
PHY–387 K. Solutions for problem set #11.

Problem 1(a):

For a harmonically oscillating dipole moment p(t) = p0e
−iωt, the current density (1) becomes

J(y, t) = −iωp0e
−iωtδ(3)(y), (S.1)

hence the vector potential

A(x, t) = e−iωtA(x) (S.2)

for

A(x) =
µ0
4π

∫∫∫

d3y J(y)
exp(ik|x− y|)

|x− y| =
µ0
4π

(−iωp0)
eikr

r
, (S.3)

exactly as in eq. (2). Please note that this spherical wave does not depends on the direction

n = x/r, so it’s an exact solution of the wave equation for both far and intermediate zones

of the problem (which in the zero-dipole-size limit means for all r > 0), and there are no

subleading terms.

However, when we take the curl of the vector potential (2), we do get a subleading (WRT

1/r) term in the magnetic field. (3): it obtains from taking the gradient of 1/r factor instead

of the eikr factor. Indeed,

d

dr

eikr

r
=

ikeikr

r
− eikr

r2
= ik

eikr

r

(

1 +
i

kr

)

, (S.4)

hence altogether

H(x) =
1

µ0
∇×A =

−iω

4π
∇
(

eikr

r

)

× p0 =
−iω

4π
ik

eikr

r

(

1 +
i

kr

)

n× p0, (S.5)

in perfect agreement with eq. (3) for the magnetic field.
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As to the electric field E(x), it obtains from the Maxwell–Ampere Law as

E =
iZ0

k
∇×H. (S.6)

For the magnetic fields as in eq. (3), this gives us

E =
iZ0ω

4π
∇×

(

eikr

r

(

1 +
i

kr

)

n× p0

)

=
iZ0ω

4π

[

d

dr

(

eikr

r

(

1 +
i

kr

))

n× (n× p0) +
eikr

r

(

1 +
i

kr

)

∇× (n× p0)

]

(S.7)

where

d

dr

(

eikr

r

(

1 +
i

kr

))

= ik
eikr

r

(

1 +
2i

kr
− 2

(kr)2

)

(S.8)

while
[

∇× (n× p0)
]

j
= ǫijkǫkℓm(∇jnℓ)p0m

= (δiℓδjm − δimδjℓ)
δjℓ − njnℓ

r
p0m

= (δim − 3δim − ninm + δim)
p0m
r

= −(δim + ninm)
p0m
r

.

(S.9)

Altogether,

∇×
(

eikr

r

(

1 +
i

kr

)

n× p0

)

=

= ik
eikr

r

(

1 +
2i

kr
− 2

(kr)2

)

n× (n× p0) +
eikr

r

(

1 +
i

kr

) −p0 − (n · p0)n

r

= ik
eikr

r

[(

1 +
2i

kr
− 2

(kr)2

)

n× (n× p0) +
i

kr

(

1 +
i

kr

)

(

(n · p0)n + p0

)

]

= ik
eikr

r

[

n× (n× p0) +
i

kr

(

1 +
i

kr

)

(

2n× (n× p0) + (n · p0)n + p0

)

]

= ik
eikr

r

[

n× (n× p0) +
i

kr

(

1 +
i

kr

)

(

3(n · p0)n − p0

)

]

,

(S.10)

hence

E = −Z0ωk

4π

eikr

r

[

n× (n× p0) +
i

kr

(

1 +
i

kr

)

(

3(n · p0)n − p0

)

]

, (S.11)

in perfect agreement with eq. (4) for the electric field. Quod erat demonstrandum.
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Problem 1(b):

Eqs. (3–4) for the magnetic and the electric fields apply for all distances r from the dipole —

short, medium, and long — as long as the dipole itself may be approximated as point-like. So

let’s take a closer look at their long-distance and short-distance limits, where the distances

are viewed as long or short by comparison with the wavelength λ = 2π/k.

In the long distance regime r ≫ λ, we may neglect all the negative powers of kr in

eqs. (3–4), which leaves us with

H(x, t) ≈ kω

4π

eikr−iωt

r
(n× p0), (S.12)

E(x, t) ≈ −Z0kω

4π

eikr−iωt

r
(n× (n× p0)). (S.13)

These are precisely the radiation fields of a harmonic dipole we have discussed in class. Note

that they diminish with distance as 1/r, so that the radiation power density spreads out as

1/r2.

