
Electric Current Conservation and Ward–Takahashi Identities

Outline

(1) Introduction.

(2) Current conservation in Quantum Field Theories.

(3) Formal proof of Ward–Takahashi identities.

(4) Ward–Takahashi identities for renormalization.

• Diagrammatic proof of Ward–Takahashi identities is explained in a separate set of

notes.

(1) Introduction

QED has a large family of Ward–Takahashi identities. Of particular importance are two

series of WT identities for the off-shell amplitudes involving 0 or 2 electronic external lines

and any number N of photonic external lines.

• No electrons, N photons amplitudes

= iV µ1...µN

N (k1, . . . , kN ) −−−−−−→
shorthand

iV 1,...,N
N . (1)

The VN are amputated amplitudes, meaning no external leg bubbles in the diagrams,

and the external legs themselves are not included in the amplitudes. Ward–Takahashi

identities for the VN are simply

∀i, (ki)µi
× V µ1...µN

N (k1, . . . , kN ) = 0. (2)
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• 2 electrons, N photons amplitudes

= S
µ1...µN

N
(p′, p; k1, . . . kN ) −−−−−−→

shorthand
SN (p′, p). (3)

The double straight lines with valence = 1 vertices at their ends indicate that the

SN amplitude include the dressed propagators for the electrons’ external legs, meaning

both the free propagators and the arbitrary number of the external leg bubbles; in

other words, the electrons’ external legs are not amputated. On the other hand, all the

photons’ external legs are amputated: they include neither outside photon propagators

nor any external leg bubbles.

Ward–Takahashi for the SN amplitudes are recursive relations relating SN to SN−1,

namely

∀i, (ki)µi
×S

µ1,...,µi,...,µN

N
(p′, p) = eS

µ1,...,\µi,...,µN

N−1
(p′, p+ki) − eS

µ1,...,\µi,...,µN

N−1
(p′−ki, p).

(4)

The sign convention for the external momenta here is as follows: All the photons’

momenta ki are treated as incoming, while the electron momenta follow the charge

arrows: p is incoming while p′ is outgoing, hence p′ − p = k1 + · · ·+ kN .

Besides these two series, there are Ward–Takahashi identities for amplitudes with more

electronic external lines, — or for other kinds of charged particles you might want to add

to basic QED. Most generally, consider any kind of QFT, with any kinds of charged and

neutral fields, as long as they include the EM fields Aµ(x) coupled to the conserved electric

current, ∂µJ
µ(x) = 0. For any such QFT, consider an amplitude SN,M involving N photons

and M particles of other kinds, charged or neutral,
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= Sµ1...µN

N,M (p1, . . . , pM ; k1, . . . , kN ). (5)

Similar to the 2-electron amplitudes (3), the N photonic external lines here are amputated

while the M external lines for all other particles include the dressed propagators. However,

here we all the external momenta as incoming, thus (p1+ · · ·+pM )+(k1+ · · ·+kN ) = 0. The

Ward–Takahashi identities for the general off-shell amplitudes (5) relate them to amplitudes

with one less photon, specifically

(ki)µi
× Sµ1...µN

N,M (p1, . . . , pM ; k1, . . . , kN )

= −
M
∑

j=1

Qj × S ···\µi···
N−1,M (p1, . . . , pj + k1, . . . , pM ; k1, . . . , \ki, . . . , kN )

(6)

where Qj is the electric charge of the particle #j.

Note that the basic Ward–Takahashi identities (2) and (4) are special cases of the general

WT identity (6). Indeed, the purely photonic amputated amplitude VN is the special case

SN,0 of the amplitude (5) for M = 0, and in this case the RHS of eq. (6) is simply zero,

hence the identity (2). Likewise, the two-electron amplitudes SN are special cases of SN,2

where the two non-photonic external legs belong to electrons. Or rather, treating both of

these legs as incoming, one positron of momentum p2 = −p′ and one electron of momentum

p1 = +p. Consequently, eq. (6) becomes

(ki)µi
× Sµ1...µN

N,2 (−p′, p; k1, . . . , kN )

= −(+e)× S ···\µi···
N−1,2(−p′ + ki, p; k1, . . . , kN )

− (−e)× S ···\µi···
N−1,2(−p′, p+ ki; k1, . . . , kN ),

(7)

and hence eq. (4).
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(2) Current Conservation in Quantum Field Theories

