PHY-387 K. Solutions for problem set #11.

Problem 1(a):

For a harmonically oscillating dipole moment p(t) = ppe =™, the current density (1) becomes

J(y,t) = —iwppe 153 (y), (S-1)
hence the vector potential
A(x,t) = e “A(x) (S.2)
for
AG) = 52 [l[dy a0 S 0 i) - (53)

exactly as in eq. (2). Please note that this spherical wave does not depends on the direction
n = x/r, so it’s an exact solution of the wave equation for both far and intermediate zones
of the problem (which in the zero-dipole-size limit means for all » > 0), and there are no

subleading terms.

However, when we take the curl of the vector potential (2), we do get a subleading (WRT
1/r) term in the magnetic field. (3): it obtains from taking the gradient of 1/r factor instead

of the " factor. Indeed,

d ezk‘r Zkezkr ezkr eik‘r i
il — — = ik 1 — A4
dr r r r2 e ( - k:r) ’ (5.4)
hence altogether
1 —iw eikr —iw et 1
H - - A = — = — ik 1 — S.5
() NOVX 47TV(T)XPO 47TZ r ( +kr)nxp0, (55)

in perfect agreement with eq. (3) for the magnetic field.



As to the electric field E(x), it obtains from the Maxwell-Ampere Law as
7
E = Z?O V x H. (S.6)

For the magnetic fields as in eq. (3), this gives us

7 ikr .
E:ZOWVX ¢ 1+L n X pg
47 r kr

iZow [d [etkr ) ethkr )
= i [%<T <1+H))nx(nxpo)+ . <1+H>Vx(nxpo)}
(

S.7)

d [ etkr i  etkr 2 2
5( . (1 + H)) = ik . (1 + e —(k;r)2) (S.8)

[V x (nx PO)L- = €ijk€kem(Vjng)pom

where

5][ — NNy

= (0iedjm — imIjr) — 5 Pom (S.9)
— (Sim — 38im — Nt + Gim) 22 = —(Sm + nmm)pOTm :
Altogether,
ikr ;
Vx(e <1—|—i)n><p0):
r kr
etkr 2i 2 etkr i\ —po— (n-po)n
= ik 1+ — - 1+ —
S < T (kr)2)nx(nxp0)+ r ( * ) r

—'k:elkr-lJrﬁ Lnx(nx )+i1+i (mn-po)n + po)
- I kr (kr)? Po kr kr Po Po

. eik’r‘ r i i
= ik . _n>< (n X po) + o (1 + H) <2n>< (n X po) + (n-po)n + p())}
eik’r‘ r i i
= ik . _nx(nxp0)+ﬂ(1+ﬁ) (3(n-p0)n—p0)},
(S.10)
hence
Zowk etkr i 1
E = — y {n X (n X pg) + . (1 + E) (3(n-p0)n — po)} , (S.11)

in perfect agreement with eq. (4) for the electric field. Quod erat demonstrandum.
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Problem 1(b):

Egs. (3—4) for the magnetic and the electric fields apply for all distances r from the dipole —
short, medium, and long — as long as the dipole itself may be approximated as point-like. So
let’s take a closer look at their long-distance and short-distance limits, where the distances

are viewed as long or short by comparison with the wavelength A = 27 /k.

In the long distance regime r > A, we may neglect all the negative powers of kr in

egs. (3-4), which leaves us with

kw eikrfiwt
H N o— 12
<X7 t) An r (n X p0)7 (S )
Zokfw eikrfiwt
E(x t) ~ — . 1
()~ ~ 2 x (nx py)) (5.13)

These are precisely the radiation fields of a harmonic dipole we have discussed in class. Note
that they diminish with distance as 1/r, so that the radiation power density spreads out as
1/r2.

On the other hand, in the short distance regime r < A, we focus on the highest negative
powers of kr in egs. (2-3), and we may also approximate exp(ikr) =~ 1. Consequently, the

short-distance limit of the electric field is

Zokw e —py + 3(n-po)n
AT r (kr)?
_ Zyw _ Zyc _ 1 —Po + 3(11 ) p())n et
4k 4 4meq r3 .