On the other hand, in the short distance regime r ≪ λ, we focus on the highest negative

powers of kr in eqs. (2–3), and we may also approximate exp(ikr) ≈ 1. Consequently, the

short-distance limit of the electric field is

E(x, t) ≈ −Z0kω

4π

e−iωt

r

−p0 + 3(n · p0)n

(kr)2

=

(

Z0ω

4πk
=

Z0c

4π
=

1

4πǫ0

) −p0 + 3(n · p0)n

r3
e−iωt.

(S.14)

This is a quasistatic Coulomb field of the electric dipole p(t) = p0e
−iωt. That is, at any

given instance of time t, the field (S.13) is the Coulomb field of the dipole moment we happen

to have at that time. As any good dipole field, it scales with distance as 1/r3.

As to the magnetic field in the short-distance regime, the leading term in eq. (2) is

H(x, t) =
iω

4π

n× p0

r2
e−iωt. (S.15)

Unlike the electric field (S.14), the short-distance magnetic field scales with distance as 1/r2,

slower that any quasistatic magnetic multipole, but faster than the 1/r radiation-zone fields.
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Also, the magnetic field (S.13) is not a quasistatic field, since it vanishes for ω → 0. Instead,

this magnetic field is induced by the displacement current due to the time-dependent dipole

field (S.14) in the short-distance zone. Indeed,

∇×H(from eq. (S.15)) = − iω

4π
∇×

(

n× p

r2

)

e−iωt

= − iω

4π

p − 3n(n · p)
r3

e−iωt

=
∂

∂t

(

D = ǫ0E(from eq. (S.14))
)

.

(S.16)

Problem 1(c):

The time-averaged Poynting vector of a harmonic wave is

〈S〉 = 1
2 Re

(

E×H∗
)

. (S.17)

For the dipole wave (2–3), we have

E×H∗ = −Z0k
2ω2

16π2r2









(

1 − i

kr

)

(

n× (n× p0)
)

× (n× p0)
∗

+
i

kr

(

1 +
1

k2r2

)

(

3(n · p0)n− p0

)

× (n× p0)
∗









(S.18)

where

(

n× (n× p0)
)

× (n× p0)
∗ = (n× p0)

∗ ×
(

(n× p0)× n
)

= (n× p0)
(

n · (n× p0)
∗ = 0

)

− n
(

(n× p0)
∗ · (n× p0) = ‖n× p0‖2

)

= −‖n× p0‖2 n (S.19)

while
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(

3(n · p0)n− p0

)

× (n× p0)
∗ = 3(n · p0)

(

n(n · p0)
∗ − p∗

0

)

−
(

n(p0 · p∗
0) − p∗

0(n · p0)
)

=
(

3|(n · p0)|2 − ‖p0‖2
)

n − 2(n · p0)p
∗
0. (S.20)

Altogether,

E×H∗ =
Z0k

2ω2

16π2r2



















(

1 − i

kr

)

‖n× p0‖2 n

− i

kr

(

1 +
1

k2r2

)

(

3|n · p0|2 − ‖p0‖2
)

n

+
2i

kr

(

1 +
1

k2r2

)

(n · p0)p
∗
0



















. (S.21)

Next, we take the real part of this cross product, thus

Re

[(

1 − i

kr

)

‖n× p0‖2 n
]

= ‖n× p0‖2 n, (S.22)

Re

[−i

kr

(

1 +
1

k2r2

)

(

3|n · p0|2 − ‖p0‖2
)

n

]

= 0, (S.23)

Re

[

2i

kr

(

1 +
1

k2r2

)

(n · p)p∗

]

= − 2

kr

(

1 +
1

k2r2

)

Im
(

(n · p)p∗
)

, (S.24)

where

2 Im
(

(n · p)p∗
)

= −i(n · p0)p
∗
0 + i(n · p∗

0)p

= −in× (p∗
0 × p0)

= n× Im(p∗
0 × p0), (S.25)

and therefore, the time-averaged Poynting vector

〈S〉 = 1
2 Re

(

E×H∗
)

=
Z0k

2ω2

32π2r2

[

‖n× p0‖2 n − 1

kr

(

1 +
1

k2r2

)

n× Im(p∗
0 × p0)

]

.

