
Quantization of Yang–Mills Theories

Consider pure Yang–Mills theory with some simple gauge group G. Classically, the only

fields of the theory are the gauge fields Aa
µ(x) in the adjoint multiplet of G. The Euclidean

Lagrangian is

LE = +
1

4

∑

a

(
F a
µν

)2
(1)

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν (2)

are the non-abelian tension fields, g is the gauge coupling constant, and fabc are the structure

constants of the Lie algebra of G. That is, the generators T a of G obey [T a, T b] = ifabcT c.

In perturbation theory we decompose the Lagrangian into quadratic, cubic, and quartic

terms,

L = L2 + gL3 + g2L4 ,

L2 = 1
4

(
∂µA

a
ν − ∂νA

a
µ

)2
= 1

2

(
∂µA

a
ν

)2
− 1

2

(
∂µA

a
µ

)2
,

L3 = −1
2

(
∂µA

a
ν − ∂νA

a
µ

)
× fabcAb

µA
c
ν ,

L4 = 1
4

(
fabcAb

µA
c
ν

)2
.

(3)

In the Feynman rules, the propagators should come from the quadratic part L2 while the

vertices should come from the cubic and the quartic parts. But the quadratic part here looks

like |G| species of photons and it suffers from exactly the same quantization problem as the

QED: the Euclidean path integral over the free Aa
µ(x) fields diverges for for generic sources

Ja
µ(x) and does not give us a valid propagator.

Just as in QED, the solution to this problem is to fix a gauge. That is, for every config-

uration Aa
µ(x) of the gauge fields, we replace it with a gauge-equivalent configuration

Λ
Aa
µ(x)

which obeys some simple constraint at every point x, for example the Landau gauge con-

straint

∂µ
Λ
Aa
µ(x) ≡ 0 ∀x, ∀a. (4)
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Consequently, the naive path integral of the YM theory becomes

Znaive[J ] =

∫∫∫
D[Aa

µ(x)] exp
(
−SE [A, J ]

)

→

∫∫∫
D[Aa

µ(x)] exp
(
−SE [A, J ]

)
×

∫∫∫
D[Λa(x)]∆[∂µ

Λ
Aa
µ(x)]× Det[FP ]

(5)

where
Λ
Aa
µ(x) obtains from the Aa

µ(x) via the gauge transform parametrized by the Λa(x) (I’ll

write an explicit formula in a moment), and Det[FP ] is the Fadde’ev–Popov determinant,

Det[FP ] = Det

[
δ(∂µ

Λ
Aa
µ)

δΛb

]
. (6)

Formally, on the second line of eq. (5), the integral is over un-constrained YM potentials

Aa
µ(x) and also over independent gouge transform parameters Λa(x); it’s the ∆[∂µ

Λ
Aa
µ] factor

which enforces the Landau gauge condition. Consequently, we may integrate over the Aa
µ(x)

before integrating over the Λa(x), thus

Znaive[J ] =

∫∫∫
D[Λa(x)]

∫∫∫
D[Aa

µ(x)] exp
(
−SE [A, J ]

)
×∆[∂µ

Λ
Aa
µ(x)]×Det[FP ]

=

∫∫∫
D[Λa(x)] Ẑ[J,Λ] (7)

where

Ẑ[J,Λ] =

∫∫∫
D[Aa

µ(x)] exp
(
−SE [A, J ]

)
×∆[∂µ

Λ
Aa
µ(x)]×Det[FP ]. (8)

The YM action is gauge invariant, so in the integral (8) we may replace

SE(A, J ] → SE [
Λ
A, J ]. (9)

Also, the integral (8) is over the un-constrained Aa
µ(x) and it’s taken for a fixed Λa(x), so

presuming the functional integral’s measure is gauge invariant, we may change the integration

variable from Aa
µ(x) to

Λ
Aa
µ(x),

D[Aa
µ(x)] → D[

Λ
Aa
µ(x)], (10)

thus

Ẑ[J,Λ] =

∫∫∫
D[

Λ
Aa
µ(x)] exp

(
−SE [

Λ
A, J ]

)
×∆[∂µ

Λ
Aa
µ(x)]×Det[FP ]. (11)

Note that the only Λ dependence of this functional integral is via the integration variable
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Λ
Aa
µ. However, since we integrate over all possible

Λ
Aa
µ(x), we may just as well rename this

variable
Λ
Aa
µ(x) → Aa

µ(x), thus

Ẑ[J, 6Λ] =

∫∫∫
D[Aa

µ(x)] exp
(
−SE [A, J ]

