
PHY–387 K. Solutions for problem set #13.

Problem 1(a):

The oscillating magnetic field of the incident wave looks approximately uniform from the

sphere’s point of view, but it cannot penetrate the sphere itself due to the skin effect.

Or rather, it penetrates only to the skin depth, and for a perfectly good conductor skin

depth → 0. Thus, the incident magnetic field is screened from the inside of the sphere by

the surface currents, just like the incident electric field is screened by the surface charges.

To find the surface currents and hence the net magnetic dipole moment, let’s compare

the sphere at hand to a uniformly magnetized spherical permanent magnet and the bound

currents on its surface. We saw in my notes on polarization and magnetization (pages 15–16)

that the magnetic field inside a spherical magnet is uniform

B =
2

3
µ0M . (S.1)

By the superposition principle, if we add an external uniform field Hext without changing

the magnetization, we would get

Binside = µ0
(

2
3
M + Hext

)

, (S.2)

so for M = −3
2
Hext the net magnetic field inside the sphere would vanish. For the same

magnetization, the net magnetic moment of the sphere would be

m =

(

Volume =
4πr3

3

)

M = −2πa3Hext . (S.3)

For the conducting sphere at hand, the situation is physically different but mathematically

similar: There is no magnetization or bound currents, instead there are conduction currents

on the surface of the sphere, but their net effect on the magnetic field inside the sphere is

exactly the same — they precisely cancel the external field Hext = Hinc. Consequently, the

conduction currents on the sphere’s surface — or rather the amplitudes of these currents

— are precisely the same as the bound currents on the surface or a permanent magnet
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ball which happens to have zero magnetic field inside it in a similar Hext. Therefore, the

magnetic dipole moments are precisely similar in both cases, or rather the amplitude of the

conducting sphere’s dipole moment is related to the incident magnetic field’s amplitude by

the same formula (S.3) as the magnetic moment of the spherical magnet, thus

m[conducting sphere] = −2πa3Hinc . (1)

Quod erat demonstrandum.

Problem 1(b):

For the incident wave of wavelength λ ≫ a, we may treat the incident electric field as ap-

proximately uniform external electric field Eext. Also, the response of the conducting sphere

to this external field is much faster than 1/ω, so we may use the electrostatics techniques

to find the induced electric dipole moment at any given time. Thus, as explained in any

undergraduate textbook — for example, Introduction to Electrodynamics by David Griffith,

example 3.8, or in my notes on separation of variables for 352K class, pages 35–36, — there

are induced charges on the sphere’s surface

ρ(r,n) = 3ǫ0Eext cos θ δ(r − a) (S.4)

and hence net dipole moment

p =

∫

d3x ρ(x)x = 4πǫ0a
3Eext . (S.5)

In the context of the incident EM wave, this dipole moment oscillates with amplitude

p[conducting sphere] = +4πa3ǫ0Einc . (2)

Next, to relate the electric and the magnetic dipole moments of the conducting sphere

to each other, we note that the electric and the magnetic amplitudes of the incident wave

2

http://web2.ph.utexas.edu/~vadim/Classes/2024f-emt/../2024-u/separation1.pdf


are related to each other as

Hinc =
1

Z0

n0 ×Einc (S.6)

where n0 is the unit vector in the direction of the incident wave. Consequently,

m

c
= −

2πa3

c
Hinc = −

2πa3

Z0c
n0 ×Einc = −2πa3ǫ0 n0 ×Einc = −

1

2
n0 ×

(

4πa3ǫ0Einc

)

= −
1

2
n0 × p.

(3)

Quod erat demonstrandum.