(S.26)

Altogether, we find that the radiation power flow has two components: the radial power
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flow

〈S〉rad =
Z0k

2ω2

32π2r2
‖n× p0‖2 n (S.27)

which diminishes with distance as 1/r2, thus distance-independent power per solid angle

dP

dΩ
=

Z0k
2ω2

32π2
‖n× p0‖2, (S.28)

and the lateral power flow

〈S〉lat =
Z0kω

2

32π2r3

(

1 +
1

k2r2

)

(

−n× Im(p∗
0 × p0)

)

(S.29)

which diminishes with distance at a faster rate 1/r3.

Note: for a linear dipole — whose components (px, py, pz) oscillate with the same phase,

— the complex amplitude vector p0 is parallel to its complex conjugate p∗
0, thus p

∗
0×p0 = 0,

and hence no lateral power flow, 〈S〉lat = 0. On the other hand, a non-linear dipole — for

which the 3 components (px, py, pz) oscillate with different phases — has complex amplitude

vector p0 that is not parallel to its complex conjugate p∗
0. For such a non-linear dipole

p∗
0 × p0 6= 0, and that gives rise to a non-trivial lateral power flow (S.29).

Problem 1(d):

The linear momentum density of the EM fields

g =
1

c2
S (S.30)

gives rise to the angular momentum density

~L def
=

dL

d volume
= x× g =

x× S

c2
. (S.31)

For a purely radial Poynting vector, this angular momentum density would vanish. But

as we saw in part (c), the radiation of a non-linear dipole has a lateral component to its

6



Poynting vector, thus non-zero angular momentum density

~L =
1

c2
rn× 〈S〉lat

=
r

c2
Z0kω

2

32π2r3

(

1 +
1

k2r2

)

n×
(

−n× Im(p∗
0 × p0)

)

=
Z0ω

3

32π2c3r2

(

1 +
1

k2r2

)

n×
(

−(n× Im(p∗
0 × p0)

)

−−−→
kr≫1

Z0ω
3

32π2c3r2
n×

(

−(n× Im(p∗
0 × p0)

)

.

(S.32)

This angular momentum density flows outward with the radiation itself. In the far zone of

kr ≫ 1, the radiation flows out radially with speed c, so the angular momentum flow density

is simply

Mij ≈ cLinj . (S.33)

Consequently, the net rate at which the radiation carries away the angular momentum is

simply

~τnet
def
=

dLEM

dt
=

∫∫

large

sphere

c ~L d2area = lim
r→∞

∫∫

cr2 ~L d2Ω. (S.34)

In out case,

lim
r→∞

(cr2 ~L) =
Z0ω

3

32π2c2
n×

(

−(n× Im(p∗
0 × p0)

)

, (S.35)

hence

τneti =
Z0ω

3

32π2c2

∫∫

d2Ω(n)
(

−ǫijknjǫkℓmnℓ Im(p∗
0 × p0)m

)

(S.36)

where

∫∫

d2Ω(n)
(

−ǫijknjǫkℓmnℓ

)

=

∫∫

d2Ω(n) (−njmℓ + δjℓ) = +
8π

3
δim , (S.37)

and therefore

~τnet = +
Z0ω

3

12πc2
Im(p∗

0 × p0). (S.38)

Note: Physically, a steady increase of the EM radiation’s angular momentum at the

rate (S.38) means that the non-linear dipole creating this radiation supplies it with not
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only power but also torque. Specifically, it effectively applies that torque (S.38) at the EM

radiation! And by the angular version of the Newton’s third law, the radiation acts with an

opposite torque −~τnet on the non-linear oscillator.