Consider a field theory with an exact U(1) phase symmetry — global or local, — and

the corresponding conserved current Jµ(x), ∂µJ
µ = 0. In the quantum theory, current

quantization formally means that in the Heisenberg picture the current operator Ĵµ(x) obeys

the continuity equation ∂µĴ
µ = 0. But since the current does not live in the vacuum — in

any sense of the word, — in practice we measure or calculate not the current operator itself

but rather its correlation functions with the other local operators of the theory, especially

the quantum fields themselves. So let

Gµ
n(x1, . . . , xn; y) = 〈Ω|Tϕ̂1(x1) · · · ϕ̂n(xn)× Ĵµ(y) |Ω〉 (8)

be such a correlation function of the current Ĵµ(y) with n fields ϕ̂i(xi) of any kind: charged

or neutral, vectors, spinor, scalar, whatever. For example, in basic QED each ϕ̂i can be any

of the Âν , Ψ̂α, or Ψ̂α. (To avoid clattering my notations, I suppress the vectors, spinor,

etc., indices of Gn due to the fields ϕi(xi) and keep only the index µ due to the current

Jµ(y).) In eq. (8), |Ω〉 is the physical vacuum state of the theory, while all the φ̂a(x) are

fully interacting fields in the Heisenberg picture of QM; likewise, the current operator Ĵµ(y)

is in the Heisenberg picture.

Naively, one might expect that the continuity equation ∂µĴ
µ(y) = 0 for the current

operator translates into similar continuity equations

∂

∂yµ
Gµ
n(x1, . . . , xn; y) = 0, (9)

but the reality is more complicated because the time-ordering in eq. (8) does not commute

with the time derivative for µ = 0. Indeed, for any two local operators Â(x) and B̂(y) we

have

∂

∂y0
T
(

Â(x)× B̂(y)
)

= T
(

Â(x)× ∂

∂y0
B̂(y)

)

+ δ(x0 − y0)×
[

Â(x), B̂(y)
]

(10)

where the second term stems from sudden re-ordering of the two factors when x0 = y0. In

particular, for a quantum field ϕ̂(x) and the conserved current Ĵµ(x)

∂

∂yµ
T
(

ϕ̂(x)× Ĵµ(y)
)

= T
(

ϕ̂(x)× ∂µĴ
µ(y)

)

+ δ(x0 − y0)×
[

ϕ̂(x), Ĵ0(y)
]

, (11)

where the first term on the RHS vanishes by the current conservation, but the second term
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gives rise to a singularity when x = y. Indeed, a field ϕ̂(x) of charge Q — that is, a field

creating particles of charge Q and/or annihilating particles of charge −Q, — obeys

[

ϕ̂(x), Q̂
]

= −Q× ϕ̂(x), (12)

hence for a local density Ĵ0(y) of the charge operator Q̂

[

ϕ̂(x), Ĵ0(y)
]

= −Q× δ(3)(x− y)× ϕ̂(x) when x0 = y0. (13)

Plugging this formula into eq. (11), we immediately arrive at

∂

∂yµ
T
(

ϕ̂(x)× Ĵµ(y)
)

= 0 + δ(4)(x− y)×−Q× ϕ̂(x). (14)

In the same way, for multiple fields inside the times ordering T we get

∂

∂yµ
T
(

ϕ̂1(x1) · · · ϕ̂n(xn)× Ĵµ(y)
)

= T
(

ϕ̂1(x1) · · · ϕ̂n(xn)
)

×
n
∑

j=1

(−Q[ϕj ])× δ(4)(xj − y).

(15)

Consequently, the correlation functions

Gµ
n(x1, . . . , xn; y) = 〈Ω|Tϕ̂1(x1) · · · ϕ̂n(xn)× Ĵµ(y) |Ω〉 (8)

of the conserved current obey

∂

∂yµ
Gµ
n(x1, . . . , xn; y) = −Fn(x1, . . . , xn)×

n
∑

j=1

Q[ϕj ]× δ(4)(xj − y) (16)

where

Fn(x1, . . . , xn) = 〈Ω|Tϕ̂1(x1) · · · ϕ̂n(xn) |Ω〉 (17)

is the correlation function of the same n fields but without the current operator Jµ(y).

The delta-function terms on the RHS of eq. (16) are called the contact terms because they

show up only when the current operator comes into direct contact with a field operator,

i.e. acts at exactly the same spacetime point y = xj . As we shall see in the next section,

it is the contact terms which are responsible for the non-zero RHS of the Ward–Takahashi

identities (4) or (6).
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To complete this section, let’s Fourier transform the contact terms — and hence eq. (16)

— to the momentum space. For n = 1, a contact term of the form f(x) × δ(4)(x − y)

transforms to

F (p, k) =

∫

d4x eipx
∫

d4y eiky × f(x)δ(4)(x− y)

=

∫

d4x eipx × eikx × f(x)

= f(p+ k),

(18)

which depends only on the sum p + k instead of separate dependence on the two momenta.

