
OPTICAL THEOREM

The optical theorem relates the imaginary part of the elastic scattering amplitude in the

forward direction to the total cross-section — elastic + inelastic — of the initial particles.

In the non-relativistic normalization,

Im felastic(θ = 0) =
kreduced

4π
× σtotal . (1)

You have probably seen this formula in an undergraduate QM class in the context of the

partial wave analysis of potential scattering; but in case you have never studied the subject,

here are my notes on the partial wave analysis from a graduate E&M class (387 K) I have

recently taught. Anyway, for a purely elastic scattering

f(θ) =
1

k

∞∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ)×

(
e2iδℓ − 1

2i
= eiδℓ sin δℓ

)
, (2)

where δℓ is the phase shift for the partial wave ℓ. Note that for small phase shifts δℓ ≪ 1,

the real part of the scattering amplitude is much larger than its imaginary part, Re f ∼ δ

while Im f ∼ δ2. For the scattering amplitude (2), the total cross-section is

σtotal =

∫
|f |2 d2Ω =

4π

k2
×

∞∑

ℓ=0

(2ℓ+ 1) sin2 δℓ , (3)

while the imaginary part of the forward scattering amplitude is

Im f(θ = 0) =
1

k
×

∞∑

ℓ=0

(2ℓ+ 1) sin2 δℓ , (4)

in manifest agreement with the optical theorem (1).

In relativistic notations, the optical theorem (1) becomes

ImM

(
elastic

forward

)
= 2E1E2|v1 − v2| × σtotal . (5)

where the pre-factor 2E1E2|v1 − v2| is invariant under Lorentz boosts along the axis of

collision. In the center-of-mass frame, it amounts to 4Enet
cm |pcm|.
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Proof

The optical theorem follows from the unitarity of the S-matrix — or rather, the scattering

operator, — Ŝ†Ŝ = 1. To see how this works, let’s separate the scattering from non-scattering

events, Ŝ = 1 + iT̂ , and express the unitarity of Ŝ in terms of T̂ :

1 = (Ŝ† = 1− T̂ †)(Ŝ = 1 + 1T̂ ) = 1 + iT̂ − iT̂ † + T̂ †T̂ , (6)

hence

iT̂ † − iT̂ = T̂ †T̂ . (7)

Now let’s take the diagonal matrix elements 〈i| · · · |i〉 of both sides of this formula for some

state |i〉, which we shall eventually take to be the initial state |1 + 2〉 of two particles about

to collide. On the LHS of eq. (7)

〈i| iT̂ † − iT̂ |i〉 = i 〈i| T̂ |i〉∗ − i 〈i| T̂ |i〉 = 2 Im 〈i| T̂ |i〉 (8)

while on the RHS of eq. (7)

〈i| T̂ †T̂ |i〉 =
∑

|f〉

〈i| T̂ † |f〉 〈f | T̂ |i〉 =
∑

|f〉

∣∣∣〈f | T̂ |i〉
∣∣∣
2
, (9)

hence

2 Im 〈i| T̂ |i〉 =
∑

|f〉

∣∣∣〈f | T̂ |i〉
∣∣∣
2
. (10)

Physically, the sum on the RHS here is over all possible final states of the initial particles’

scattering.

Next, let’s factor out the energy-momentum conservation from the matrix elements of

the T̂ operator,

〈f | T̂ |i〉 = (2π)4δ(4)(pf − pi)× 〈f | M̂ |i〉 . (11)

Plugging this formula directly into eq. (10) gives us

2 Im 〈i| M̂ |i〉 × (2π)4δ(4)(pi − pi) =
∑

|f〉

∣∣∣〈f | M̂ |i〉
∣∣∣
2
×

(
(2π)4δ(4)(pf − pi)

)2
, (12)

with troublesome δ-functions on both sides of the equation. To resolve this trouble, consider
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the state |i′〉 which is very similar to the initial state |i〉 except for a possible tiny difference

in the net momentum pi′ . By similar I mean similar enough that we may approximate