Problem 1(e):

For the sake of definiteness, let the electron in the classical Rutherford atom rotate counter-

clockwise in the (x, y) plane, thus

x = (r cosωt, r sinωt, 0) = Re
(

(r, ir, 0)e−iωt
)

, (S.39)

while the angular velocity and the angular momentum of the atom point in the ẑ direction,

~ω = ωẑ, L = mωr2ẑ = mr2~ω. (S.40)

The rotating dipole moment

p(t) = −er(i, i, 0)e−iωt, (S.41)

has complex amplitude vector p0 = −er(1, i, 0) that’s not parallel to its complex conjugate

p∗
0 = −er(1,−i, 0), so there is a non-zero cross product

p∗
0 × p0 = e2r2(1,−i, 0)× (1,+i, 0) = e2r2(0, 0, 2i), (S.42)

Im(p∗
0 × p0) = 2e2r2ẑ, (S.43)

which gives rise to the radiation torque

~τnet = +
Z0e

2

6πc2
ω3r2 ẑ. (S.44)

Note: this is the torque the atom supplies to the radiation it emits. The torque by the

radiation on the atom has the opposite direction, thus

dLatom

dt
= −~τnet = − Z0e

2

12πc3
ω3r2 ẑ. (S.45)

Note the direction of this torque is precisely opposite to the direction +ẑ of the atom’s own

angular momentum (S.40).
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At the same time, the net EM power emitted by the rotating oscillator is

Pnet =
Z0ω

2

12πc2
‖p0‖2 =

Z0ω
2

12πc2
× 2e2r2 =

Z0e
2

6πc2
× ω4r2. (S.46)

Similar to the angular momentum, this power comes at the expense of the atom’s own energy

U , so it’s lost at the rate

dU

dt
= −Pnet = −Z0e

2

6πc2
× ω4r2. (S.47)

Comparing this formula to eq. (S.45) for the rate of the angular momentum loss, we imme-

diately see that

dU

dt
= −ω

∣

∣

∣

∣

dL

dt

∣

∣

∣

∣

, (S.48)

and further more

dU

dt
= +~ω · dL

dt
(S.49)

since the two vectors on the RHS have precisely opposite directions.

Problem 1(f):

A classical particle moving in a Coulomb field has several integrals of motion, including the

net energy

U =
mv2

2
− α

r
(S.50)

where α = e2/4πǫ0 for the hydrogen atom, the angular momentum

L = x×mv , (S.51)

and the Runge–Lenz vector

K = v × L − αn. (S.52)

These integrals of motion are not completely independent; instead, the Runge–Lenz vector
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is always ⊥ to the angular momentum, while their magnitudes are related to the energy as

L2U = −m

2

(

α2 −K2
)2
. (S.53)

For an elliptic orbit, the direction of the angular momentum is ⊥ to the orbit’s plane while

the direction of the Runge–Lenz vector points towards the perihelion. Also, |K| = α ×
excentricity, so for a circular orbit — and only for a circular orbit — K = 0. Consequently,

eq. (S.53) gives us a criterion of a circular orbit in terms of its energy and angular momentum:

an orbit is circular if and only if L2U = −mα2

2
. (S.54)

One can easily verify eq. (S.54) for a circular orbit without using the Runge–Lenz vector,

although it would not prove that any orbit obeying this criterion must be circular. Using

first-year Newtonian mechanics, we have

mω2r =
α

r2
=⇒ ω2 × r3 =

α

m
, (S.55)

hence

L = mωr2 =
√
αm×

√
r, (S.56)

U =
mω2r2

2
− α

r
= − α

2r
, (S.57)

UL2 = −α2m

2
. (S.58)

With all this in mind, let us now address the results of part (e) for the Rutherford

atom. The fact that dL/dt has precisely opposite direction from the remaining angular

momentum L of the atom means that the direction of L remains fixed while its magnitude

slowly diminishes. In other words, the plane of the electron’s orbit remains fixed while the

orbital radius slowly shrinks to zero.
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Next, suppose the orbit is initially circular, then eq. (6) implies that

d

dt
(L2U) = 2UL · dL

dt
+ L2

(

dU

dt
= ~ω · dL

dt

)

=
dL

dt
·
(

2UL + L2~ω
)

= 0

because

2UL + L2~ω =

(

2U =
−α

r

)

(L = mr2~ω) + (L2 = αmr)~ω = −αmr~ω + αmr~ω = 0.

(S.59)

Consequently, if the criterion (S.54) initially holds true for a circular orbit, then it continues

to hold true, so the orbit stays circular. Quod erat demonstrandum.