Problem 1(c):

In the radiation zone far away from the oscillating multipoles, the EM fields are

Esc = ikZ0(n× (n× f))
eikr−iωt

r
, Hsc = −ik(n× f)

eikr−iωt

r
(S.7)

for

f(n) =
1

4π

∫

d3y J(y) exp(−ikn · y). (S.8)

Specifically, for an electric dipole of amplitude p

fED =
iω

4π
p (S.9)

while for a magnetic dipole

fMD(n) = −
iω

4πc
n×m (S.10)

For the case at hand, both electric and magnetic oscillating dipoles are present and have

comparable magnitudes, or rather m/c ∼ p. Therefore

fnet ≈ fED + fMD(n) =
iω

4π

(

p − n×
m

c

)

. (S.11)

In light of eqs. (3) and (2), this formula evaluates to

f =
iω

4π

(

p +
1

2
n× (n0 × p)

)

= iωa3ǫ0E0

(

e0 +
1

2
n× (n0 × e0)

)

. (S.12)
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Problem 1(d):

The polarized partial cross section obtains from f(n) according to

dσ

dΩ
=

k2Z2
0

E2
0

∣

∣e∗ · (n× (n× f))
∣

∣

2
=

k2Z2
0

E2
0

∣

∣e∗ · f
∣

∣

2
. (S.13)

In particular, for f(n) as in eq. (S.12),

dσ

dΩ
= (kZ0 ωa

3ǫ0)
2

∣

∣

∣

∣

e∗ · e0 +
1

2
e∗ · (n× (n0 × e0))

∣

∣

∣

∣

2

. (S.14)

To simplify this formula, note that in the first factor

kZ0 × ωa3ǫ0 = k2a3 × cZ0ǫ0 = k2a3 =⇒ (kZ0 ωa
3ǫ0)

2 = k4a6, (S.15)

while inside | · · · |2

e∗ · (n× (n0 × e0)) = (n0 × e0) · (e
∗ × n) = −(n× e∗) · (n0 × e0). (S.16)

Consequently,

dσ

dΩ
= k4a6

∣

∣e∗ · e0 − 1
2
(n× e∗) · (n0 × e0)

∣

∣

2
. (S.17)

exactly as in eq. (4).

Next, let’s specialize to linear polarizations ⊥ or ‖ to the scattering plane. Note that

if e0 ‖ the scattering plane then (n0 × e0) ⊥the plane and vice verse; likewise if e ‖ the

plane then (n × e) ⊥ the plane and vice verse. Consequently, IF e0 ⊥ the plane while

e ‖ the plane OR IF e0 ‖ the plane while e ⊥ the plane THEN both e∗ · e0 = 0 and

(n × e∗) · (n0 × e0) = 0, and hence dσ/dΩ = 0, exactly as in the two middle eqs. (5). In

other words, if the incident wave happens to be polarized ⊥ to the scattering plane, then the

scattering wave is also polarized ⊥ to the scattering plane, and likewise if the incident wave

happens to be polarized ‖ to the scattering plane, then the scattering wave is also polarized

‖ to the scattering plane.
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Now, suppose both waves are polarized ⊥ to the plane of scattering. In the coordinate

system where z axis points along the incident wave direction n0 while the xz plane is the

scattering plane,

n0 = (0, 0, 1), n = (sin θ, 0, cos θ), (S.18)

we have

e0 = (0, 1, 0), e = (0, 1, 0), (S.19)

hence

n0 × e0 = (−1, 0, 0), n× e = (− cos θ, 0,+ sin θ),

and therefore

e∗ · e0 = +1, (n× e∗) · (n0 × e0) = + cos θ. (S.20)

Plugging this geometry into eq. (4), we get

dσ⊥

dΩ
= k4a6 (1 − 1

2
cos θ)2, (S.21)

in perfect agreement with the first eq. (5).

Finally, suppose both incident and scattered waves are polarized ‖ to the scattering

plane. In this case, in the coordinate system (S.18) we have

e0 = (1, 0, 0), e = (cos θ, 0,− sin θ), (S.22)

hence

n0 × e0 = (0, 1, 0), n× e = (0, 1, 0), (S.23)

and therefore

e∗ · e0 = +cos θ, (n× e∗) · (n0 × e0) = +1. (S.24)

This time, plugging this geometry into eq. (4) yields

dσ‖

dΩ
= k4a6 (1

2
− cos θ)2, (S.25)

in perfect agreement with the last eq. (5).
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Quod erat demonstrandum.