E(x,t) ~

(S.14)

This is a quasistatic Coulomb field of the electric dipole p(t) = poe~™?. That is, at any
given instance of time ¢, the field (S.13) is the Coulomb field of the dipole moment we happen

to have at that time. As any good dipole field, it scales with distance as 1/r3.

As to the magnetic field in the short-distance regime, the leading term in eq. (2) is

wWw n X Ppo
—F— €

H(X,t) = E 7’2

it (S.15)

Unlike the electric field (S.14), the short-distance magnetic field scales with distance as 1/r2,

slower that any quasistatic magnetic multipole, but faster than the 1/r radiation-zone fields.



Also, the magnetic field (S.13) is not a quasistatic field, since it vanishes for w — 0. Instead,
this magnetic field is induced by the displacement current due to the time-dependent dipole
field (S.14) in the short-distance zone. Indeed,

V x H(from eq. (S.15)) = —jl—w V x (n;;p) et
7T
_ _wp—3nM-p) iy (S.16)
4 r3
0
= E(D = egE(from eq. (S.14))>.

Problem 1(c):

The time-averaged Poynting vector of a harmonic wave is
(S) = 3Re(E x H"). (S.17)

For the dipole wave (2-3), we have

2 2
ExH = _20kw b (S.18)

16722 i 1 .

+H 1+ 72,2 (3(n~p0)n—p0) X (n X po)

where
(nx(nxpo))x(nxpo)*:(nxpo)*x(nxpo )
= (nxp0)< -(nxpg)* = O)
~ n((nxpo)" (mx po) = [Imx poll?)

= —|n x po/®n (S.19)

while



(3(n po)n — po) x (mx po)* = 3(n-po) (n(n-po)* — p;)
~ (n(po-p5) — Pin-po))

= (31m-po)® = Ipol*)n — 2(n-po)pj.  (S:20)
Altogether,

i 1
1 - — X 2
(1= ) I <palin
1

Z0k2w2 7 9 9
ExH = ——= |— 1 3n - — . S.21
% 167212 o\ E T (3[n - pol* = [[po[|*)n (S.21)

2,2

=

2 1 .
_+H 1+ k272 (n'pO)pO

Next, we take the real part of this cross product, thus

. B}
Re [(1 — H) |n x ponn = |n x p0|]2n, (S.22)
Re| 2 (14 12z ) (G wol? = Iol?)n] = 0 ($.23)
2 1 N 2 1 .
Re {E (1 + —k27’2) (n-p)p | = <1 + —k2r2) Im((n-p)p*), (S.24)
where
2Im((n-p)p*) = —i(n-po)py + i(n-py)p

= —in X (py X Py)

= n x Im(pg X py), (S.25)

and therefore, the time-averaged Poynting vector

Z0k2w2 1 1 %
(S.26)

(S) = 3Re(E x HY)

Altogether, we find that the radiation power flow has two components: the radial power



flow
Z()/{Z2w2

WHH X p0||2n (827)

<S>rad =

which diminishes with distance as 1/r2, thus distance-independent power per solid angle

AP Zok*w?
a9 " s In % pol|, (S.28)
and the lateral power flow
Shat = 35.2.3 ( + W) (—n x Im(pp x Po)) (5.29)

which diminishes with distance at a faster rate 1/r°.

Note: for a linear dipole — whose components (p,, py, p-) oscillate with the same phase,
— the complex amplitude vector py is parallel to its complex conjugate pg, thus pyxpy = 0,

and hence no lateral power flow, (S),,, = 0. On the other hand, a non-linear dipole — for

la
which the 3 components (p;, py, p-) oscillate with different phases — has complex amplitude
vector po that is not parallel to its complex conjugate pj. For such a non-linear dipole

P, X Py # 0, and that gives rise to a non-trivial lateral power flow (S.29).

