DIMENSIONAL REGULARIZATION

The dimensional regularization of ultraviolet divergences involves analytic continuation of the Euclidean momentum integrals to momentum spaces of non-integer dimensions $D<4$ - which makes the integrals finite - and then taking the limit $D \rightarrow 4$ (from below). Thus,

$$
\begin{equation*}
\int_{\text {reg }} \frac{d^{4} k_{E}}{(2 \pi)^{4}} f\left(k_{E}\right)=\int \frac{\mu^{4-D} d^{D} k_{E}}{(2 \pi)^{D}} f\left(k_{E}\right) \tag{1}
\end{equation*}
$$

where μ is the reference energy scale at which the spherical momentum-space shell $d k_{e}^{\mathrm{rad}}$ has the same volume in D dimensions as in 4 dimensions. At much larger loop momenta, the $d k_{e}^{\text {rad }}$ shell's volume becomes smaller in $D<4$ dimensions than in 4 dimensions:

$$
\begin{align*}
d^{4} k_{E} \sim\left(k_{e}^{\mathrm{rad}}\right)^{3} d k_{e}^{\mathrm{rad}} \longrightarrow \mu^{4-D} & \times\left(k_{e}^{\mathrm{rad}}\right)^{D-1} d k_{e}^{\mathrm{rad}}=\left(\frac{\mu}{k_{e}^{\mathrm{rad}}}\right)^{4-D} \times\left(k_{e}^{\mathrm{rad}}\right)^{3} d k_{e}^{\mathrm{rad}} \tag{2}\\
& \ll\left(k_{e}^{\mathrm{rad}}\right)^{3} d k_{e}^{\mathrm{rad}}
\end{align*}
$$

and that's what regularized the UV divergence of the integral (1).
Let's take a closer look at the UV-regulating factor (marked in red in eq. (2)). For $D=4-2 \epsilon$,

$$
\begin{equation*}
\left(\frac{\mu}{k_{e}^{\mathrm{rad}}}\right)^{4-D=2 \epsilon}=\left(\frac{k_{e}^{2}}{\mu^{2}}\right)^{-\epsilon}=\exp \left(-\epsilon \times \log \frac{k_{e}^{2}}{\mu^{2}}\right) \tag{3}
\end{equation*}
$$

which becomes small when

$$
\begin{equation*}
\log \frac{k_{e}^{2}}{\mu^{2}} \sim \frac{1}{\epsilon} \quad \Longrightarrow \quad k_{e}^{2} \sim \mu^{2} \times \exp (1 / \epsilon) \tag{4}
\end{equation*}
$$

Thus, the effective UV cutoff scale ${ }^{2}$ in dimensional regularization is

$$
\begin{equation*}
\Lambda_{\mathrm{DR}}^{2}=\mu^{2} \times \exp (1 / \epsilon) \gg \mu^{2} \tag{5}
\end{equation*}
$$

In practice, one usually sets the reference energy scale μ in the ball park of the energy scale of the amplitude in question, for example $\mu \sim\left|q_{\text {net }}\right|$; consequently, for $\epsilon \rightarrow+0$ we have $\Lambda_{\mathrm{DR}} \gg \mu$ and hence $\Lambda_{\mathrm{DR}} \gg$ energy scale of the amplitude.

Now consider a generic logarithmically divergent momentum integral; for most regularization schemes, this means

$$
\begin{equation*}
\text { regulated integral }=(\operatorname{constant} C) \times \log \frac{\Lambda^{2}}{m^{2}}+\text { finite } \tag{6}
\end{equation*}
$$

For the dimensional regularization, the effective UV cutoff scale is as in eq. (5), so we expect

$$
\begin{equation*}
\text { regulated integral }=(\text { same constant } C) \times\left(\frac{1}{\epsilon}+\log \frac{\mu^{2}}{m^{2}}\right)+\text { finite } \tag{7}
\end{equation*}
$$

Thus, we may identify the coefficient C of the $(1 / \epsilon)$ pole obtaining from dimensional regularization with the coefficient of $\log \Lambda^{2}$ in the other regularization schemes.