Problem 1(e):

Saying that the incident wave is un-polarized means that in any polarization basis half of

the net power belongs to one polarization and half to the other. In particular, half of the net

incident energy flux belongs to the linear polarization ‖ to the scattering plane and the other

half to the polarization ⊥ to the scattering plane. Consequently, the partial cross-section in

which the scattered wave’s polarization is not detected is simply

dσunpolarized

dΩ
=

1

2

dσ(⊥→ any)

dΩ
+

1

2

dσ(‖→ any)

dΩ
=

1

2

dσ(⊥→⊥)

dΩ
+

1

2

dσ(‖→‖)

dΩ
. (S.26)

Specifically, for the polarized partial cross-sections as in the first and the last eqs. (5),

dσunpolarized

dΩ
=

k4a6

2
×
(

(1
2
− cos θ)2 + (1− 1

2
cos θ)2

)

=
k4a6

2
×
(

(1
4
− cos θ + cos2 θ) + (1− cos θ + 1

4
cos2 θ)

)

=
k4a6

2
×
(

5
4
− 2 cos θ + 5

4
cos2 θ

)

.

(S.27)

Note that this partial cross-section does not have a forward-backward symmetry. Instead, the

scattering into the backward hemisphere (θ > 90◦ so that cos θ < 0) is significantly stronger

than the scattering into the forward hemisphere (θ < 90◦ so that cos θ > 0). Graphically,

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 105◦ 120◦ 135◦ 150◦ 165◦ 180◦
θ

dσ/dΩ (relative units)
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Now consider the partial polarization of the scattered wave. Although the incident

wave has equal powers of the two polarizations, they scatter with different strengths due to

un-equal polarized cross-sections. Consequently, the degree to which the scattered wave is

polarized is

Π(θ) =
dP⊥ − dP ‖

dP⊥ + dP ‖
=

dσ⊥ − dσ‖

dσ⊥ + dσ‖
. (S.28)

For the polarized cross-sections as in eqs. (5), this formula yields

Π(θ) =
(1− 1

2
cos θ)2 − (1

2
− cos θ)2

(1− 1
2
cos θ)2 + (1

2
− cos θ)2

=
3
4
− 3

4
cos2 θ

5
4
− 2 cos θ + 5

4
cos2 θ

=
3 sin2 θ

5− 8 cos θ + 5 cos2 θ
.

(S.29)

Graphically,

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 105◦ 120◦ 135◦ 150◦ 165◦ 180◦
00%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

θ

Π(θ)

Note: at θ = 60◦ the scattered wave is 100% polarized ⊥ to the scattering plane — the ‖

polarization does not scatter in this direction.
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Problem 1(f):

Finally, let’s calculate the net un-polarized cross-sections for scattering into the forward and

the backward hemispheres. Integrating the partial unpolarized cross-section (S.27), we have

σforward =

π/2
∫

0

dθ 2π sin θ
dσ

dΩ

= πk4a6 ×

+1
∫

0

d cos θ
(

5
4
− 2 cos θ + 5

4
cos2 θ

)

= πk4a6 ×

(

5

4
−

2

2
+

5/4

3
=

2

3

)

, (S.30)

σbackward =

π
∫

π/2

dθ 2π sin θ
dσ

dΩ

= πk4a6 ×

0
∫

−1

d cos θ
(

5
4
− 2 cos θ + 5

4
cos2 θ

)

= πk4a6 ×

(

5

4
+

2

2
+

5/4

3
=

8

3

)

. (S.31)

Consequently, the total cross-section (for scattering in all possible directions) is

σnet = σforward + σbackward =

(

2

3
+

8

3
=

10

3

)

× πk4a6, (S.32)

while the forward-backward asymmetry is

A
def
=

σforward − σbackward
σforward + σbackward

=
2
3
− 8

3
2
3
+ 8

3

= −60%. (S.33)

8



Problem 2(a):