Problem 1(d):
The linear momentum density of the EM fields

g = =S (S5.30)

gives rise to the angular momentum density

> def dL X XS
L = ——— = xXg = }
d volume

2 (S.31)

For a purely radial Poynting vector, this angular momentum density would vanish. But

as we saw in part (c), the radiation of a non-linear dipole has a lateral component to its



Poynting vector, thus non-zero angular momentum density

L = irn X <S>lat

2
r Zokw? 1 «
= e (14 gz e (e i <)
o 1 * (S.32)
= W 1 —+ W n Xx <_(n X Im(PO X pO))
Z()w3

kr>>1> 3om2ca2 (—(n X Tm(pyg x pO))'

This angular momentum density flows outward with the radiation itself. In the far zone of

kr > 1, the radiation flows out radially with speed ¢, so the angular momentum flow density

is simply
M;j =~ cLin;. (S.33)

Consequently, the net rate at which the radiation carries away the angular momentum is

simply
dL o R
Thet dof EM - # cl d?area = lim cr’ L d%Q. (S.34)
dt r—00
e
In out case,
. — Z()Ldg %
lim (@) = S5n x (—(n « Tm(py % p0)>, (S.35)
hence
Zow? .
Tinet = 32 #aﬂﬂ(n) (—e,-jknjekgmng Im(pg Po)m> (S.36)
where

8T
#d%)(n) (_ijnj%éng) = #d%)(n) (—n]‘mg + (5]'() = —i-? Oim (8.37)

and therefore
Z0w3

Tnet = +127T02

Im(py x py).- (S.38)

Note: Physically, a steady increase of the EM radiation’s angular momentum at the

rate (S.38) means that the non-linear dipole creating this radiation supplies it with not



only power but also torque. Specifically, it effectively applies that torque (S.38) at the EM
radiation! And by the angular version of the Newton’s third law, the radiation acts with an

opposite torque —Tyet on the non-linear oscillator.

Problem 1(e):
For the sake of definiteness, let the electron in the classical Rutherford atom rotate counter-

clockwise in the (x,y) plane, thus
x = (rcoswt,rsinwt,0) = Re((’r, ir, O)e*i“t>, (S.39)

while the angular velocity and the angular momentum of the atom point in the z direction,

G = wz, L = mwr’z = mr’a. (S.40)
The rotating dipole moment
p(t) = —er(i,i,0)e ™", (S.41)
has complex amplitude vector pg = —er(1,4,0) that’s not parallel to its complex conjugate
py = —er(1,—i,0), so there is a non-zero cross product
5 2,201 » 2.2 -
Py X pg = e r(l,—i,0) x (1,+4,0) = €e“r%(0,0,2i), (S.42)
Im(pj X py) = 2€°r’z, (S.43)
which gives rise to the radiation torque
- Zye? X
Thet = +67r02 w3r? z. (S.44)

Note: this is the torque the atom supplies to the radiation it emits. The torque by the

radiation on the atom has the opposite direction, thus

dLatom - ZO62 3 94
— . 4
dt 12732 (5.45)

= —Tnet =

Note the direction of this torque is precisely opposite to the direction +2z of the atom’s own

angular momentum (S.40).



At the same time, the net EM power emitted by the rotating oscillator is

Zow? Zow? Zoe?
Paot = 22 |Ipo] 0% 2e2y2 0 « wir? (S.46)

- 20 — X 2e°r® = X wrre.
127c? 127c? 6mc?

Similar to the angular momentum, this power comes at the expense of the atom’s own energy

U, so it’s lost at the rate

d Zye?
u 0« wir?, (S.47)

E - T imet & 67

Comparing this formula to eq. (S.45) for the rate of the angular momentum loss, we imme-

diately see that

dU dL

= — _, = A4

dt Y| (S-48)
and further more

dU ., dL

since the two vectors on the RHS have precisely opposite directions.

