
PHY–387 K. Solutions for problem set #12.

Problem 1:

The electric dipole moment of a hydrogen atom is simply p̂ = −ex̂ in the coordinate system

with the nucleus at the origin, hence

〈2| p̂ |1〉 = −e

∫∫∫

d3xΨ∗
2(x)xΨ1(x). (S.1)

For the two states in questions, both wave functions (1) and (2) are invariant under rotations

around the z axis, hence the matrix element (S.1) of the electric dipole moment must be

parallel to that axis, thus

〈2| p̂x |1〉 = 〈2| p̂y |1〉 = 0 (S.2)

while

〈2| p̂z |1〉 = −e

∫∫∫

d3xΨ∗
2(x)(z = r cos θ)Ψ1(x). (S.3)

Evaluating this integral in spherical coordinates, we have

Ψ∗
2(r, θ, φ)× (z = r cos θ)×Ψ1(r, θ, φ) =

1√
32πa5

re−r/2a cos θ × r cos θ × 1√
πa3

e−r/a

=
1√

32πa4
× r2e−3r/2a × cos2 θ,

(S.4)

hence

〈2| p̂z |1〉 = −e× 1√
32πa4

×
∞
∫

0

dr r2 × r2e−3r/2a ×
+1
∫

−1

d cos θ cos2 θ ×
2π
∫

0

dφ

= −e× 1√
32πa4

× 24

(

2a

3

)5

× 2

3
× 2π

= −
(

8

9

)5/2

ea.

(S.5)

Classically, an oscillating electric dipole moment with amplitude p0 radiates net EM
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power

P =
Z0

12πc2
ω4|p0|2. (S.6)

In quantum mechanics, this formula corresponds to

P ≡ h̄ωΓ =
Z0

12πc2
ω4 |2 〈2| p̂ |1〉|2 , (S.7)

hence the transition rate is

Γ =
Z0

3πc2h̄
ω3 |〈2| p̂ |1〉|2 . (S.8)

For the 2p → 1s transition in question,

|〈2| p̂ |1〉|2 =

(

8

9

)5

e2a2, (S.9)

cf. eq. (S.5), while

h̄ω = E1 − E2 = − mee
4

2(4πǫ0h̄)2

(

1

4
− 1

)

= +
3

8
× α2mec

2 = +
3

8

αh̄c

a
, (S.10)

hence

Γ =
Z0

3πc2h̄4
× 33

29
(αh̄c/a)3 × 215

310
e2a2 =

26

38π
× Z0e

2cα3

h̄a
. (S.11)

Moreover,

Z0e
2 =

e2

ǫ0c
= 4παh̄, (S.12)

hence

Γ =
28

38
α4 c

a
. (S.13)

Numerically,

c

a
≈ 5.66 · 1018 s−1, α ≈ 1

137
, (S.14)

hence

Γ ≈ 6.3 · 108 s−1. (S.15)

In other words, the average lifetime of the excited 2p state is Γ−1 ≈ 1.6 ns.
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Problem 2:

In the electric dipole approximation, the allowed radiative transitions are the transitions

between states with a non-zero matrix element of the electric dipole moment between them,

〈2| p̂ |1〉 6= 0. By the rotational and parity symmetries of the atomic states, such non-zero

matrix elements are allowed only for

|j1 − j2| ≤ 1 ≤ j1 + j2 , |mj
1 −mj

2| ≤ 1, and parity2 = −parity1 . (S.16)

Moreover, for transitions involving a single electron — especially in a hydrogen-like atom or

ion — between states with definite mℓ and ms, we also need

|ℓ1 − ℓ2| ≤ 1, |mℓ
1 −mℓ

2| ≤ 1, ms
2 = ms

1, (S.17)

and

(−1)ℓ2 = parity2 = −parity1 = −(−1)ℓ1 , (S.18)

hence

ℓ2 = ℓ1 ± 1 (but not ℓ2 = ℓ1). (S.19)

In this problem, we are going to ignore the electron’s spin state — it’s going to stay the same

through the whole cascade of transitions, — and focus on the remaining quantum numbers

n, ℓ and m = mℓ.