〈
i′
∣∣M̂ |i〉 = 〈i| M̂ |i〉 and

〈
i′
∣∣M̂ |f〉 = 〈i| M̂ |f〉 ∀ |f〉 . (13)

Consequently, taking the slightly-off-diagonal matrix elements 〈i′| · · · |i〉 of both sides of

eq. (7), we get on the LHS

〈
i′
∣∣ iT̂ †−iT̂ |i〉 = (2π)4δ(4)(pi′ −pi)×〈i| iM̂†−iM̂ |i〉 = (2π)4δ(4)(pi′−pi)×2 Im 〈i| M̂ |i〉 ,

(14)

and on the RHS

〈
i′
∣∣ T̂ †T̂ |i〉 =

∑

|f〉

〈f | T̂
∣∣i′
〉∗

〈f | T̂ |i〉

=
∑

|f〉

∣∣∣〈f | M̂ |i〉
∣∣∣
2
× (2π)4δ(4)(pf − pi′)× (2π)4δ(4)(pf − pi)

= (2π)4δ(4)(pi′ − pi)×
∑

|f〉

∣∣∣〈f | M̂ |i〉
∣∣∣
2
× (2π)4δ(4)(pf − pi).

(15)

Equating the last two formulae and dropping the overall factor (2π)4δ(4)(pi′ −pi) from both,

we arrive at the improved version of eq. (12), namely

2 Im 〈i| M̂ |i〉 =
∑

〈f |

∣∣∣〈f | M̂ |i〉
∣∣∣
2
× (2π)4δ(4)(pf − pi). (16)

Now let |i〉 = |1 + 2〉 be the initial state of two particles about to collide, so that |f〉 runs

over all possible final states of this collision. Thus, summing over |f〉 means summing over

all possible reaction channels — i.e., sets of final particles, — and then for each final-state

particle integrating over its momentum with the relativistic measure and summing over its
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discrete quantum numbers like spin:

〈f | =
〈
channel : (p′, s′)1, . . . , (p

′, s′)n
∣∣ ,

∑

〈f |

=
∑

channels

n∏

a=1


∑

s′a

∫
d3p′

a

(2π)32E′
a


 .

(17)

Consequently, eq. (16) becomes

2 Im 〈i| M̂ |i〉 =
∑

channels

n∏

a=1


∑

s′a

∫
d3p′

a

(2π)32E′
a




∣∣∣
〈
channel : (p′, s′)1, . . . , (p

′, s′)n
∣∣M̂ |i〉

∣∣∣
2
×

× (2π)4δ(4)(p′1 + · · ·+ p′n − pneti ).
(18)

Note that the momentum integral (and spin sum) on the RHS here is precisely the phase

space integral (and spin sum) for the scattering process (1 + 2 → 1′ + · · ·+ n′). Specifically,

σnet(1 + 2 → 1′ + · · ·+ n′) =
1

4E1E2|vrel
12 |

n∏

a=1


∑

s′
a

∫
d3p′

a

(2π)32E′

a




∣∣∣〈(p′, s′)1, . . . , (p′, s′)n| M̂ |1 + 2〉
∣∣∣
2

×

× (2π)4δ(4)(p′1 + · · ·+ p′
n
− pnet

i
),

(19)

cf. my notes on the phase space. Therefore, we may rephrase eq. (18) in terms of the net

cross-sections for each channel and ultimately in terms of the total cross-section for all the

channel combined:

2 Im 〈1 + 2| M̂ |1 + 2〉 =
∑

channels

4E1E2|v
rel
12 | × σnet(1 + 2 → 1′ + · · ·+ n′)

= 4E1E2|v
rel
12 | ×

∑

channels

σnet(1 + 2 → 1′ + · · ·+ n′)

= 4E1E2|v
rel
12 | × σtotal(1 + 2 → anything).