Problem 1(f):

A classical particle moving in a Coulomb field has several integrals of motion, including the

net energy
2
mv @
U= — — — S.50
2 r ( )
where a = €2 /4meq for the hydrogen atom, the angular momentum
L = xxmv, (S.51)
and the Runge-Lenz vectoi]
K = vxL — an. (S.52)

These integrals of motion are not completely independent; instead, the Runge-Lenz vector


https://en.wikipedia.org/wiki/Laplace-Runge-Lenz_vector

is always L to the angular momentum, while their magnitudes are related to the energy as
LU = _%(Oﬁ ~-K?)” (S.53)

For an elliptic orbit, the direction of the angular momentum is L to the orbit’s plane while
the direction of the Runge—Lenz vector points towards the perihelion. Also, |K| = a X
excentricity, so for a circular orbit — and only for a circular orbit — K = 0. Consequently,

eq. (S.53) gives us a criterion of a circular orbit in terms of its energy and angular momentum:

TTI,OJQ

an orbit is circular if and only if L?U = - (S.54)

One can easily verify eq. (S.54) for a circular orbit without using the Runge-Lenz vector,

although it would not prove that any orbit obeying this criterion must be circular. Using

first-year Newtonian mechanics, we have

, (S.55)

hence

L = mwr? = Vam x /r, (S5.56)

mw-r (0% «

U= —7 - = = —— (5.57)

UL? = — (S.58)

With all this in mind, let us now address the results of part (e) for the Rutherford
atom. The fact that dL/dt has precisely opposite direction from the remaining angular
momentum L of the atom means that the direction of L remains fixed while its magnitude
slowly diminishes. In other words, the plane of the electron’s orbit remains fized while the

orbital radius slowly shrinks to zero.
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Next, suppose the orbit is initially circular, then eq. (6) implies that

d

dL au dL dL
—(LU) = 2UL- — + L — =& -— ) = —
dt< v) v dt (dt dt) dt
because
UL + LG = (QU: _7&) (L =mr?@) + (L =amr)d = —amrd + amrd

- (2UL + L%) — 0

= 0.
(.59)

Consequently, if the criterion (S.54) initially holds true for a circular orbit, then it continues

to hold true, so the orbit stays circular. Quod erat demonstrandum.

Problem 2(a):

The Efimenko equations for the electric and magnetic fields of given charge and current

densities follow from the retarded Green’s function of the wave equation. I have explained

that issue in class back in early October, and the Efimenko equations themselves appear on

the last page of my notes on Maxwell equationd. In the notations of the present homework,

the Efimenko equations become:

1 St
H(x,t) = _—///d3y Y
A7 (X—y) . |x—y|
+W x J(y,t — =)
(x—y) x—
‘X_y|3 p<y7t_| Cy|)
1 (x—y) - _
E(x,t) = — d* S _ oyl
1 2 Ix—y]|
t— Xyl

(S.60)

(S.61)


http://web2.ph.utexas.edu/~vadim/Classes/2024f-emt/Maxwell.pdf#page=16

Applying eq. (S.60) to the current (1) of the point-like dipole, we immediately obtain

_ 3)
ey Pl
(8.62)
_ X ppo X xp(t— X
T 4n (Ix\3 XPlE-T) c|x/? Pl
_1 n ° 0
= E (—2 X p(tret) + g X p(tret)> )

exactly as in eq. (8).

Eq. (9) for the electric field takes a bit more work. Plugging p and J from eq. (1) into
the Efimenko equation (S.61) for the electric field, we get

Y (e - ) v,)50y)

x—y/? ¢
— —1 (X - y) he |x—y]|
Boct) = o [ffy | - ey B v | (5.63)
+ ﬁ p(t — 2253 (y)

Integrating the third term here is completely straightforward,

[ 62|X1_ B ) = B0 = B, (S64)

but the first two terms in (S.63) need more care due to the derivative of the d-function.
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Integrating the first term, we get

/// |X—y|3 (p(t — X)) v,)50(y) =

((integrating by parts )

B ///d4y5 8y] <|(;__;’|2& pi(t — & cy|))
B /// YT 5 (f)f__ yy%, pilt— 'ny')) 50
RZ <|x\3pf<t )

= V; <T—r; pj(%t)) :

Likewise, for the second term we get

/// C|X_y|2 (Bt = 22) - ,)60(y) = V; (= Pste)) (S.66)