Integrals over Momentum Spaces of Non-Integer Dimensions

Before we can use dimensional regularization, we need to learn how to perform integrals over (Euclidean) momentum spaces of non-integer dimensions D. Let's start with the Gaussian integrals

$$
\begin{equation*}
\int \frac{d^{D} k_{E}}{(2 \pi)^{D}} \exp \left(-t k_{E}^{2}\right) \tag{8}
\end{equation*}
$$

For any integer dimension $D, k_{E}^{2}=k_{1}^{2}+k_{2}^{2}+\cdots+k_{D}^{2}$, hence

$$
\begin{equation*}
\exp \left(-t k_{E}^{2}\right)=\prod_{i=1}^{D} \exp \left(-t k_{i}^{2}\right) \tag{9}
\end{equation*}
$$

and therefore

$$
\begin{align*}
\int \frac{d^{D} k_{E}}{(2 \pi)^{D}} \exp \left(-t k_{E}^{2}\right) & =\prod_{i=1}^{D} \int_{-\infty}^{+\infty} \frac{d k_{i}}{2 \pi} \exp \left(-t k_{i}^{2}\right) \\
& =\left[\int_{-\infty}^{+\infty} \frac{d k}{2 \pi} \exp \left(-t k^{2}\right)\right]^{D} \tag{10}\\
& =\left[\frac{1}{2 \pi} \times \sqrt{\frac{\pi}{t}}=\frac{1}{\sqrt{4 \pi t}}\right]^{D} \\
& =(4 \pi t)^{-D / 2}
\end{align*}
$$

Let's analytically continue this formula to the non-integer D. In other words, we let

$$
\begin{equation*}
\int \frac{d^{D} k_{E}}{(2 \pi)^{D}} \exp \left(-t k_{E}^{2}\right)=(4 \pi t)^{-D / 2} \tag{11}
\end{equation*}
$$

for any D, integer or non-integer, real or complex. For non-integer D this formula maybe thought as a definition of the Gaussian integral over a non-integer-dimensional space.

As to the non-Gaussian momentum integrals, we should re-express them in terms of Gaussian integrals and then use eq. (11) for non-integer D. For example, consider the dimensionally regulated momentum integral

$$
\begin{equation*}
I=\int_{\text {reg }} \frac{d^{4} k_{E}}{(2 \pi)^{4}} \frac{1}{\left[k_{E}^{2}+\Delta\right]^{2}}=\int \frac{\mu^{4-D} d^{D} k_{E}}{(2 \pi)^{D}} \frac{1}{\left[k_{E}^{2}+\Delta\right]^{2}} \tag{12}
\end{equation*}
$$

which appears in the context of the one-loop Feynman diagram

for $\Delta(x)=m^{2}-t x(1-x)$. Using the Γ-function integral

$$
\begin{equation*}
\int_{0}^{\infty} d t t^{n-1} \times \exp \left(-t\left(k_{E}^{2}+\Delta\right)\right)=\frac{\Gamma(n)}{\left[k_{E}^{2}+\Delta\right]^{n}} \tag{14}
\end{equation*}
$$

for $n=2$, we let

$$
\begin{equation*}
\frac{1}{\left[k_{E}^{2}+\Delta\right]^{2}}=\frac{1}{\Gamma(2)=1!=1} \times \int_{0}^{\infty} d t t \times \exp \left(-t\left(k_{E}^{2}+\Delta\right)\right) \tag{15}
\end{equation*}
$$

and consequently

$$
\begin{align*}
\int \frac{d^{D} k_{E}}{(2 \pi)^{D}} \frac{1}{\left[k_{E}^{2}+\Delta\right]^{2}}= & \int \frac{d^{D} k_{E}}{(2 \pi)^{D}} \int_{0}^{\infty} d t t \times \exp \left(-t\left(k_{E}^{2}+\Delta\right)\right) \\
& \langle\langle\text { changing the order of integration }\rangle\rangle \\
= & \int_{0}^{\infty} d t t e^{-t \Delta} \times \int \frac{d^{D} k_{E}}{(2 \pi)^{D}} e^{-t k_{E}^{2}} \tag{16}\\
& \langle\langle\text { using eq. }(11)\rangle\rangle \\
= & \int_{0}^{\infty} d t t e^{-t \Delta} \times(4 \pi t)^{-D / 2}=(4 \pi)^{-D / 2} \int_{0}^{\infty} d t t^{1-(D / 2)} \times e^{-t \Delta} \\
= & (4 \pi)^{-D / 2} \times \Gamma(2-(D / 2))^{(D / 2)-2} .
\end{align*}
$$