In a spherical cavity, we can find the standing-wave solution of the Maxwell equations by

separating variables in spherical coordinates (r, θ, φ). This separation of variables works

exactly as in my notes on the spherical waves, and we end up with the transverse magnetic

waves with

x ·H(x) = 0,

x · E(x) =
Eℓ,m

k
∗ fℓ(kr) ∗ Yℓ,m(θ, φ),

(Notes.56)

and the transverse electric waves with

x · E(x) = 0,

x ·H(x) =
Hℓ,m

k
∗ fℓ(kr) ∗ Yℓ,m(θ, φ),

(Notes.57)

where for both kinds of waves, the radial profiles fℓ(kr) obey the spherical Bessel equation

(

d2

dr2
+

2

r

d

dr
−

ℓ(ℓ+ 1)

r2
+ k2

)

fℓ(kr) = 0. (S.34)

However, these radial profiles fℓ(kr) obey different boundary conditions than the profiles

gℓ(kr) of the divergent spherical waves: Instead of

gℓ(kr) −→
e+ikr

kr
for kr → ∞

but never mind if gℓ(kr) −→ ∞ for kr → 0, (S.35)

we now need

gℓ(kr) −→ finite for kr → 0, (S.36)

plus another condition at r = R we shall deal with in part (b). Consequently, instead of

gℓ(kr) being the spherical Hankel functions — or rather

gℓ(kr) = iℓ+1hℓ(kr) = iℓ+1jℓ(kr) + iℓ+2nℓ(kr), (S.37)

— for the spherical cavity at hand, the radial profiles are the regular spherical Bessel func-

tions, fℓ(kr) = jℓ(kr).
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Besides these radial profiles, the EM fields E(r, θ, φ) and H(r, θ, φ) of the TM and TE

wave modes work out exactly as in my notes on the spherical waves. In particular, separating

the EM fields into their radial and transverse (or lateral) components, we arrive at the close

cousins of eqs. (152) through (160) on pages 24–25 of my notes:

for a TMℓ,m wave:

Hr = 0, (TM.1)

Ht = −
Eℓ,m

ℓ(ℓ + 1)Z0

∗ jℓ(kr) ∗ L̂Yℓ,m(n), (TM.2)

Er = Eℓ,m ∗
jℓ(kr)

kr
∗ Yℓ,m(n), (TM.3)

Et = −i
Eℓ,m

ℓ(ℓ + 1)
∗

(

1

kr
+

∂

∂(kr)

)

jℓ(kr) ∗ n× L̂Yℓ,m(n); (TM.4)

for a TEℓ,m wave:

Er = 0, (TE.1)

Et = +
Z0Hℓ,m

ℓ(ℓ+ 1)
∗ jℓ(kr) ∗ L̂Yℓ,m(n), (TE.2)

Hr = Hℓ,m ∗
jℓ(kr)

kr
∗ Yℓ,m(n), (TE.3)

Ht = −i
Hℓ,m

ℓ(ℓ + 1)
∗

(

1

kr
+

∂

∂(kr)

)

jℓ(kr) ∗ n× L̂Yℓ,m(n). (TE.4)

Problem 2(b):

For a perfectly conducting wall surrounding the spherical cavity in question, the boundary

conditions at r = R amount to

Et = 0 and Hr = 0 for r = R and any (θ, φ). (S.38)

For the TE waves obeying eqs. (TE.1–4), both Et and Hr are proportional to the jℓ(kr), so

both boundary conditions (S.38) are satisfied if and only if jℓ(kR) = 0, cf. eq. (7.a). For a

cavity of a given radius this means kR = one of the xℓ,n, hence the resonant frequency

ωn(TEℓ) = ck =
c

R
× xℓ,n (8.a)

(assuming an empty cavity).
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As to the TM waves obeying eqs. (TM.1-4), the radial magnetic field is zero everywhere,

so the only non-trivial boundary condition is Et = 0 at the cavity’s surface. In light of

eq. (TM.4), this means

jℓ(kR)

kR
+ j′ℓ(kR) = 0 (S.39)

or equivalently

jℓ(kR) + (kR)j′ℓ(kR) =

∣

∣

∣

∣

d

dy

(

yjℓ(y)
)