Likewise, for n > 1 a contact term of the form f(x1, . . . , xn)×δ(4)(xj−y) Fourier transforms

to f(p1, . . . , pj + k, . . . , pn), hence the RHS of eq. (16) transforms to

−
n
∑

j=1

Q[ϕj ]× Fn(p1, . . . , pj + k, . . . , pn). (19)

At the same time, the LHS of eq. (16) Fourier transforms to

−ikµ × Gµ
n(p1, . . . , pn; k), (20)

so the entire eq. (16) becomes

kµ × Gµ
n(p1, . . . , pn; k) = −i

n
∑

j=1

Q[ϕj ]×Fn(p1, . . . , pj + k, . . . , pn). (21)

(3) Formal Proof of Ward–Takahashi Identities

Eqs. (16) and (21) from the previous section apply to any conserved current Ĵµ(y) in

any QFT. Now let’s apply them to the electric current in QED, or perhaps a larger theory

including QED, like the Standard Model.

Diagrammatically, the correlation function Fn(x1, . . . , xn) is the net coordinate-space

amplitude of all the Feynman diagrams with n un-amputated external legs of appropriate
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kinds,

iFn(x1, . . . , xn) =

x1

x2x3

x4

x5

x6 x7

x8

(22)

For example, in basic QED (the EM and electron fields, and nothing else)

iF ···
6 (· · ·) = i 〈Ω|TΨ̂(x1)Ψ̂(x2)Ψ̂(x3)Ψ̂(x4)Â

κ(x5)Â
λ(x6) |Ω〉 =

x6

x5
x4x3

x2

x1

(23)

Now consider the correlation functions

Gµ
n(x1, . . . , xn; y) = 〈Ω|Tϕ̂a1(x1) · · · ϕ̂an(xn)× Ĵµ(y) |Ω〉 (8)

of the electric current Ĵµ(y) with the quantum fields. In basic QED Ĵµ(y) = −eΨ̂(y)γµΨ̂(y),

so in the Feynman rules for the correlation functions, Ĵµ(y) becomes an external vertex of

valence = 2 connected to 2 electron lines, one for the Ψ̂(y) and the other for the Ψ̂(y). For

example,

iGµ
6 (x1, . . . , x6; y) =

= i 〈Ω|T Ψ̂(x1)Ψ̂(x2)Ψ̂(x3)Ψ̂(x4)Â
λ(x5)Â

κ(x6) Ĵ
µ(y) |Ω〉 =

x6

x5
x4x3

x2

x1

y
(24)
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Note that the Dirac indexology of the bottom vertex at y is (−eγµ)αβ — which is exactly

similar to the photon’s vertex (ieγµ)αβ, apart from the overall factor of i. Consequently,

each diagram contributing to a Gn correlation function can be interpreted as i× the diagram

with an extra external EM field Âµ(y), except that we do not have the dressed propagator

for that extra EM field. In other words, the external leg for that extra photon is amputated,

unlike the un-amputated external legs for the other n fields.

Altogether, the Gn correlation function of n fields plus electric current is i× amplitude

with n un-amputated external legs plus one amputated leg for an extra photon, for example

Gµ
6 (x1, . . . , x6; y) =

= 〈Ω|T Ψ̂(x1)Ψ̂(x2)Ψ̂(x3)Ψ̂(x4)Â
λ(x5)Â

κ(x6) Ĵ
µ(y) |Ω〉 =

x6

x5
x4x3

x2

x1

y

µ
amputate

(25)

Now consider a general QFT including the QED — anything ranging from QED with

extra charged leptons to the Standard Model, — pretty musc any QFT which includes

the massless EM fields coupled to a conserved electric current. In any such theory, the

correlation functions of the electric current with n quantum fields have similar relations to

the amplitudes with n un-amputated legs and one amputated leg for an extra photon,

Gµ
n(p1, . . . , pn; k) =

(Q1; p1)
(Q2; p2)

(Qn; pn)

(k, µ)

amputated











































NOT amputated (26)

Eq. (21) relates such amplitudes (multiplied by the kµ) to the amplitudes Gn without the
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extra photon. Diagrammatically, this equation reads

kµ ×

(Q1; p1)
(Q2; p2)

(Qn; pn)

(k, µ)

amputated











































NOT

amputated

= −
n
∑

j=1

Qj×

(Q1; p1)

(Qj ; pj + k)

(Qn; pn)











































NOT

amputated

(27)

This diagrammatic equation is very similar to the general Ward–Takahashi identity

(ki)µi
× Sµ1...µN+1

N+1,M (p1, . . . , pM ; k1, . . . , kN+1)

= −
M
∑

j=1

Qj × S ···\µi···
N,M (p1, . . . , pj + ki, . . . , pM ; k1, . . . , \ki, . . . , kN+1),

(6)

except that the amplitudes

= iSµ1...µN

N,M (p1, . . . , pM ; k1, . . . , kN ). (28)

has all of their photonic external legs amputated, while the external legs for all other particle

species — charged or neutral — remain un-amputated. However, it is easy to translate

eq. (21) or eq. (27) to the language of the SN,M amplitudes by simply factoring out the
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dressed propagators for all the photons on both sides of the equation. Indeed, let N out

of n particles of the un-amputated n-particle amplitude Fn be photons while the remaining

M = n−N particles belong to other species, charged or neutral, then

Fµ1,...,µN

n (p1, . . . , pM ; k1, . . . , kN ) = Sν1,...,νN
N,M (p1, . . . , pM ; k1, . . . , kN )×

N
∏

i=1

(

dressed

prop

)µi

νi

(ki).