Note that on the penultimate line here, the integrand behaves as $t^{1-(D / 2)}$ for $t \rightarrow 0$. Consequently, the integral converges whenever (this power of t) >-1, which means $D<4$. Or for complex D, whenever $\operatorname{Re}(D)<4$. Physically, the $t \rightarrow 0$ limit corresponds to $k_{E}^{2} \rightarrow \infty$, so the convergence/divergence of the $\int d t$ integral at $t \rightarrow 0$ corresponds to the UV convergence/divergence of the original momentum integral.

Anyhow, for $D=4-2 \epsilon$ eq. (16) becomes

$$
\begin{equation*}
\mu^{4-D} \times \int \frac{d^{D} k_{E}}{(2 \pi)^{D}} \frac{1}{\left[k_{E}^{2}+\Delta\right]^{2}}=\frac{\left(4 \pi \mu^{2}\right)^{\epsilon}}{16 \pi^{2}} \times \Gamma(\epsilon) \times \Delta^{-\epsilon} \tag{17}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\mathcal{F}(t)=\frac{\lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x \Gamma(\epsilon)\left(\frac{4 \pi \mu^{2}}{\Delta(x)}\right)^{\epsilon} \tag{18}
\end{equation*}
$$

Note that this is a finite formula for $\epsilon>0$ (i.e., for $D<4$), but it becomes singular in the $\epsilon \rightarrow 0$ limit because the $\Gamma(\epsilon)$ function has a pole at $\epsilon=0$.

Let's take a closer look at this pole using $\Gamma(x+1)=x \times \Gamma(x)$. In particular, for $x=\epsilon \rightarrow 0$,

$$
\begin{align*}
\Gamma(\epsilon) & =\frac{\Gamma(\epsilon+1)}{\epsilon}=\frac{1}{\epsilon}\left(\Gamma(1)+\epsilon \times \Gamma^{\prime}(1)+\frac{\epsilon^{2}}{2} \Gamma^{\prime \prime}(1)+\cdots\right) \tag{19}\\
& =\frac{1}{\epsilon}-\gamma_{E}+\frac{\pi^{2}+6 \gamma_{E}^{2}}{12} \times \epsilon+O\left(\epsilon^{2}\right)
\end{align*}
$$

where $\gamma_{E} \approx 0.5772$ is the Euler-Mascheroni constant. At the same time,

$$
\begin{equation*}
\left(\frac{4 \pi \mu^{2}}{\Delta(x)}\right)^{\epsilon}=\exp \left(\epsilon \times \log \frac{4 \pi \mu^{2}}{\Delta(x)}\right)=1+\epsilon \times \log \frac{4 \pi \mu^{2}}{\Delta(x)}+\frac{\epsilon^{2}}{2} \times \log ^{2} \frac{4 \pi \mu^{2}}{\Delta(x)}+O(\epsilon)^{3}, \tag{20}
\end{equation*}
$$

hence

$$
\begin{equation*}
\Gamma(\epsilon) \times\left(\frac{4 \pi \mu^{2}}{\Delta(x)}\right)^{\epsilon}=\frac{1}{\epsilon}-\gamma_{E}+\log \frac{4 \pi \mu^{2}}{\Delta(x)}+O(\epsilon) . \tag{21}
\end{equation*}
$$

In dimensional regularization, positive powers of $\epsilon \rightarrow 0$ correspond to negative powers of $\log \Lambda_{\mathrm{UV}}^{2} \rightarrow \infty$. And although such negative powers of $\log \Lambda_{\mathrm{UV}}^{2}$ go to zero much slower than the negative powers of the $\Lambda_{\mathrm{UV}}^{2}$ itself, they do eventually go to zero in the very-large-UV-cutoff-scale limit. Consequently, in dimensional regularization we neglect all positive powers of ϵ in various amplitudes (but only in the net product of all the factors). Thus, in eq. (18) we approximate

$$
\begin{equation*}
\Gamma(\epsilon) \times\left(\frac{4 \pi \mu^{2}}{\Delta(x)}\right)^{\epsilon} \underset{\epsilon \rightarrow 0}{\longrightarrow} \frac{1}{\epsilon}-\gamma_{E}+\log \frac{4 \pi \mu^{2}}{\Delta(x)} \tag{22}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\mathcal{F}_{\mathrm{DR}}(t)=\frac{\lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left(\frac{1}{\epsilon}-\gamma_{E}+\log \frac{4 \pi \mu^{2}}{\Delta(x)}\right) \tag{23}
\end{equation*}
$$