(20)

Finally, we identify the matrix element on the LHS here as the amplitude for the forward

elastic scattering |1 + 2〉 → |exactlythe same state〉, thus

ImM

(
elastic

forward

)
= 2E1E2|v

rel
12 | × σtotal(1 + 2 → anything). (21)

And this completes my proof of the optical theorem.
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BTW, there is a similar version of the optical theorem for the decays of unstable particles.

Indeed, let in eq. (18) |i〉 be the initial state of a single unstable particle (instead of two

particles about to collide). Then the RHS of eq. (18) becomes the phase space integral

(and the spin sum) for the net decay rate of the initial particle into all the available decay

channels. Indeed,

Γnet(1 → 1′ + · · ·+ n′) =
1

2M

n∏

a=1


∑

s′a

∫
d3p′

a

(2π)32E′
a




∣∣∣
〈
(p′, s′)1, . . . , (p

′, s′)n
∣∣M̂ |1〉

∣∣∣
2
×

× (2π)4δ(4)(p′1 + · · ·+ p′n − pneti ),
(22)

— cf. my notes on the phase space, — hence

Im 〈1| M̂ |1〉 =
1

2

∑

channels

2M × Γnet(1 → 1′ + · · ·+ n′)

= M ×
∑

channels

Γnet(1 → 1′ + · · ·+ n′)

= M × Γtotal(1 → anything).

(23)

We shall return to this formula in a few lectures, once we have a better understanding of the

one-particle to one-particle amplitudes.

Application to the λφ4 Theory.

In potential scattering, the first Born approximation yields a real scattering amplitude,

but at the higher orders of perturbation theory the amplitude becomes complex, with both

real and imaginary parts. Likewise, in quantum field theory the tree-level amplitudes are

real, — at least for the elastic scattering in the forward direction, — but the loop corrections

make for complex amplitudes. The reason for this behavior is the optical theorem (21), plus

power-of-the-coupling counting in the perturbation theory. Let’s see how this works for the

λφ4 theory.

For the elastic scattering Mtree = −λ (regardless of momenta) while the loop corrections

are of the higher order in λ, hence

dσelastic

dΩcm
=

λ2 +O(λ3)

64π2s
(24)
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and

σelasticnet =
λ2 +O(λ3)

64π2s
×

4π

2
=

λ2 +O(λ3)

32πs
. (25)

For the inelastic processes 2 → n (n ≥ 4), the tree amplitude is O(λn/2) and the loop

corrections are of higher order, hence M = O(λn/2) and

σinelastic = O(λn) for n ≥ 4. (26)

Consequently,

σtotal = σelasticnet + O(λ4) =
λ2 +O(λ3)

32πs
. (27)

By the optical theorem, this gives us the imaginary part of the forward elastic amplitude as

ImM

(
elastic

forward

)
= 2E1E2|v

rel
12 | ×

λ2 +O(λ3)

32πs
, (28)

where in the center of mass frame

2E1E2|v
rel
12 | = 2E2 × 2v = s× v (29)

(where v is the speed of each particle relative to the CM), hence

ImM

(
elastic

forward

)
=

λ2v

32π
+ O(λ3). (30)

In terms of the loop counting for the amplitude on the LHS here, this means

ImMtree

(
elastic

forward

)
= 0, (31)

while ImM1 loop

(
elastic

forward

)
=

λ2v

32π
> 0. (32)

Note: the optical theorem not only explains why the tree amplitude is real while the one-

loop amplitude is complex, it also gives us specific predictions for the imaginary part of the

one-loop amplitude in terms of the tree-level total cross-section. In the same way, it would

give us a specific prediction for the imaginary part of the two-loop amplitude in terms of

the one-loop total cross-section, etc., etc. But let’s not get too far into the higher-order

calculations.
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Instead, let’s verify the tree-level and 1-loop level predictions (31) and (32). At the tree

level, we indeed have

Melastic
tree = −λ, ImMelastic

tree = 0 (33)

for any scattering angle θ and not just θ = 0. Likewise, we shall see im a moment that

∀θ : ImMelastic
1 loop =

λ2v

32π
(34)

where

v =
|p|

E
=

√
1−

m2

E2
=

√
1−

4m2

s
. (35)