Moreover, due to x-dependence of the retarded time (9), we have non-zero gradients of

functions of tyet,

Vi) = (Vo) f(trer) = == ftrer). (S.67)
Consequently,
first term; = V; (Z:LZ Dj (tret))
~-V, <&> pj(tret) + % <Vjpj(tret) - —% }(tret)) (S.68)
- W}%(tret) — %i)j@ret)a

and likewise

TN, e
second term; = V; <C—;p'<tret)>

n; ° 7 . n oo
= v] (C ) p.](tret) =+ g (vjpj<tret) = — f(tret)) <S69)
dij — 2n;n; NiM; e
- ij(tret) - CTTJpj@ret)-
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Altogether, eq. (S.63) for the electric field evaluates to

—1
E(x,t) = 1 (first term + second term + third term)
TEN

p-3n-pn (n-Pn

r3 o2
_1 L] L] o0
_ P-2n-P)n (n-P)n
4meg + or2 T 2y (S.70)
a2

 d7e r3 cr? c2r

—1 (p—3(n-p)n N P —3(n-P)n N p—(nP)n)

where p, 15, and P are all evaluated at the retarded time (10). By inspection, the last line

of eq. (S.70) is in perfect agreement with eq. (9). Quod erat demonstrandum.

Problem 2(b):
In the long-distance limit, the EM field (7-8) are dominated by the terms with decrease with

distance as 1/r rather than 1/72 or 1/r3, thus

1 X P(tret)

H(x,t) ~ - (S.71)
(0 P(tye))n — P(trer) n x (1 X Pter))
E(x,t) = = 7 : S.72
(1) dmegc?r 0 Arer ( )
In this limit, the Poynting vector becomes
20 o 7z

S = ExH = (Mx (nxP))x (nxh) = + 0% B(tret) || 1 (S.73)

0
1672c2r2 167222 ’

hence the power emitted into a solid angle df? is

dP

e _ 40 ‘ 2
dQ 16722

‘Il X i;(tret)‘

: (S.74)
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and the net power radiated by the dipole is

20
1672¢2

Pet(t) = P(tret) ||, (S.75)

6mc?

#d%)(n) Hn X i;(tret)H2 = ﬁ

exactly as in eq. (11).

BTW, the retarded time .ot =t — % is retarded relative to the time ¢ at which we detect
this radiation at long distance r from the dipole. By the clock of the dipole itself, the energy

loss happens at the same time as the ii;, thus

dUdipole<t/) ZO MNP
—_— = — t . .
dt’ 67 c? P( )H (8.76)
Problem 2(c):
The parallel-plate capacitor in question has capacitance
A
C = EOT . (S.77)

When it’s charged to initial charge Qg and then allowed to discharge via resistor R, it’s

charge decreases exponentially as
Q(t) = Qo xexp(—t/T) forT = RC. (S5.78)

The dipole moment of this capacitor is

p(t) = bQ(t) = bQoexp(—t/T), (5.79)
hence
p = % exp(—t/7), (S.80)

which causes EM radiation at net power

Zy Q3

P =
6mc? T4

X exp(—2t/T). (S.81)
Integrating this power over the discharge time, we find the net energy carried by the EM
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radiation to be

oo o0
ZO 52Q2 _ ZO 52Q2 T

AUpy = [dt P(t) = O 5 [fdte /T = 2~ <0 S.82
EM / ®) 6mc2 T4 X/ c 6mc2 T4 s 2 ( )

0 0

Compared to the initial energy stored in the capacitor
_QF _ Qfp

Yo =50 = 204 (5.83)

the fraction of this energy carried by the EM radiation is

AUEM . Z()EO % & 1 Ab
Uy~ 6rc2 " 3 61 (cr)3

(S.84)

where the second equality follows from Zyege = 1.