Finally, using

$$
\begin{equation*}
\log \frac{4 \pi \mu^{2}}{\Delta(x)}=\log \frac{4 \pi \mu^{2}}{m^{2}}-\log \frac{\Delta(x)=m^{2}-t x(1-x)}{m^{2}} \tag{24}
\end{equation*}
$$

we arrive at

$$
\begin{align*}
\mathcal{F}_{\mathrm{DR}}(t) & =\frac{\lambda^{2}}{32 \pi^{2}}\left(\frac{1}{\epsilon}-\gamma_{E}+\log \frac{4 \pi \mu^{2}}{m^{2}}-\int_{0}^{1} d x \log \frac{m^{2}-t x(1-x)}{m^{2}}\right) \tag{25}\\
& =\frac{\lambda^{2}}{32 \pi^{2}}\left(\frac{1}{\epsilon}-\gamma_{E}+\log \frac{4 \pi \mu^{2}}{m^{2}}-J\left(t / m^{2}\right)\right)
\end{align*}
$$

In class we have evaluated the same one-loop diagram (13) using Wilson's hard-edge
cutoff and got

$$
\begin{equation*}
\mathcal{F}(t)=\frac{\lambda^{2}}{32 \pi^{2}}\left(\log \frac{\Lambda_{\mathrm{HE}}^{2}}{m^{2}}-1-J\left(t / m^{2}\right)\right) . \tag{26}
\end{equation*}
$$

Likewise, in your homework\#13 you should have obtained

$$
\begin{align*}
\mathcal{F}(t) & =\frac{\lambda^{2}}{32 \pi^{2}}\left(\log \frac{\Lambda_{\mathrm{PV}}^{2}}{m^{2}}-J\left(t / m^{2}\right)\right) \tag{27}\\
& =\frac{\lambda^{2}}{32 \pi^{2}}\left(\log \frac{\Lambda_{\mathrm{HD}}^{2}}{m^{2}}-2-J\left(t / m^{2}\right)\right)
\end{align*}
$$

for the respectively Pauli-Villars and higher-derivative UV regulators. Consequently, all these cutoffs yield exactly the same result provided we identify

$$
\begin{equation*}
\log \Lambda_{\mathrm{HE}}^{2}-1=\log \Lambda_{\mathrm{PV}}^{2}=\log \Lambda_{\mathrm{HD}}^{2}-2 \tag{28}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\Lambda_{\mathrm{HE}}^{2}=\exp (1) \times \Lambda_{\mathrm{PV}}^{2}, \quad \Lambda_{\mathrm{HD}}^{2}=\exp (2) \times \Lambda_{\mathrm{PV}}^{2} \tag{29}
\end{equation*}
$$

Likewise, the dimensional regularization's result (25) becomes similar to that of all the other cutoffs when we identify

$$
\begin{equation*}
\frac{1}{\epsilon}-\gamma_{E}+\log \left(4 \pi \mu^{2}\right)=\log \Lambda_{\mathrm{HE}}^{2}-1=\log \Lambda_{\mathrm{PV}}^{2}=\log \Lambda_{\mathrm{HD}}^{2}-2 \tag{30}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\mu^{2} \times \exp (1 / \epsilon)=\frac{\exp \left(\gamma_{E}\right)}{4 \pi} \times \Lambda_{\mathrm{PV}}^{2}=\frac{\exp \left(\gamma_{E}-1\right)}{4 \pi} \times \Lambda_{\mathrm{HE}}^{2}=\frac{\exp \left(\gamma_{E}-2\right)}{4 \pi} \times \Lambda_{\mathrm{HD}}^{2} \tag{31}
\end{equation*}
$$

