
RELATIVISTIC ELECTROMAGNETIC FIELDS

In 3D terms, the electric and the magnetic fields E and B are both vector fields, so

altogether there are 6 field components. Relativistically, these 6 components form an anti-

symmetric tensor field Fµν(x) = −F νµ(x) according to

F 00 = 0, F i0 = +Ei, F 0j = −Ej , F ij = −εijkBk, for i, j = 1, 2, 3. (1)

In terms of the Fµν tensor, the homogeneous pair of Maxwell equations

∇ ·B = 0 and
1

c

∂B

∂t
+ ∇× E = 0 (2)

(in rationalized Gauss units) can be written as

∂λFµν + ∂µF νλ + ∂νF λµ = 0, (3)

or equivalently as

∂[λFµν] = 0 (4)

where [λµν] denote total antisymmetrization of the 3 Lorentz indices, or in terms of the 4D

Levi–Civita tensor as

εαλµν∂
λFµν = 0. (5)

Indeed, using the convention ε0123 = +1 (but ε0123 = −1), we have for α = 0

1
2ε0λµν∂

λFµν = 1
2ε
ijk∂iF jk = (−∇i)(−Bi) = ∇ ·B, (6)

while for α = i = 1, 2, 3

1
2εiλµν∂

λFµν = 1
2εi0jk∂

0F jk + 1
2εij0k∂

jF 0k + 1
2εijk0∂

jF k0

= −1
2ε
ijk

(
1

c

∂

∂t

)(
−εjk`B`

)
+ 1

2ε
ijk
(
−∇j

)(
−Ek

)
− 1

2ε
ijk
(
−∇j

)(
+Ek

)
= +

1

c

∂

∂t
Bi + εijk∇jEk.

(7)

Thus, for α = 0 eq. (5) amounts to ∇·B = 0 while for α = 1, 2, 3 it amounts to the Induction
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Law,

1

c

∂B

∂t
+ ∇× E = 0. (8)

As to the inhomogeneous pair of Maxwell equations

∇ · E = ρ and ∇×B − 1

c

∂E

∂t
=

1

c
J (9)

(in rationalized Gauss units
?
), in relativistic notations they become

∂µF
µν =

1

c
Jν (10)

where Jµ = (cρ,J) is the electric current 4–vector. Indeed, for ν = 0 we have

∂µF
µ0 = ∂iF

i0 = ∇iEi = ∇ · E (11)

so eq. (10) becomes the Gauss Law ∇ · E = 1
cJ

0 = ρ, while for µ = j = 1, 2, 3 we have

∂µF
µj = ∂0F

0j + ∂iF
ij

=
1

c

∂

∂t

(
−Ej

)
+ ∇i

(
−εijkBk = +εjikBk

)
=

(
∇×B − 1

c

∂E

∂t

)j (12)

so that eq. (10) becomes the Maxwell–Ampere Law (9).

? The rationalized Gauss units — also called the Lorentz–Heaviside units — use factors of 4π similar to
the MKSA units instead of the ordinary Gauss units. On the other hand, the rationalized Gauss units
have factors of 1/c similar to the ordinary Gauss units and no factors of ε0 or mu0. For example, the
Coulomb force in the rationalized Gauss units is F12 = q1q2/(4πr

2).
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Consistency of the inhomogeneous Maxwell equations (10) requires the electric current

Jν to obey the continuity equation

∂νJ
ν =

∂ρ

∂t
+ ∇ · J = 0. (13)

Indeed,

1

c
∂νJ

ν = ∂ν∂µF
µν 〈〈 by eq. (10) 〉〉

= 1
2∂µ∂νF

µν − 1
2∂µ∂νF

νµ 〈〈 by antisymmetry Fµν = −F νµ 〉〉

= 1
2∂µ∂νF

µν − 1
2∂ν∂µF

µν 〈〈 relabeling µ↔ ν in the second term 〉〉

= 1
2 [∂ν , ∂µ]Fµν = 0. 〈〈 since ∂ν and ∂µ commute 〉〉.

(14)

Physically, the continuity equation (13) means local conservation of the electric charge. That

is, not only the net charge of the whole Universe is conserved, but the charge inside any closed

volume changes only due to the net current through that volume’s surface. In other words,

the electric charges cannot suddenly jump from one space point to another but must flow

with the current.

In high-energy-physics terminology, the continuity equation (13) for the current and the

local conservation of the charge are usually conflated, and we call the electric current Jν itself

a conserved current. The same terminology applies to the other kinds of locally conserved

charges — like the baryon number or the lepton number, — we refer to the corresponding

currents which obey continuity equations ∂νJ
ν = 0 as conserved currents. And the continuity

equation itself is called the current conservation equation.