Problem 2(a):

The Efimenko equations for the electric and magnetic fields of given charge and current

densities follow from the retarded Green’s function of the wave equation. I have explained

that issue in class back in early October, and the Efimenko equations themselves appear on

the last page of my notes on Maxwell equations. In the notations of the present homework,

the Efimenko equations become:

H(x, t) =
−1

4π

∫∫∫

d3y











(x− y)

|x− y|3 × J(y, t− |x−y|
c )

+
(x− y)

c|x− y|2 ×
•

J(y, t− |x−y|
c )











, (S.60)

E(x, t) =
1

4πǫ0

∫∫∫

d4y





















(x− y)

|x− y|3 ρ(y, t−
|x−y|

c )

+
(x− y)

c|x− y|2
•

ρ(y, t− |x−y|
c )

− 1

c2|x− y|
•

J(y, t− |x−y|
c )





















. (S.61)
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Applying eq. (S.60) to the current (1) of the point-like dipole, we immediately obtain

H(x, t) =
−1

4π

∫∫∫

d3y











(x− y)

|x− y|3 ×
•

p(t− |x−y|
c )δ(3)(y)

+
(x− y)

c|x− y|2 ×
••

p(t− |x−y|
c )δ(3)(y)











=
−1

4π

(

x

|x|3 ×
•

p(t− |x|
c ) +

x

c|x|2 ×
••

p(t− |x|
c )

)

=
−1

4π

( n

r2
×

•

p(tret) +
n

cr
×

••

p(tret)
)

,

(S.62)

exactly as in eq. (8).

Eq. (9) for the electric field takes a bit more work. Plugging ρ and J from eq. (1) into

the Efimenko equation (S.61) for the electric field, we get

E(x, t) =
−1

4πǫ0

∫∫∫

d3y



















(x− y)

|x− y|3 (p(t−
|x−y|

c ) · ∇y)δ
(3)(y)

+
(x− y)

c|x− y|2 (
•

p(t− |x−y|
c ) · ∇y)δ

(3)(y)

+
1

c2|x− y|
••

p(t− |x−y|
c )δ(3)(y)



















. (S.63)

Integrating the third term here is completely straightforward,

∫∫∫

d3y
1

c2|x− y|
••

p(t− |x−y|
c )δ(3)(y) =

1

c2|x|
••

p(t− |x|
c ) =

1

c2r

••

p(tret), (S.64)

but the first two terms in (S.63) need more care due to the derivative of the δ-function.
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Integrating the first term, we get

∫∫∫

d4y
(x− y)

|x− y|3 (p(t−
|x−y|

c ) · ∇y)δ
(3)(y) =

〈〈 integrating by parts 〉〉

= −
∫∫∫

d4y δ(3)(y)
∂

∂yj

(

(x− y)

|x− y|3 pj(t−
|x−y|

c )

)

= +

∫∫∫

d4y δ(3)(y)
∂

∂xj

(

(x− y)

|x− y|3 pj(t−
|x−y|

c )

)

=
∂

∂xj

(

x

|x|3 pj(t−
|x|
c )

)

= ∇j

( n

r2
pj(tret)

)

.

(S.65)

Likewise, for the second term we get

∫∫∫

d4y
(x− y)

c|x− y|2 (
•

p(t− |x−y|
c ) · ∇y)δ

(3)(y) = ∇j

( n

rc

•

pj(tret)
)

. (S.66)

Moreover, due to x-dependence of the retarded time (9), we have non-zero gradients of

functions of tret,

∇f(tret) = (∇tret)
•

f(tret) = −n

c

•

f(tret). (S.67)

Consequently,

first termi = ∇j

(ni
r2

pj(tret)
)

= ∇j

(ni
r2

)

pj(tret) +
ni
r2

(

∇jpj(tret) = −nj
c

•

f(tret)
)

=
δij − 3ninj

r3
pj(tret) − ninj

cr2
•

pj(tret),

(S.68)

and likewise

second termi = ∇j

(ni
cr

•

pj(tret)
)

= ∇j

(ni
cr

)

•

pj(tret) +
ni
cr

(

∇j
•

pj(tret) = −nj
c

••

f (tret)
)

=
δij − 2ninj

cr2
•

pj(tret) − ninj
c2r

••

pj(tret).