Let’s start with the state |1〉 = |n1, ℓ1, m1〉 with m1 = ℓ1 = n1 − 1. The next state

|2〉 = |n2, ℓ2, m2〉 in the photon-emission cascade must have a lower energy than the initial

state, which requires

n2 < n1 (S.20)

and hence

m2 ≤ ℓ2 ≤ n2 − 1 ≤ n1 − 2. (S.21)

On the other hand, by the selection rules (S.17), this state must have

m2 ≥ m1 − 1 and ℓ2 ≥ ℓ1 − 1, (S.22)
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which for the initial state with m1 = ℓ1 = n1 − 1 means

m2, ℓ2 ≥ n1 − 2. (S.23)

Finally, the only way to reconcile the inequalities (S.21) and (S.23) is to have

m2 = ℓ2 = n2 − 1 = n1 − 2. (S.24)

Thus, in the electric dipole approximation to the photon emission, if the initial state has

m1 = ℓ1 = n1 − 1 then the final state (of the first transition) is a similar state with m2 =

ℓ2 = n2 − 1 for n2 = n1 − 1. Quod erat demonstrandum.

Problem 3:

First, the generalia. In the multipole moment expansion for the EM radiation by small

objects — classical or quantum, — the mth order in the expansion leads to

fm ∼ qω(kR)m+1 (S.25)

hence

Power ∼ Z0q
2ω2(kR)2m+2 (S.26)

for the classical radiation or

Γ ∼ αω(kR)2m+2 (S.27)

for a quantum transition. In terms of the specific electric or magnetic multipole moments,

the mth order of the multipole expansion includes the electric 2m+1–pole moment and the

magnetic 2m–pole moment. Thus,

for an electric 2ℓ pole transition, Γ ∼ αω(kR)2ℓ,

for a magnetic 2ℓ pole transition, Γ ∼ αω(kR)2ℓ+2.
(S.28)

Now let’s deal with the specific metastable nuclei, starting with the cobalt Co
58m

— or

rather Co
58m1

isomer. According to the Wikipedia page on isotopes of cobalt, the longer-

lived cobalt-58m1 isomer has angular momentum and parity JP = 5+, and it decays (by
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internal conversion of the γ ray) to the ground state of cobalt-58 which has JP = 2+. By the

selection rules of angular momentum and parity, the transition matrix element must have

ℓ ≥ |J1 − J2| = 3 but ℓ ≤ J1 + J2 = 7 (S.29)

and positive parity. Positive parity means electric multipole for even ℓ and magnetic multi-

pole for odd ℓ, thus the complete list of the allowed multipole moments is:

• the magnetic octupole, order m = 3;

• the electric 16–pole, order m = 3;

• the magnetic 32–pole, order m = 5;

• the electric 64–pole, order m = 5;

• the magnetic 128–pole, order m = 7.

In particular, the lowest-order multipoles are the magnetic octupole and the electric 16-pole,

hence

Γ ∼ αω(kR)8. (S.30)

Next, consider the hafnium-178m2 isomer. According to the Wikipedia page on isotopes

of hafnium, the hafnium-178 isotope has 3 long-lived metastable excited states AKA iso-

mers — denoted Hf
178m1

, Hf
178m2

, and Hf
178m3

, — which decay by γ-emission or internal

conversion along the cascade

Hf
178m3 → Hf

178m2 → Hf
178m1 → Hf

178

ground state
. (S.31)

Let’s focus on the middle transition of this cascade with

h̄ω = U(m2) − U(m1) = 1.298 MeV (S.32)

and a particularly long half-life of 31 years. According to the isotope table on the Wikipedia

page, the m2 isomer has angular momentum and parity JP = 16+ while the m1 isomer
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has JP = 8−. Consequently, by the selection rules, the multipole moment involved in this

transition must have

ℓ ≥ |16− 8| = 8 but ℓ ≤ 16 + 8 = 24, (S.33)

and also negative parity — which means magnetic multipole for even ℓ and electric multipole

for odd ℓ. The list of multipole moments agreeing with these criteria starts with the magnetic

ℓ = 8 moment and the electric ℓ = 9 moment, and continues all the way to the magnetic

ℓ = 24 moment. In terms of eq. (S.28), both the magnetic 28–pole and the electric 29–pole

moments contribute at the order m = 8, hence

Γ ∼ αω(kR)18, (S.34)

while the remaining allowed multipoles contribute at higher orders to much smaller effect.