Now consider the scalar potential Φ(x, t) and the vector potential A(x, t) for the EM

fields. In terms of these potentials, the tension fields are

B = ∇×A and E = −1

c

∂A

∂t
− ∇Φ. (15)

As long as the E and B have this form for any A(x, t)) and Φ(x, t), the homogeneous

Maxwell equations (2) are automatically satisfied. Conversely, any E(x, t) and B(x, t) field

which obey the homogeneous Maxwell equations for all (x, t) can always be written in the
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form (15) for some potentials A(x, t)) and Φ(x, t). However, such potentials are not unique:

they may be gauge transformed according to

A(x, t) → A′(x, t) = A(x, t) + ∇Λ(x, t),

Φ(x, t) → Φ′(x, t) = Φ(x, t) − 1

c

∂

∂t
Λ(x, t),

(16)

for any Λ(x, t) — as long as it’s the same Λ(x, t) in both eqs. (16) — without changing the

tension fields E and B,

E′(x, t) = E(x, t) and B′(x, t) = B(x, t). (17)

In relativistic notations, the 3–scalar potential Φ and the 3–vector potential A combine

into the 4–vector potential Aµ = (Φ,A) while eqs. (15) for the tension fields become

Fµν(x) = ∂µAν(x) − ∂νAµ(x) = − F νµ(x). (18)

Indeed, for the electric components of the Fµν tensor eq. (18) amounts to

Ei = F i0 = ∂iA0 − ∂0Ai = −∇iΦ − 1

c

∂

∂t
Ai (19)

while for the magnetic components we have

εijkBk = −F ij = −∂iAj + ∂jAi = +∇iAj − ∇jAi = εijkεk`m∇`Am = εijk(∇×A)k.

(20)

In relativistic notations, the tensor field (18) automatically obeys the homogeneous Maxwell

equation (4) as

∂[λFµν] = ∂[λ∂µAν] − ∂[λ∂νAµ] = 2∂[λ∂µAν] = 0 (21)

because ∂[λ∂µ] = [∂λ, ∂µ] = 0 — the spacetime derivatives commute with each other, so an-

tisymmetrizing them yields an automatic zero. Conversely, by the Poincare Lemma (which
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generalizes Green, Stokes, and Gauss theorems of 3D vector calculus), any antisymmetric

tensor field Fµν(x) that obeys the homogeneous Maxwell equation throughout the 4D space-

time can be written in the form (18) for some 4–vector potential Aµ(x). But of course such

4–vector potential is not unique: a gauge transformed potential

A′µ(x) = Aµ(x) − ∂µΛ(x) 〈〈 note the sign 〉〉 (22)

for any scalar Λ(x) yields exactly the same Fµν tensor as the original Aµ. Indeed,

F ′µν = ∂µ
(
Aν−∂νΛ

)
− ∂ν

(
Aµ−∂µΛ

)
=
(
∂µAν−∂νAµ

)
−
[
∂µ, ∂ν

]
Λ = Fµν − 0. (23)

Lagrangian Formalism

In the Lagrangian formulation of the electromagnetism, the 4 components of the Aµ(x)

potential are treated as independent fields, while the Fµν(x) tensor field is defined as

Fµν(x)
def
= ∂µAν(x) − ∂νAµ(x). (24)

Consequently, regardless of the Lagrangian, the Fµν field obeys the homogeneous Maxwell

equation ∂[λFµν] = 0 as a second-derivative identity. On the other hand, the inhomogeneous

Maxwell equation ∂µF
µν = (1/c)Jν emerges as an Euler–Lagrange equation stemming from

the action

S
[
Aµ(x)] =

1

c

∫
d4xL (25)

for L = −1

4
FµνF

µν − 1

c
JνA

ν (26)

where the first term technically is merely a compact way of writing

−1

4

(
∂µAν − ∂νAµ

)(
∂µAν − ∂νAµ

)
. (27)
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In 3D notations, the Lagrangian density (26) is

L = 1
2

(
E2 −B2

)
− ρΦ +

1

c
J ·A (28)

where again the first term is merely a compact form of writing

1

2

(
−1

c

∂A

∂t
− ∇Φ

)2

− 1

2

(
∇×A

)2
. (29)

Let’s derive the Euler–Lagrange equations form the Lagrangian density (26) and see that

they are indeed the inhomogeneous Maxwell equations. Since the Fαβ tensor involves the

derivatives of the potentials Aµ but not the potential themselves, it follows that

∂Fαβ
∂Aν

= 0 while
∂Fαβ

∂(∂µAν)
= δµαδ

ν
β − δναδ

µ
β . (30)

Consequently,

∂L
∂Aν

= −1

c
Jν (31)

while

∂L
∂(∂µAν)

=
∂L
∂Fαβ

×
∂Fαβ

∂(∂µAν)
= −2

4
Fαβ ×

(
δµαδ

ν
β − δναδ

µ
β

)
= −1

2F
µν + 1

2F
νµ = −Fµν .

