J1(Γρ) cosφ sin
πz

d
, (S.70)

Hρ =
πH0

Γd
J ′

1(Γρ) cosφ cos
πz

d
. (S.71)

Hφ = −πH0

Γd

J1(Γρ)

Γρ
sin(φ) cos

πx

d
. (S.72)

Integrating |H|2 over the cavity’s volume, we get

∫∫∫

|Hz|2 d3x = |H0|2 ×
d
∫

0

dz sin2
πz

d
×

2π
∫

0

dφ cos2 φ×
R
∫

0

dρ ρ J2
1 (Γρ)

= |H0|2 ×
d

2
× π × 1

Γ2

j′1,1
∫

0

dx x J2
1 (x). (S.73)

∫∫∫

|Hx|2 d3x =

(

π|H0|
Γd

)2

×
d
∫

0

dz cos2
πz

d
×

2π
∫

0

dφ cos2 φ×
R
∫

0

dρ ρ
(

J ′

1(Γρ)
)2

=
π2|H0|2
Γ2d2

× d

2
× π × 1

Γ2

j′1,1
∫

0

dx x
(

J ′

1(x)
)2
, (S.74)

∫∫∫

|Hy|2 d3x =

(

π|H0|
Γd

)2

×
d
∫

0

dz cos2
πz

d
×

2π
∫

0

dφ cos2 φ×
R
∫

0

dρ ρ

(

J1(Γρ)

Γρ

)2

=
π2|H0|2
Γ2d2

× d

2
× π × 1

Γ2

j′1,1
∫

0

dx x
J2
1 (x)

x2
. (S.75)

Combining the last two integrals here, we get

∫∫∫

|Ht|2 d3x =
π2|H0|2
Γ2d2

× πd

2
× 1

Γ2

j′1,1
∫

0

dx x

(

(

J ′

1(x)
)2

+
J2
1 (x)

x2

)

(S.76)
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where

j′1,1
∫

0

dx x

(

(

J ′

1(x)
)2

+
J2
1 (x)

x2

)

=

〈〈 integrating by parts 〉〉

=
(

xJ1(x)J
′

1(x)
)
∣

∣

∣

j′1,1

0
+

j′1,1
∫

0

dx

(

−J1(x)
(

xJ ′′

1 (x) + J ′

1(x)
)

+
J2
1 (x)

x

)

= 0 〈〈 because J ′

1(j
′

1,1) = 0 〉〉

+

j′1,1
∫

0

dx x J1(x)

(

−J ′′

1 (x) − J ′

1(x)

x
+
J1(x)

x2

)

〈〈 by the Bessel equation 〉〉

=

j′1,1
∫

0

dx x J1(x)× J1(x),

(S.77)

the same integral as in eq. (S.73). Numerically,

C
def
=

j′1,1
∫

0

dx x J2
1 (x) ≈ 0.4046. (S.78)

Altogether,

∫∫∫

|H|2 d3x = |H0|2 ×
πd

2
× C

Γ2
+

π2|H0|2
Γ2d2

× πd

2
× C

Γ2

= |H0|2 ×
πC

2Γ2

(

1 +
π2

d2Γ2

)

= |H0|2 × dR2 × πC

2(j′1,1)
2

(

1 +

(

πR

j′1.1d

)2
)

.

(S.79)

Next, let’s integrate the |H|2 over the surface of the cavity. At each endcup disk (at

16



z = 0 and at z = d) we have Hz = 0 while

|Hρ|2 + |Hφ|2 =

(

π|H0|
Γd

)2

×
[

(

J ′

1(Γρ)
)2

cos2 φ +
J2
1 (Γρ)

(Γρ)2
sin2 φ

]

, (S.80)

hence

∫∫

endcup

|H|2 d2x =

(

π|H0|
Γd

)2

×
R
∫

0

dρ ρ

2π
∫

0

dφ

[

(

J ′

1(Γρ)
)2

cos2 φ +
J2
1 (Γρ)

(Γρ)2
sin2 φ

]

=

(

π|H0|
Γd

)2

× π

Γ2

j′1,1
∫

0

dx x

[

(

J ′

1(x)
)2

+
J2
1 (x)

x2

]

=

(

π|H0|
Γd

)2

× π

Γ2
× C

=
π3C

(j′1,1)
4

R4|H0|2
d2

.

(S.81)

On the other hand, at the sidewall at ρ = R

Hz = H0 J1(j
′

1,1)× cosφ sin
πz

d
, (S.82)

Hρ ≡ 0, (S.83)

Hφ = −πH0

Γd
×
J1(j

′

1,1)

j′1,1
× sinφ cos

πz

d
, (S.84)

hence

|H|2 = |H0|2
(

J1(j
′

1,1)
)2 ×

(

cos2 φ sin2
πz

d
+

π2R2

(j′1,1)
4d2

× sin2 φ cos2
πz

d

)

, (S.85)

which integrates to

∫∫

sidewall

|H|2 d2x = |H0|2
(

J1(j
′

1,1)
)2 ×

(

2πRd

4
+

π2R2

(j′1,1)
4d2

× 2πRd

4

)

=
Aπ

2

(

1 +
π2R2

(j′1,1)
4d2

)

× Rd|H0|2
(S.86)

17



where

A
def
=
(

J1(j
′

1,1)
)2 ≈ 0.3386. (S.87)

Altogether,

∫∫

whole

surface

|H|2 d2x = |H0|2 ×
(

Aπ

2
Rd +

Aπ3

2(j′1,1)
4

R3

d
+

2π3C

(j′1,1)
4

R4

d2

)

. (S.88)

Taking the ratio of the volume integral (S.79) to the surface integral (S.88), we find (after

a bit of algebra)

∫∫∫

|H|2 d3x
∫∫

|H|2 d2x =

πC
2(j′

1,1
)2R

2d + π3C
2(j′

1,1
)4

R4

d

Aπ
2 Rd + Aπ3

2(j′
1,1

)4
R3

d + 2π3C
(j′

1,1
)4

R4

d2

=
C

A(j′1,1)
2
R×

1 + π2

(j′
1,1

)2 (R/d)
2

1 + π2

(j′
1,1

)4 (R/d)
2 + 4π2C

A(j′
1,1

)4 (R/d)
3

= ≈ 0.3525R× 1 + 2.911(R/d)2

1 + 0.8588 (R/d)2 + 4.105 (R/d)3
.

(S.89)

At the same time, for the TE1,1,1 mode

ω0
c

=

√

(j′1,1)
2

R2
+
π2

d2
=

j′1,1
R

×
√

1 + (π/j′1,1)
2(R/d)2 (S.90)

hence

Ĝ =
ω0
c

×
∫∫∫

|H|2 d3x
∫∫

|H|2 d2x

≈ 0.649× (1 + 2.911 (R/d)2)3/2

1 + 0.8588 (R/d)2 + 4.105 (R/d)3
.

(S.91)
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PS: FYI, here is the plot of this geometric factor Ĝ as a function of the d/R ratio:

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

d
R

10 Ĝ

Note: the plot line is colored blue for (d/R) < 2.03 and red for (d/R) > 2.03; the TE1,1,1

mode has the lowest frequency only for the red part of the line. Over the red part, the

geometric factor varies in a fairly narrow range between 0.85 and 0.65.
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