)
×∆[∂µA

a
µ(x)]× Det[FP ]. (12)

This formula makes Ẑ manifestly Λ-independent! Consequently, eq. (7) becomes

Znaive[J ] = Ẑ[J only]×

∫∫∫
D[Λa(x)]. (13)

where the second factor is a constant. Moreover, this constant stems from integration over

the physically redundant degrees of freedom of the YM potentials Aa
µ(x), so we should simply

discard it. In other words, we redefine the partition function of the YM theory as Ẑ rather

than Znaive,

Z[J ] = Ẑ[J, only] =

∫∫∫
D[Aa

µ(x)] exp
(
−SE [A, J ]

)
×∆[∂µA

a
µ(x)]× Det[FP ]. (14)

The above formulae seem to work exactly as in QED, but the devil is in the details:

The non-abelian gauge transforms are more complicated, which makes the Fadde’ev–Popov

determinant depend on the vector fields Aa
µ. Indeed, the non-abelian gauge transforms do

not merely shift the Aµ by ∂µΛ(x) but also rotate the components Aa
µ into each other. For

the infinitesimal gauge transform parameters Λa(x),

δAa
µ(x) = −∂µΛ

a(x) − gfabcΛb(x)Ac
µ(x) = −DµΛ

a(x), (15)

while the finite gauge transforms are best written in matrix notations for the symmetry

group G: The transform is parametrized by the x–dependent symmetry matrix U(x) =

exp(igΛa(x)T a), while the matrix-valued vector field Aµ(x) = gAa
µ(x)T

a transforms as

Aµ(x) −→ U(x)×Aµ(x)× U−1(x) + i∂µU(x)× U−1(x). (16)

Fortunately, the Fadde’ev–Popov determinant does not depend on the finite gauge transform

that gets us from some original Aa
µ(x) to the

Λ
Aa
µ(x) that obey the Landau gauge constraint.
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All we need are the infinitesimal variations of that gauge transform, and we can build them

in two stages:

first, Aa
µ(x) −−−→

finite

Λ
Aa
µ(x) , which obeys ∂µ

Λ
Aa
µ(x) ≡ 0,

second
Λ
Aa
µ(x) −−→

infi

Λ+δλ
Aa
µ(x) =

Λ
Aa
µ(x) − DµδΛ

a(x).
(17)

The Fadde’ev–Popov determinant depends only on the second stage here; indeed, once we

gauge-fix the
Λ
Aa
µ(x), further infinitesimal gouge transformation δΛa(x) changes the field by

δ
Λ
Aa
µ(x) = −DµδΛ

a(x), (18)

hence

δ
(
∂µ

Λ+δλ
Aa
µ(x)

)

δΛb(y)
= −∂µDµδ

abδ(4)(x− y). (19)

Thus, the Fadde’ev–Popov determinant is

Det[FP ] = Det

[
δ
(
∂µ

Λ+δλ
Aa
µ(x)

)

δΛb(y)

]
= Det

[
(−∂µDµ)

a
b

]
, (20)

where the differential operator — a product of an ordinary derivative ∂µ and a covariant

derivative Dµ — act on an adjoint multiplet of scalar fields ϕa(x) in the 4D Euclidean space,

[−∂µDµϕ]
a = −∂2ϕa + ∂µ

(
fabcAb

µϕ
c
)
. (21)

The non-abelian second term here makes for a big difference between the YM theories and

the electromagnetism: in the YM case, the Fadde’ev–Popov determinant depends on the

vector field Aa
µ(x).

We may re-implement the Fadde’ev–Popov determinant (20) using a fermionic path

integral. Indeed, the determinant of any matrix Oij of differential operators obtains from

the fermionic path integral

∫∫∫
D[ψi(x)]

∫∫∫
D[ψj(x)] exp

(
−

∫
d4xe ψiOijψj

)
= Det[Oij ]. (22)

The number of ψi and the ψj fields here depends on the matrix size of the Oij , and their

indices should be of the same type. In particular, for the Fadde’ev–Popov determinant (20)
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the fermionic fields should carry the adjoint indices of the gauge symmetry, thus

Det[FP ] =

∫∫∫
D[c̄a(x)]

∫∫∫
D[ca(x)] exp

(
+

∫
d4xe c̄

a∂µDµc
a = −

∫
d4xe ∂µc̄

aDµc
a

)
. (23)

On the other hand, since the operator −∂µDµ does not have any Dirac indices, the fermionic

fields ca(x) and c̄a(x) — called the Fadde’ev–Popov ghost fields — are spinless scalar fields

despite their fermionic statistics! This violates the spin-statistics theorem, so quanta of the

ghost fields are not physical particles, and their Hilbert space has negative norm.