Finally, consider the extraordinarily long lived tantalum-180m isomer. According to the

Wikipedia page on isotopes of tantalum, this isomer state has angular momentum and parity

JP = 9− while the ground state has JP = 1+. Consequently, the multipole matrix elements

allowed between these states must have

ℓ ≥ |J1 − J2| = 8 but ℓ ≤ J1 + J2 = 10 =⇒ ℓ = 8, 9, 10, (S.35)

and negative parity, which limits the list of the allowed multipole moments to

• the magnetic 28–pole, order m = 8;

• the electric 29–pole, order m = 8;

• the magnetic 210–pole, order m = 10.

In particular, the lowest-order multipoles are the magnetic 28–pole and the electric 29–pole,

which lead to

Γ ∼ αω(kR)18. (S.36).
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PS: Although eq. (S.34) for the hafnium-178m2 and eq. (S.36) for the tantalum-180m have

similar powers of the (kR) factors suppressing their decays, the tantalum isomer decays

much slower than the hafnium isomer because the kR factor itself is much smaller for the

tantalum transition. Indeed, while the two nuclei have similar radii R ≈ 6.9 fm, the hafnium

transition has

h̄ω ≈ 1.3 MeV =⇒ k ≈ 6.6 pm−1 =⇒ kR ≈ 45 · 10−3, (S.37)

while the tantalum transition has much smaller energy

h̄ω ≈ 77 keV =⇒ k ≈ 0.39 pm−1 =⇒ kR ≈ 2.7 · 10−3. (S.38)

When you take these (kR) factors to the 18th power, you get a 10−24 suppression factor for

the hafnium and 10−46 suppression factor for the tantalum. And that’s why the hafnium-

178m2 isomer has a half-life of ‘only’ 31 years while the tantalum-180m isomer lives for at

least 1015 years (experimental lower limit) and maybe a lot longer.

Problem 4, preamble:

Far away from the antenna,

A(r, θ, φ) ≈ µ0
eikr

r
f(θ, φ) (S.39)

and hence the power (per solid angle) radiated by the antenna in the direction n is

dP

dΩ
=

ω2Z0

2c2
|n× f(n)|2 (S.40)

for

f(n) =
1

4π

∫∫∫

antenna

d3y J(y) exp(−ikn · y). (S.41)

Eq. (S.40) for the power is exact — as long as the power is measured far away from the

antenna — but the integral in eq. (S.41) often takes various approximations to calculate, for

example, the multipole expansion for short antennas. However, in this problem we are going

to calculate the exact f(θ) for the antenna in question in part (a), and then compare it to

the multipole expansion in later parts.
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Problem 4(a):

For a thin antenna we approximate

J(x, y, z) = δ(x)δ(y)I(z) ẑ (S.42)

where ẑ = (0, 0, 1) is the unit vector in the z direction, hence

f(n) =
ẑ

4π

∫

dz I(z) exp(−ik(n · ẑ)z), (S.43)

or in terms of the angle θ between the direction n towards the observer and the z axis,

f(θ) =
ẑ

4π

∫

dz I(z) exp(−ik(cos θ)z). (S.44)

For the antenna current as in eq. (12), the integral here evaluates to

f(θ) =
ẑ

4π

+L/2
∫

−L/2

I0 sin(kz) exp(−i(k cos θ)z) 〈〈 for k = (2π/λ) and L = λ 〉〉

=
I0ẑ

4πk

+π
∫

−π

dx sin(x) exp(−ix cos θ)

=
I0ẑ

8πik

+π
∫

−π

dx
(

exp(i(1− cos θ)x) − exp(i(−1 − cos θ))
)