(32)

Consequently, the Euler–Lagrange equations for each components Aν(x) of the vector po-

tential, namely

∀ν : ∂µ

(
∂L

∂(∂µAν)

)
− ∂L

∂Aν
= 0, (33)

become

−∂µFµν +
1

c
Jν = 0, (34)

which are indeed the inhomogeneous Maxwell equations in 4–vector notations.
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Now consider the behavior of the Lagrangian density (26) and the action (25) under

gauge transforms of the potentials,

A′
µ(x) = Aµ(x) − ∂µΛ(x), F ′

µν(x) = Fµν(x). (35)

Obviously the FµνF
µν term of the Lagrangian (26) is gauge invariant, but the source term

JνA
ν is not, thus

L′ = L +
1

c
Jν∂νΛ (36)

and hence

S′ = S +
1

c2

∫
d4x Jν(x)∂νΛ(x)

= S − 1

c2

∫
d4x

(
∂νJ

ν(x)
)
× Λ(x) + a boundary term.

(37)

Moreover, for the current which turns off at spacetime infinity, Jν → 0 for x → 0, the

boundary term vanishes, thus

∆S = − 1

c2

∫
d4x

(
∂νJ

ν(x)
)
× Λ(x), (38)

which means that the EM action is gauge invariant if and only if the electric current is

conserved, ∂νJ
ν(x) ≡ 0.

We have seen that for a non-conserved current with ∂νJ
ν 6= 0, the Maxwell equations

would be inconsistent. In terms of the least action principle, for a non-conserved current the

EM action (25) does not have any local minima. Instead, for any potential configuration

Aµ(x) the action can always be decreased by an appropriate gauge transform. Physically,

∂νJ
ν 6= 0 would source a non-existent longitudinal polarization of the EM waves, and the

Maxwell equations would be inconsistent precisely because such polarization does not exist!

Now let’s count the dynamical EM degrees of freedom (per space point x). Naively,

there are 4 independent potentials Aµ(x) subject to second-order PDEs, so there should

be 4 dynamical degrees of freedom. But two separate effects reduce this number to just 2

dynamical degrees of freedom:
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1 : The scalar potential A0 = Φ appears in the Lagrangian density L without a time

derivative ∂A0/∂t — only the A0 itself and its space derivatives ∇A0 enter L. Con-

sequently, from the time-evolution point of view, the A0 is not a dynamical variable

but rather an auxiliary field enforcing the Gauss Law ∇ ·E = ρ as a time-independent

constraint. This leaves us with only three dynamical EM degrees of freedom, namely

A1, A2, and A3.

2 : For a gauge-invariant action S[A], we may treat gauge transforms of the potentials

Aµ(x) parametrized by an arbitrary Λ(x) as redundancies. In other words, the true

degrees of freedom are the EM potentials modulo gauge transforms. Or equivalently,

we may use this redundancy to impose a gauge-fixing constraint, for example an axial

gauge A3 ≡ 0, or Coulomb gauge ∇ · A ≡ 0, or Landau gauge ∂µA
µ ≡ 0. Any

such gauge fixing imposes one constraint at every space point x, which eliminates one

dynamical degree of freedom.

? And that’s how the EM fields end up with 4−1−1 = 2 dynamical degrees of freedom.

In terms of plane waves, these 2 degrees of freedom correspond to 2 transverse polar-

izations — but no longitudinal or temporal polarizations. And in the quantum theory,

a photon with a given momentum p has only 2 independent polarization states.

Note that without gauge invariance of the action, the Aµ(x) fields would not be redun-

dant, and we would end up with 3 rather then 2 dynamical degrees of freedom. Indeed,

consider a massive relativistic vector field Aµ(x) with Lagrangian density

L = −1

4
FµνF

µν +
κ2

2
AµA

µ − 1

c
JµA

µ. (39)

As you shall see in homework set 1 (problem#1), for this theory the vector field obeys

∂µA
µ =

1

cκ2
∂µJ

µ −→ 0 for a conserved current (40)

and hence (
∂2 + κ2

)
Aµ =

1

c
Jµ. (41)
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In particular, the plane-wave solutions for the Aµ in the absence of the current look like

Aµ(x) =
(
constant aµ

)
× exp(ikνxν) (42)

where the wave vector kν has kνkν = κ2 — and hence the quanta have mass m = κh̄/c

— while the polarization vector aµ obeys aµk
µ = 0. Consequently, for each allowed wave

vector k, there are 3 independent polarizations aµ, rather than only 2 polarizations of the

EM waves.
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