Problem 2(d):
For the specific example of A =100 cm? = 0.01 m?, b= 1 mm = 1073 m and R = 10 Q, we

have
EoA
C = - = 88.5pF, 7 = RC = 0.885ns, cr = 0.265 m, (S.85)
and hence
AUgm 1 Ab 107° m? _5
= — = = 2.85 x 107°. S.86
Us 6 (ec1)3 _ 6m(0.265 m)3 % (5.86)

Problem 3(a):

The quadrupole moment tensor of a system of point charges is
2
Qij = Y tn(3wnimn; — 377). (S.87)
n

The 4 charges in question are all in the same plane — which we take to be the (z,y) plane,

— hence Q. = Qy. = 0. Also, all 4 charges lie at the same distance r = a/v/2 from the

16



origin and the net charge Y ¢, vanishes, hence Y ¢,72 = 0 and therefore

QZZ = 0 and Qxx + ny = 0. (SSS)

The remaining independent components of the quadrupole tensor form a complex combina-

tion

3
Q = Que — Qu + 2iQuy = 5 tnlan+iyn)” (5.89)

For the charges at the corners of a rotating square

Y
A
.
charge g, = (—1)"q
wi at T, + iy, = i x el x (5.90)
forn = 0,1,2,3.
o °
we have
ga*
Vn Qn(xn + iyn>2 = +7 x et (S.91)
and hence
Q = 3qa® x ¥t (5.92)
In terms of the quadrupole tensor components, this means
Quz = —Qyy = 3Re(Q) = 3qa® x cos(2wt), Quy = 3Im(Q) = 3¢a® x sin(2wt),
(S.93)
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or in matrix notations

, [T cos(2wt) +sin(2wt) 0
Qu(t) = 217 | 4 gin(awr) —cos(2ot) 0 | (S.94)
0 0 0

Note that this quadrupole tensor oscillates with frequency 2w, i.e., twice the rotation fre-

quency of the charges. As to the complex amplitude of the quadrupole oscillation,

) +1 +: 0
3 i

Qi(t) = %Re et [ i —1 0|, (S.95)

0 0 0

hence
+1 4+ 0
. 3qa’ ,

amplitude Q;; = - | T -1 0. (5.96)

0 0 0

Problem 3(b—¢):

As explained in class, the EM power radiated in a particular direction n is

dP Zow?,.
5 = o < (fm)P — n-fn)P) (8.97)

where

f(n) = i///dSyJ(y) exp(—ikn - y). (S.98)

In the long wavelength approximation, the leading contribution to the f comes from
the lowest oscillating multipole moment, electric or magnetic. For the system at hand, the

lowest oscillating moment is the electric quadrupole; as we saw in part (a), it has frequency

18



Wose = 2w and amplitude (S.96). For a general electric quadrupole,

w2

filn) = 120:0 Qjknk »
so for the quadrupole in question
1
" R :
fy | = “gre | (na + iny),
= 0
or in spherical coordinates
Ja 1
2 2
Iy ] = Wo;ﬂ i | singe®.
e
S 0
Consequently;,
4 2 4
* - Woscd™ @ s 2
f*-f = WXQSIH 9,
4 2.4
_ Woscd O : ip)2
n-f = W X (S1n9€ ) s
hence
4 2 4
(Ifm)2 = In-f(n)2) = % x (2sin0 — sin*0),
T=C

and therefore
apP Zoq?a*ws

. 92 . 92
- = Wxsm 6(2 — sin“ ).

In particular, the angular dependence of the radiated power has form

ap -2 S 2 4
oq & sin 0(2 —sin“f) = 1 — cos™ 0.
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(S.100)

(S.101)

(S.102)

(5.103)

(S.104)

(S.105)

(S.106)



Graphically,

rotation axis

rotation plane

As to the total power radiated by the rotating quadrupole,

7 2 4,6
Pt = 72386;522% X #dzﬁ (1 —cos' )

where wose = 2w and

+1

1 1
#dzﬁ(l—cos49) = 27T/d0089(1—cos40) = 41 X (1—g> = ﬁ

-1

Thus altogether,

A $Z0%q'wt 82 ><a4wﬁ
net = 5mct ~ 5rwe cd
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(S.107)

(S.108)

(S.109)