∣

∣

∣

∣

y=kR

= 0. (7.b)

This calls for kR = one of the yℓ,n and hence resonant frequencies

ωn(TMℓ) = ck =
c

R
× yℓ,n (8.b)

PS: In eqs. (8) for the resonant frequencies, I refer to these frequencies as ωn(TEℓ) and

ωn(TMℓ) rather than ωn(TEℓ,m) and ωn(TMℓ,m) because none of these frequencies depends

on m. So for each of the resonant frequencies (8) there are 2ℓ+1 exactly degenerate modes.

Problem 2(c):

Zeroes xℓ,n of the spherical Bessel functions jℓ(x) increase with both ℓ and n, so the first

4 zeroes must belong to the jℓ(x) with ℓ ≤ 4. Plotting the jℓ(x) for ℓ = 1, 2, 3, 4 using

Mathematica, I get

2 4 6 8 10

-0.2

-0.1

0.1

0.2

0.3

0.4

According to this plot, the first four zeroes are x1,1 ≈ 4.5, x2,1 ≈ 5.8, x3,1 ≈ 7.0, and
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x1,2 ≈ 7.7. Physically, this means the first 4 TE-wave resonances are

ω1(TE1) ≈ 4.5
c

R
, ω1(TE2) ≈ 5.8

c

R
, ω1(TE3) ≈ 7.0

c

R
, ω2(TE1) ≈ 7.7

c

R
.

(S.40)

Similarly, zeroes yℓ,n of the derivatives (7) increase with both ℓ and n, so the first 4 zeroes

must belong to the fℓ(y) with ℓ ≤ 4. Plotting these four functions using Mathematica, I get

2 4 6 8 10

-1.0

-0.5

0.5

1.0

According to this plot, the first four zeroes are y1,1 ≈ 2.7, y2,1 ≈ 3.9, y3,1 ≈ 5.0, and

y4,1 ≈ 6.1. Physically, this means the first 4 TM-wave resonances are

ω1(TM1) ≈ 2.7
c

R
, ω1(TM2) ≈ 3.9

c

R
, ω1(TM3) ≈ 5.0

c

R
, ω1(TM4) ≈ 6.1

c

R
.

(S.41)

Finally, comparing the lists (S.40) and (S.41), and selecting the 4 lowest frequencies

regardless of the type of the wave, we end up with

Ω1 = ω1(TMℓ=1) ≈ 2.7437
c

R
,

Ω2 = ω1(TMℓ=2) ≈ 3.8702
c

R
,

Ω3 = ω1(TEℓ=1) ≈ 4.4934
c

R
,

Ω4 = ω1(TMℓ=3) ≈ 4.9734
c

R
.

(S.42)

The extra precision of the y1,1, y2,1, x1,1, and y3,1 factors here obtains by zooming up the

plots of the f1, f2, j1, and f3 functions to the progressively narrower and narrower intervals

of kr.
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Problem 2(d):

As explained in my notes on waveguides and resonant cavities, the quality factor of a vacuum-

filled microwave cavity obtains as

Q =
Z0

Rs
× Ĝ (S.43)

where Z0 ≈ 377 Ω is the wave impedance of the vacuum, Rs = 1/σδ is the surface resistivity

of the cavity wall(s), and

Ĝ =
ω

c
×

∫∫∫

|H|2 d3volume
∫∫

|H|2 d2area
(S.44)

is the dimensionless geometry factor of the cavity. The area integral in eq. (S.44) is over the

entire inner surface of the cavity, while the volume integral is over the whole cavity’s volume.