In terms of the ghosts fields, the partition function (12) for the Yang–Mills theory be-

comes

Z =

∫∫∫
D[Aa

µ(x)]∆[∂µA
a
µ(x)]

∫∫∫
D[c̄a(x)]

∫∫∫
D[ca(x)]

exp

(
−

∫
d4xe

(
1
4F

a
µνF

a
µν − Ja

µA
a
µ + ∂µc̄

aDµc
a
))

.

(24)

In other words, the quantum theory has both vector and ghost fields, its effective Euclidean

Lagrangian is

Leff = 1
4F

a
µνF

a
µν + ∂µc̄

aDµc
a, (25)

and the vector fields are constrained by the Landau gauge condition ∂µA
a
µ(x) ≡ 0. Thanks

to this condition, the theory has well-defined vector propagators:

a

µ

b

ν
=

δab

k2

(
δµν −

kµkν
k2

)
(Euclidean)

=
−iδab

k2 + i0

(
gµν −

kµkν
k2 + i0

)
(Minkowski).

(26)

Sometimes it is more convenient to use the Feynman gauge or a more general ξ gauge.

To change the gauge, we proceed similar to QED. First, we modify the right hand side of

the Landau gauge constraint and demand ∂µA
a
µ(x) ≡ ωa(x) for a fixed ωa(x). This change
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does not affect the Fadde’ev–Popov determinant, so the partition function becomes

Z[J, ω] =

∫∫∫
D[Aa

µ(x)]∆[∂µA
a
µ(x)− ωa(x)]

∫∫∫
D[c̄a(x)]

∫∫∫
D[ca(x)]

exp

(
−

∫
d4xe

(
1
4F

a
µνF

a
µν − Ja

µA
a
µ + ∂µc̄

aDµc
a
))

.

(27)

By gauge invariance of the original theory, this partition function does not depend on the

ωa(x), so we may just as well average it over the ω configurations with some Gaussian weight.

In other words, we add to the theory a non-propagating auxiliary field — or rather an adjoint

multiplet of auxiliary fields ωa(x) — with a quadratic Lagrangian

Lω =
1

2ξ
ωaωa , (28)

Consequently, the partition function becomes

Z[J ] =

∫∫∫
D[ωa(x)] exp

(
−1

2ξ

∫
d4xE ω

aωa

)
× Z[J, ω]

=

∫∫∫
D[ωa(x)]

∫∫∫
D[Aa

µ(x)]∆[∂µA
a
µ(x)− ωa(x)]

∫∫∫
D[c̄a(x)]

∫∫∫
D[ca(x)]

exp

(
−

∫
d4xE

(
1
4F

a
µνF

a
µν − Ja

µA
a
µ + ∂µc̄

aDµc
a +

1

2ξ
ωaωa

))
.

(29)

But in the last integral, we may use the ∆[Aa
µ(x)−ω

a(x)] functional to eliminate the auxiliary

fields ωa instead of constraining the vector fields, thus

Z[J ] =

∫∫∫
D[Aa

µ(x)]

∫∫∫
D[c̄a(x)]

∫∫∫
D[ca(x)] exp

(
−

∫
d4xE

(
Lnet − Ja

µA
a
µ

))
(30)

where the net Euclidean Lagrangian is now

Lnet = 1
4F

a
µνF

a
µν +

1

2ξ

(
∂µA

a
µ

)2
+ ∂µc̄

aDµc
a (31)

and the vector fields are no longer constrained. Instead, we have the gauge-fixing term

(∂µA
a
µ)

2/2ξ in the Lagrangian. Adding this term to the quadratic part of the original YM
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Lagrangian, we arrive at the ξ–gauge propagators for the vector fields,

a

µ

b

ν
=

δab

k2

(
δµν + (ξ − 1)×

kµkν
k2

)
(Euclidean)

=
−iδab

k2 + i0

(
gµν + (ξ − 1)×

kµkν
k2 + i0

)
(Minkowski).

(32)

The Feynman gauge is the special case of this gauge for ξ = 1.
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