(S.69)
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Altogether, eq. (S.63) for the electric field evaluates to

E(x, t) =
−1

4πǫ0
(first term + second term + third term)

=
−1

4πǫ0





















p− 3(n · p)n
r3

− (n ·
•

p)n

cr2

+

•

p− 2(n ·
•

p)n

cr2
− (n ·

••

p)n

c2r

+

••

p

c2r





















=
−1

4πǫ0

(

p− 3(n · p)n
r3

+

•

p− 3(n ·
•

p)n

cr2
+

••

p− (n ·
••

p)n

c2r

)

(S.70)

where p,
•

p, and
••

p are all evaluated at the retarded time (10). By inspection, the last line

of eq. (S.70) is in perfect agreement with eq. (9). Quod erat demonstrandum.

Problem 2(b):

In the long-distance limit, the EM field (7–8) are dominated by the terms with decrease with

distance as 1/r rather than 1/r2 or 1/r3, thus

H(x, t) ≈ −n×
••

p(tret)

4πcr
, (S.71)

E(x, t) ≈ (n ·
••

p(tret))n −
••

p(tret)

4πǫ0c2r
= Z0

n× (n×
••

p(tret))

4πcr
. (S.72)

In this limit, the Poynting vector becomes

S = E×H = − Z0

16π2c2r2
(n× (n×

••

p))× (n× ••

n) = +
Z0

16π2c2r2

∥

∥n×
••

p(tret)
∥

∥

2
n (S.73)

hence the power emitted into a solid angle dΩ is

dP

dΩ
=

Z0

16π2c2
∥

∥n×
••

p(tret)
∥

∥

2
, (S.74)
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and the net power radiated by the dipole is

Pnet(t) =
Z0

16π2c2

∫∫

d2Ω(n)
∥

∥n×
••

p(tret)
∥

∥

2
=

Z0

6πc2
∥

∥

••

p(tret)
∥

∥

2
, (S.75)

exactly as in eq. (11).

BTW, the retarded time tret = t− r
c is retarded relative to the time t at which we detect

this radiation at long distance r from the dipole. By the clock of the dipole itself, the energy

loss happens at the same time as the
••

p, thus

dUdipole(t
′)

dt′
= − Z0

6πc2
∥

∥

••

p(t′)
∥

∥

2
. (S.76)

Problem 2(c):

The parallel-plate capacitor in question has capacitance

C =
ǫ0A

b
. (S.77)

When it’s charged to initial charge Q0 and then allowed to discharge via resistor R, it’s

charge decreases exponentially as

Q(t) = Q0 × exp(−t/τ) for τ = RC. (S.78)

The dipole moment of this capacitor is

p(t) = bQ(t) = bQ0 exp(−t/τ), (S.79)

hence

••

p =
bQ0

τ2
exp(−t/τ), (S.80)

which causes EM radiation at net power

P =
Z0

6πc2
b2Q2

0

τ4
× exp(−2t/τ). (S.81)

Integrating this power over the discharge time, we find the net energy carried by the EM

15



radiation to be

∆UEM =

∞
∫

0

dt P (t) =
Z0

6πc2
b2Q2

0

τ4
×

∞
∫

0

dt e−2t/τ =
Z0

6πc2
b2Q2

0

τ4
× τ

2
. (S.82)

Compared to the initial energy stored in the capacitor

U0 =
Q2

0

2C
=

Q2
0b

2ǫ0A
, (S.83)

the fraction of this energy carried by the EM radiation is

∆UEM

U0
=

Z0ǫ0
6πc2

× Ab

τ3
=

1

6π
× Ab

(cτ)3
(S.84)

where the second equality follows from Z0ǫ0c = 1.