Let’s calculate these integrals for a TM wave. According to eqs. (TM.1–2),

|H(r, θ, φ)|2 = |H0|
2
(

jℓ(kr)
)2

|L̂Yℓ,m(θ, φ)|
2 (S.45)

where

H0 =
Eℓ,m

ℓ(ℓ+ 1)Z0
, (S.46)

hence the surface integral over the sphere of radius R amounts to

IS
def
=

∫∫

|H|2 d2area = |H0|
2
(

jℓ(kR)
)2

×R2

∫∫

d2Ω(n) |L̂Yℓ,m(n)|2. (S.47)

The remaining angular integral on the RHS here evaluates to ℓ(ℓ+ 1), indeed

∫∫

d2Ω |L̂Yℓ,m|
2 =

∫∫

d2Ω (L̂∗Y ∗
ℓ,m) · (L̂Yℓ,m)

〈〈 integrating by parts 〉〉 = −

∫∫

d2ΩY ∗
ℓ,m (L̂∗ · L̂)Yℓ,m

〈〈 using L̂ = −ix×∇, hence L̂∗ = −L̂ 〉〉 = +

∫∫

d2ΩY ∗
ℓ,mL̂

2Yℓ,m

= ℓ(ℓ+ 1)

∫∫

d2Ω |Yℓ,m|
2

= ℓ(ℓ+ 1)× 1.

(S.48)
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Thus altogether, the surface area integral evaluates to

IS = ℓ(ℓ+ 1)R2 |H0|
2 ×

(

jℓ(kR)
)2
. (S.49)

As to the volume integral, in spherical coordinates it factorizes into a product of a radial

integral and the directional integral:

IV =
def
=

∫∫∫

|H|2 d3volume = |H0|
2 ×

R
∫

0

dr r2
(

jℓ(kr)
)2

×

∫∫

d2Ω(n) |L̂Yℓ,m|
2. (S.50)

Note that the directional integral here is exactly as in eq. (S.48), which leaves us with just

the radial integral,

IV = ℓ(ℓ+ 1) |H0|
2 ×

R
∫

0

dr r2
(

jℓ(kr)
)2

= ℓ(ℓ+ 1) |H0|
2 ×

1

k3

kR
∫

0

dx x2
(

jℓ(x)
)2
. (S.51)

Moreover, for a resonant TM wave, Y = kR must be one of the zeroes yℓ,n of the deriva-

tive (9), so the integral on the RHS here obtains from the spherical Bessel function iden-

tity (13):

Y=kR
∫

0

dx x2
(

jℓ(x)
)2

= 1
2
(kR)

(

(kR)2 − ℓ(ℓ+ 1)
)

×
(

jℓ(kR)
)2
, (S.52)

and therefore

IV = ℓ(ℓ+ 1) |H0|
2 ×

R

2

(

R2 −
ℓ(ℓ+ 1)

k2

)

×
(

jℓ(kR)
)2
. (S.53)

Taking the ratio of this volume integral to the surface integral (S.49), we arrive at

IV
IS

=
R

2

(

1 −
ℓ(ℓ+ 1)

(kR)

)

, (S.54)

hence

Ĝ = k ×
IV
IS

=
kR

2

(

1 −
ℓ(ℓ+ 1)

(kR)2

)

=
1

2

(

kR −
ℓ(ℓ+ 1)

(kR)

)

=
1

2

(

yℓ,n −
ℓ(ℓ+ 1)

yℓ,n

)

(S.55)
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and therefore cavity’s quality factor

Q =
Z0

2Rs
×

(

kR −
ℓ(ℓ+ 1)

(kR)

)

(S.56)

— which is exactly as in eq. (11) for

kR =
ωR

c
= yℓ,n . (S.57)

Now consider the TE waves (TE). For a resonant TE wave mode, we must have kR =

X = one of the zeroes xℓ,n of the spherical Bessel function jℓ(x), hence at the cavity’s

surface r = R, the radial magnetic field (TE.3) vanishes, while the transverse magnetic field

(TE.4) becomes simply

Ht(r = R, θ, φ) = −iH0 j
′
ℓ(kR) ∗ n× L̂Yℓ,m(θ, φ) (S.58)

where this time

H0 =
Hℓ,m

ℓ(ℓ+ 1)
. (S.59)