=
I0ẑ

8πik

[

exp(i(1− cos θ)x)

i(1 − cos θ)
− exp(i(−1− cos θ)x)

i(−1− cos θ)

]
∣

∣

∣

∣

x=+π

x=−π

(S.45)

where

exp(i(±1− cos θ)x)
∣

∣

∣

x=+π

x=−π
= e±iπe−iπ cos θ − e∓iπe+iπ cos θ

= −e−iπ cos θ + e+iπ cos θ = 2i sin(π cos θ),

(S.46)
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hence

f(θ) =
I0ẑ

8πik

[

2i sin(π cos θ)

i(1− cos θ)
− 2i sin(π cos θ)

i(−1− cos θ)

]

=
I0ẑ

8πik
sin(π cos θ)

[

2

1− cos θ
− 2

−1− cos θ
=

4

1− cos2 θ

]

=
I0ẑ

2πik

sin(π cos θ)

sin2 θ
.

(S.47)

Problem 4(b):

As a vector, f(θ) always points in the z direction, hence

|n× f |2 = |f |2 × sin2 θ. (S.48)

Consequently, the EM power (per solid angle) emitted in the direction n at angle θ from the

z axis is

dP

dΩ
=

Z0ω
2

2c2
|n× f |2

=
Z0ω

2

2c2
|f |2 sin2 θ

=
Z0ω

2

2c2
|I0|2
4π2k2

× sin2(π cos θ)

sin2 θ

=
Z0|I0|2
8π2

× sin2(π cos θ)

sin2 θ
.

(S.49)

Let’s plot the angular distribution of this power. The regular plot
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shows no radiation at all in the direction of the antenna itself or ⊥ to the antenna. In-
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stead, the radiation is peaked at some intermediate angles; taking the numeric derivative of

eq. (S.49), we find the power maxima at θ ≈ 53.9◦ and θ ≈ 126.1◦, both being 36.1◦ away

from the (x, y) plane normal to the antenna.

For completeness sake, here is the radiative power diagram representing the same plot:

(x, y) plane

z axis

(S.50)

But please note that this 2D diagram is but a vertical cross-section of the 3D power diagram,

which has a rotational symmetry around the z axis. So while the 2D diagram (S.50) has 4

distinct ‘leaves’, the 3D diagram has only 2 lobes: the upper lobe including the upper-left

and the upper-right ‘leaves’, and the lower lobe including the lower-left and the lower-right

‘leaves’.

Problem 4(c):

The net power emitted by the antenna in question obtains as an integral

Pnet =

∫∫

d2Ω
dP

dΩ
=

Z0|I0|2
8π2

× 2π

π
∫

0

dθ sin θ
sin2(π cos θ)

sin2 θ

=
Z0|I0|2
4π

×
+1
∫

−1

dc
sin2(πc)

1− c2

(S.51)
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where on the last line I have changed the integration variable from θ to c = cos θ. Unfortu-

nately, this integral does not evaluate in terms of elementary functions but only in terms of

the cosine integral function

Cin(x)
def
=

x
∫

0

1− cos(t)

t
dt. (S.52)

Indeed,

sin2(2πc)

1− c2
=

1

4

(

1− cos(2πc)
)

(

1

1− c
+

1

1 + c

)

(S.53)

hence

+1
∫

−1

dc
sin2(πc)

1− c2
=

1

4

+1
∫

−1

dc

(

1− cos(2πc)

1− c
+

1− cos(2πc)

1 + c

)

〈〈 using c → −c symmetry 〉〉

=
1

2

+1
∫

−1

dc
1− cos(2πc)

1 + c

〈〈 changing variable from c to t = 2π(1 + c) 〉〉

=
1

2

4π
∫

0

dt
1− cos(t)

t

= 1
2
Cin(4π),

(S.54)

and therefore

Pnet =
Cin(4π)

4π
× Z0|I0|2

2
. (S.55)

In terms of the antenna’s radiative resistance, this means

Rrad = Re(Zrad) =
Cin(4π)

4π
× Z0 . (S.56)

Numerically,

Cin(4π)

4π
≈ 0.247833, (S.57)
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thus

Rrad ≈ 0.247833Z0 ≈ 93.366 Ω. (S.58)

Problem 4(d):

All the magnetic multipole moments involve integrals of the form

∫∫∫

d3y (J(y)× y) (y · n)some power. (S.59)

For the linear antennas, all such integrals vanish since y is confined to a single axis and the

current y is parallel to that axis, hence J× y = 0.