Indeed, we have seen earlier in class that

Melastic
1 loop =

λ2

32π2

(
J(4) − J(t/m2) − J(u/m2) − J(s/m2)

)
, (36)

where

J(t/m2) =

1∫

0

dx log
m2 − tx(1 − x)

m2
(37)

and likewise for J(u/m2) and J(s/m2). For elastic scattering t < 0, hence

J(t) =

1∫

0

dx log
m2 + positive

m2
, (38)

which is real and positive. Likewise, u < 0 and hence J(u/m2) is real and positive. But

s > +4m2, which makes J(s/m2) complex rather than real. Indeed,

J(s/m2) =

1∫

0

dx log
m2 − sx(1− x)

m2
, (39)
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and for s > +4m2 the argument of the logarithm here becomes negative for some x:

x
x1 x2

x1,2 =
1

2
∓

√
1

4
−

m2

s
=

1∓ v

2
. (40)

For a negative or complex argument the logarithm becomes complex,

log(z) = log(|z|) + i arg(z), (41)

which has a branch cut in the complex z plane along the negative half of the real axis,

z

thus

log(negative± iǫ) = real ± iπ. (42)

Consequently,

Im log
m2 − sx(1 − x)

m2
=

{
±π for x1 < x < x2,

0 otherwise,
(43)

and therefore

Im J(s/m2) =

1∫

0

dx Im log
m2 − sx(1− x)

m2
= ±π × (x2 − x1) = ±πv (44)

(where v is the particles’ speed in the CM frame). The sign of this imaginary part depends

on the side of the logarithm’s branch cut we end up on for negative m2 − sx(1 − x), which
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in turn depends on the analytic continuation from a real s to s+ iǫ or to s− iǫ:

for s → s+ iǫ, m2 − sx(1 − x) = real − iǫ =⇒ log = real − iπ,

while for s → s− iǫ, m2 − sx(1− x) = real + iǫ =⇒ log = real + iπ,
(45)

and hence

Im J
(
(s± iǫ)/m2

)
= ∓πv. (46)

In the context of the one-loop elastic amplitude (36), this means

ImMelastic
1 loop (s± iǫ, t) = −

λ2

32π2
Im J((s± iǫ)/m2) = ±

λ2v

32π
. (47)

As we see, this formula is in perfect agreement with the optical theorem’s prediction (32),

provided we interpret s as s+ iǫ.

The reason for the choice of s → s + iǫ rather than s → s− iǫ stems from the origin of

the J(s/m2) in the s-channel amplitude

F(s) =
λ2

2

1∫

0

dx

∫

reg

d4k

(2π)4
−i

[k2 −∆(x, s) + iǫ]2
, (48)

cf. eq. (20) of my introductions to the one-loop amplitudes for a similar t-channel amplitude.

After the Wick rotation to the Euclidean momentum space, eq. (48) becomes

F(s) =
λ2

2

1∫

0

dx

∫

reg

d4kE
(2π)4

1

[k2E +∆(x, s)−iǫ]2
. (49)

For a similar t-channel amplitude, we may disregard the−iǫ term in the denominator because

∆(x, t) > 0 for all x so there are no poles in the Euclidean momentum space. But in the s

channel ∆(x, s) turns negative for some x, so we should retain the −iǫ term. Hence, in all
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the following formulae for the s channel we should replace ∆(x, s) with

∆(x, s) − iǫ = m2 − x(x− x)× s − iǫ = m2 − x(1− x)× (s+ iǫ), (50)

which is equivalent to replacing s → s + iǫ. And that’s how we end up with J((s + iǫ)/m2

in the s-channel amplitude and therefore

Melastic
1 loop =

λ2

32π2

(
J(4) − J(t/m2) − J(u/m2) − J((s+ iǫ)/m2)

)
. (51)

In my next set of notes about the field correlation functions I shall give you a more

general reason for always interpreting s as s+ iǫ rather than s− ⊂ ǫ.
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