Consequently, at the cavity’s surface

|H(r = R, θ, φ)|2 = |Ht(r = R, θ, φ)|2

= |H0|
2 ∗
(

j′ℓ(kR)
)2

∗
∣

∣

∣
n× L̂Yℓ,m(θ, φ)

∣

∣

∣

2

= |H0|
2 ∗
(

j′ℓ(kR)
)2

∗
∣

∣

∣
L̂Yℓ,m(θ, φ)

∣

∣

∣

2

〈〈 because n · L̂Yℓ,m = 0 〉〉,

(S.60)

and the area integral of this |H|2 amounts to

IS
def
=

∫∫

|H|2 d2area = |H0|
2 ∗
(

j′ℓ(kR)
)2

∗R2ℓ(ℓ+ 1). (S.61)

As to the volume integral of the |H|2, we may relate it to the volume integral of |E|2

since for any harmonic oscillator the electric and the magnetic average energies must be
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equal, thus

IV
def
=

∫∫∫

|H|2 d3volume =
1

Z2
0

∫∫∫

|E|2 d3volume . (S.62)

For the electric field (TE.1–2) of a TE wave,

|E(r, θ, φ)|2 = Z2
0 |H0|

2 ∗
(

jℓ(kr)
)2

∗
∣

∣

∣
L̂Yℓ,m(θ, φ)

∣

∣

∣

2

, (S.63)

so the volume integral (S.62) factorizes into the radial integral and the directional integral

∫∫∫

|E|2 d3volume = Z2
0 |H0|

2 ∗

R
∫

0

dr r2
(

jℓ(kr)
)2

∗

∫∫

d2Ω(n) |L̂Yℓ,m(n)|
2. (S.64)

The directional integral here is exactly as in eq. (S.48), so it evaluates to ℓ(ℓ+ 1), thus

IV = |H0|
2 ℓ(ℓ+ 1)×

R
∫

0

dr r2
(

jℓ(kr)
)2

= |H0|
2 ℓ(ℓ+ 1)×

1

k3

kR
∫

0

dx x2
(

jℓ(x)
)2
. (S.65)

Furthermore, the upper limit of the last integral here is kR = X , one of the zeroes xℓ,n of

the jℓ(x) function. Hence, thanks to the identity (12), the integral evaluates to

X=kR
∫

0

dx x2
(

jℓ(x)
)2

=
X3

2
×
(

j′ℓ(X)
)2

=
(kR)3

2
×
(

j′ℓ(kR)
)2
, (S.66)

so altogether

IV =
|E0|

2

Z2
0

ℓ(ℓ+ 1)×
R3

2
×
(

j′ℓ(kR)
)2
. (S.67)

Taking the ration of this volume integral to the surface integral (S.61), we get

IV
IS

=
R

2
(S.68)

16



hence geometry factor

Ĝ = (k = ω/c)×
IV
IS

=
kR

2
=

X = xℓ,n
2

(S.69)

and therefore the quality factor

Q =
Z0

2Rs
×
(

kR = (ωR/c) = xℓ,n

)

, (S.70)

exactly as in eq. (10).

Quod erat demonstrandum.

PS: In terms of the skin depth δ of the metal surrounding the cavity,

Z0

2Rs
×

ωR

c
=

R

δ
(S.71)

(assuming the metal is non-magnetic, µ = 1), so eqs. (11) and (12) for the quality factor

become

Q =
R

δ
(S.72)

for all the TE waves, and

Q =
R

δ
×

(

1 −
ℓ(ℓ+ 1)

y2ℓ,n = (ωR/c)2

)

(S.73)

for the TM waves. Indeed, using

Rs =
1

σδ
, δ2 =

2

σωµ0
, (S.74)

we find

Z0

2Rs
×

ωR

c

/

R

δ
=

Z0σδ

2
×

ωδ

c
=

Z0σω

2c
×

(

δ2 =
2

σωµ0

)

=
Z0

cµ0
= 1 (S.75)

and hence eq. (S.71).
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