As to the electric multipole moments, they follow from the oscillating electric charge

density

ρ(x) =
1

iω
∇ · J(x), (S.60)

which for the linear antenna in question becomes

ρ(x, y, z) =
1

iω
δ(x)δ(y)

dI(z)

dz
=

I0
ic

δ(x)δ(y) cos(kz). (S.61)

This distribution is symmetric WRT z → −z and hence WRT to the space reflection x → −x.

Consequently, this distribution has no odd-parity multipole moments but only-even-parity

moments. For the electric multipole moments

ME
ℓ,m =

√

4π

2ℓ+ 1

∫∫∫

d3x ρ(x) rℓY ∗
ℓ,m(θ, φ), (S.62)

the parity is (−1)ℓ, so all the odd-ℓ moments have negative parities and hence must vanish

for the positive-parity ρ(−x) = ρ(+x).

Thus, the only non-vanishing multipole moments of the antenna in question are the

electric multipole with even ℓ = 2, 4, 6, . . .. Quod erat demonstrandum.
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Problem 4(e):

In terms of the electric and magnetic multipole moments of the antenna, the fm is related

to the electric 2m+1–poles and the magnetic 2m-poles. For even m, both of these multipole

moments vanish by symmetry (cf. part (c)), so we should have fm = 0.

Another way to obtain this result is by looking at the explicit integrals (7). For the

linear antenna in question, the 3D integral (7) becomes a 1D integral over z,

fm(n) =
(−ik)m

4πm!

+L/2
∫

−L/2

dz I(z)ẑ (z cos θ)m =
(−ik)m

4πm!
I0ẑ

+L/2
∫

−L/2

dz sin(kz) (z cos θ)m. (S.63)

The integrand here is symmetric WRT to z → −z for odd m and odd for even m, so for the

symmetric integration limits z = ∓(L/2), the integral vanishes for all even m.

Now let’s calculate the integral (S.63) for the odd m. Changing the integration variable

from z to x = kz and using kL = 2π, we get

fm(n) =
(−i)m

4πm!

I0ẑ

k
(cos θ)m

+π
∫

−π

dx sin(x) xm (S.64)

where the remaining integrals obtain from the recursive relation

Im def
=

+π
∫

−π

dx xm sin(x) = 2πm − m(m− 1)Im−2 〈〈 for odd m only 〉〉. (S.65)

Indeed,

xm sin(x) + m(m− 1)xm−2 sin(x) =

=
(

xm sin(x) − mxm−1 cos(x)
)

+ m
(

xm−1 cos(x) + (m− 1)xm−2 sin(x)
)

=
d

dx

(

−xm cos(x)
)

+
d

dx

(

mxm−1 sin(x)
)

,

(S.66)
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hence

Im + Im−2 =

+π
∫

−π

dx
(

xm sin(x) + m(m− 1)xm−2 sin(x)
)

=

+π
∫

−π

dx
d

dx

(

−xm cos(x) + mxm−1 sin(x)
)

=
(

−xm cos(x) + mxm−1 sin(x)
)
∣

∣

∣

+π

−π

=
(

−(+π)m cos(π) + m(+π)m−1 sin(+π)
)

−
(

−(−π)m cos(−π) + m(−π)m−1 sin(−π)
)

=
(

+(+π)m + 0
)

−
(

+(−π)m + 0
)

= (+π)m − (−π)m = 2πm 〈〈 for an odd m 〉〉

(S.67)

and therefore the recursive relation (S.65). Working it out, we get

I1 = 2π,

I3 = 2π3 − 6I1 = 2π3 − 12π,

I5 = 2π5 − 20I3 = 2π5 − 40π3 + 240π,

I7 = 2π7 − 42I5 = 2π7 − 84π5 + 1680π3 − 10080π,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(S.68)