Problem 2(d):

For the specific example of A = 100 cm2 = 0.01 m2, b = 1 mm = 10−3 m and R = 10 Ω, we

have

C =
ǫ0A

b
= 88.5 pF, τ = RC = 0.885 ns, cτ = 0.265 m, (S.85)

and hence

∆UEM

U0
=

1

6π
× Ab

(cτ)3
=

10−5 m3

6π(0.265 m)3
= 2.85 × 10−5. (S.86)

Problem 3(a):

The quadrupole moment tensor of a system of point charges is

Qij =
∑

n

qn
(

3
2xn,ixn,j − 1

2r
2
n

)

. (S.87)

The 4 charges in question are all in the same plane — which we take to be the (x, y) plane,

— hence Qxz = Qyz = 0. Also, all 4 charges lie at the same distance r = a/
√
2 from the

16



origin and the net charge
∑

n qn vanishes, hence
∑

n qnr
2
n = 0 and therefore

Qzz = 0 and Qxx + Qyy = 0. (S.88)

The remaining independent components of the quadrupole tensor form a complex combina-

tion

Q = Qxx − Qyy + 2iQxy =
3

2

∑

n

qn(xn + iyn)
2. (S.89)

For the charges at the corners of a rotating square

x

y

ωt
charge qn = (−1)nq

at xn + iyn = in × eiωt × a√
2

for n = 0, 1, 2, 3.

(S.90)

we have

∀n : qn(xn + iyn)
2 = +

qa2

2
× e2iωt (S.91)

and hence

Q = 3qa2 × e2iωt. (S.92)

In terms of the quadrupole tensor components, this means

Qxx = −Qyy = 1
2 Re(Q) = 3

2qa
2 × cos(2ωt), Qxy = 1

2 Im(Q) = 3
2qa

2 × sin(2ωt),

(S.93)
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or in matrix notations

Qij(t) =
3qa2

2







+cos(2ωt) + sin(2ωt) 0

+ sin(2ωt) − cos(2ωt) 0

0 0 0






. (S.94)

Note that this quadrupole tensor oscillates with frequency 2ω, i.e., twice the rotation fre-

quency of the charges. As to the complex amplitude of the quadrupole oscillation,

Qij(t) =
3qa2

2
Re






e−2iωt







+1 +i 0

+i −1 0

0 0 0












, (S.95)

hence

amplitude Qij =
3qa2

2







+1 +i 0

+i −1 0

0 0 0






. (S.96)

Problem 3(b–c):

As explained in class, the EM power radiated in a particular direction n is

dP

dΩ
=

Z0ω
2
osc

2c2
×
(

|f(n)|2 − |n · f(n)|2
)

(S.97)

where

f(n) =
1

4π

∫∫∫

d3y J(y) exp(−ikn · y). (S.98)

In the long wavelength approximation, the leading contribution to the f comes from

the lowest oscillating multipole moment, electric or magnetic. For the system at hand, the

lowest oscillating moment is the electric quadrupole; as we saw in part (a), it has frequency

18



ωosc = 2ω and amplitude (S.96). For a general electric quadrupole,

fj(n) =
ω2
osc

12πc
Qjknk , (S.99)

so for the quadrupole in question







fx

fy

fz






=

ω2
oscqa

2

8πc







1

i

0






(nx + iny), (S.100)

or in spherical coordinates







fx

fy

fz






=

ω2
oscqa

2

8πc







1

i

0






sin θ eiφ. (S.101)

Consequently,

f∗ · f =
ω4
oscq

2a4

64π2c2
× 2 sin2 θ, (S.102)

n · f =
ω4
oscq

2a4

64π2c2
×
(

sin θ eiφ
)2
, (S.103)

hence

(

|f(n)|2 − |n · f(n)|2
)

=
ω4
oscq

2a4

64π2c2
×
(

2 sin2 θ − sin4 θ
)

, (S.104)

and therefore

dP

dΩ
=

Z0q
2a4ω6

osc

128π2c4
× sin2 θ(2− sin2 θ). (S.105)

In particular, the angular dependence of the radiated power has form

dP

dΩ
∝ sin2 θ(2− sin2 θ) = 1 − cos4 θ. (S.106)
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Graphically,

rotation plane

rotation axis

As to the total power radiated by the rotating quadrupole,

Pnet =
Z0q

2a4ω6
osc

128π2c4
×
∫∫

d2Ω (1− cos4 θ) (S.107)

where ωosc = 2ω and

∫∫

d2Ω (1− cos4 θ) = 2π

+1
∫

−1

d cos θ (1− cos4 θ) = 4π ×
(

1− 1

5

)

=
16π

5
. (S.108)

Thus altogether,

Pnet =
8Z0q

2q4ω6

5πc4
=

8q2

5πǫ0
× a4ω6

c5
. (S.109)
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