Finally, plugging the first 3 of these relations into eq. (S.64) for the foddm, we get

f1(θ) =
1

2
(−i cos θ)

I0ẑ

k
, (S.69)

f3(θ) =
π2 − 6

12
(−i cos θ)3

I0ẑ

k
, (S.70)

f5(θ) =
π4 − 20π2 + 120

240
(−i cos θ)5

I0ẑ

k
. (S.71)
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Problem 4(f):

In light of eqs. (S.69) through (S.71),

fα(θ) =
I0ẑ

2k
(−i cos θ),

fβ(θ) =
I0ẑ

2k
(−i cos θ)

(

1 − π2 − 6

6
cos2 θ

)

,

fγ(θ) =
I0ẑ

2k
(−i cos θ)

(

1 − π2 − 6

6
cos2 θ +

π4 − 20π2 + 120

120
cos4 θ

)

.

(S.72)

For each of these approximations,

dP

dΩ
=

Z0k
2

2
|f(θ)|2 sin2 θ, (S.73)

thus

dPα

dΩ
=

Z0|I0|2
8

× sin2 θ cos2 θ, (S.74)

dPβ

dΩ
=

Z0|I0|2
8

× sin2 θ cos2 θ ×
(

1 − π2 − 6

6
cos2 θ

)2

, (S.75)

dPγ

dΩ
=

Z0|I0|2
8

× sin2 θ cos2 θ ×
(

1 − π2 − 6

6
cos2 θ +

π4 − 20π2 + 120

120
cos4 θ

)

. (S.76)

Note that in all these approximation, no power is radiated either along the antenna’s axis z

nor perpendicular to that axis, and in part (b) we saw that the exact angular distribution

of the radiated power also has the same zero-power directions.

To get a more detailed comparison, let’s plot the approximate angular power distributions
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(S.74), (S.75), (S.76) as well as the exact power distribution (S.49) on the same graph:
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(S.77)

On this plot, the solid blue line is the α approximation, the solid green line is the β approx-

imation, the solid yellow line is the γ approximation, and the dotted red line is the exact

result from part (a).

As to the net power radiated by the antenna, integrating eqs. (S.74), (S.75), and (S.76)

over the solid angle yields

P net
α =

Z0|I0|2
2

×
(

2π

15
≈ 0.418879

)

,

P net
β =

Z0|I0|2
2

×
(

88π

315
− 4π3

135
+

π5

1134
≈ 0.228805

)

,

P net
γ =

Z0|I0|2
2

×
(

17894π

45045
− 292π3

5005
+

2831π5

810810
− π7

10530
+

π9

1029600
≈ 0.249645

)

,

(S.78)

as compared to the ‘exact’ result from part (c)

Pnet ≈ Z0|I0|2
2

×
(

Cin(4π)

4π
≈ 0.247833

)

. (S.79)

Comparing all these results, we see that the pure electric quadrupole approximation α
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looks qualitatively similar to the exact result, but quantitatively overestimates the net power

by about 70%. Also, in the pure quadrupole approximation, the directional power is maximal

at θ = 45◦ or θ = 135◦, while the exact calculation from part (b) shows maxima at θ ≈ 53.9◦

and θ ≈ 126.1◦, almost 9◦ closer to the (x, y) plane. However, the next approximation β —

which adds the electric 16-pole term to the quadrupole — is much more accurate, both WRT

the net power (underestimates by only 8%) and the direction of the maximal power (off by

only 1.5◦). And our last approximation γ — which includes the electric quadrupole, the

16-pole, and the 64-pole terms — has only 0.7% error for the net power, while the angular

distribution of this power is so accurate that the yellow and the red lines on the graph (S.77)

completely overlap each other.

Thus, although the leading multipole approximation to the full-wavelength antenna is

rather crude, adding a few subleading multipoles makes for a much better approximation.
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