(29)

Likewise, for the Gn amplitude involving an extra photon

iGµ1,...,µN ;µ
n (p1, . . . , pM ; k1, . . . , kN ; k) = Sν1,...,νN ;µ

N+1,M (p1, . . . , pM ; k1, . . . , kN ; k)×

×
N
∏

i=1

(

dressed

prop

)µi

νi

(ki).
(30)

Note that there are only N dressed photon propagators in the is formula because the extra

photon’s propagator is already amputated.

Finally, we may rewrite eq. (21)as

kµ×iGµ1,...,µN ;µ
n (p1, . . . , pM ; k1, . . . , kN ; k)

= −
M
∑

j=1

Qj × Fµ1,...,µN

n (p1, . . . , pj + k, . . . , pM ; k1, . . . , kN )
(31)

where the sum on the RHS is limited to the non-photonic external lines since the photons

have Qj = 0. Consequently, plugging eqs. (30) and (29) into this formula, we obtain

kµ×Sν1,...,νN ;µ
N+1,M (p1, . . . , pM ; k1, . . . , kN ; k)×

N
∏

i=1

(

dressed

prop

)µi

νi

(ki)

= −
M
∑

j=1

Qj × Sν1,...,νN
N,M (p1, . . . , pj + k, . . . , pM ; k1, . . . , kN )×

N
∏

i=1

(

dressed

prop

)µi

νi

(ki),

(32)

where the product of N dressed photon propagators is exactly the same on both sides of the

equation. Consequently, dropping this product on both sides, we finally arrive at the general
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Ward–Takahashi identity for the SM,N amplitudes,

kµ × Sν1,...,νN ;µ
N+1,M (p1, . . . , pM ; k1, . . . , kN ; k)

= −
M
∑

j=1

Qj × Sν1,...,νN
N,M (p1, . . . , pj + k, . . . , pM ; k1, . . . , kN ).

(33)

In this formula, we have contracted the SN+1,M amplitude with the last photon’s momentum

kµ = (kN+1)µ. By Bose symmetry, we can use any other photon to get a similar result, thus

(ki)µi
×S

µ1,...,µN+1

N+1,M (p1, . . . , pM ; k1, . . . , kN+1)

= −
M
∑

j=1

Qj × S
µ1,...,\µi,...,µN+1

N,M (p1, . . . , pj + ki, . . . , pM ; k1, . . . , \ki, . . . , kN+1).
(34)

Quod erat demonstrandum.

(4) Ward–Takahashi Identities and QED Renormalization

Earlier in class we saw (cf. my notes on QED Feynman rules and renormalization) how

the Ward–Takahashi identities for the no-electron, 2-photon amplitude Vµν
2 = Σµν

γ and no-

electron, 4-photon amplitude Vκλµν
4 allow for complete cancellation of all the UV divergences

of QED by just 4 counterterms δ1, δ2, δ3, δm which actually exist in QED. And that is what

makes QED a truly renormalizable theory.

In this section, we are going to see how the Ward–Takahashi identity for the 2-electron,

1-photon amplitude Sµ
1 (p

′, p; k) relates the electron vertex renormalization factor Z1 to the

electron field strength renormalization factor Z2. Specifically, we shall see that

Z1 = Z2 (both infinite and finite parts), (35)

or in terms of the counterterms δ1 = δ2, exactly. The identity (35) is often called the Ward

identity.

For simplicity, let us work in the bare perturbation theory where the electric charges of

various particles are the bare charges rather than the physical charges. In particular, for the
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2-electron, 1-photon amplitude we have

kµ × Sµ
1 (p

′, p; k) = ebS0(p
′, p+ k = p′) − ebS0(p

′ − k = p, p). (36)

On the RHS of this formula, the S0 is the un-amputated 2-electron, no-photon amplitude,

which is nothing but the electron’s two-point correlation function also known as the dressed

electron propagator,

S0(p
′ = p) = F2(p) = =

i

6p−mb − Σ(6p) + iǫ
. (37)

The S1 amplitude on the LHS of eq. (36) is more complicated: it has two un-amputated

electron legs and one amputated photon leg. In other words, the Sµ
1 comprises a completely

amputated core plus two dressed propagators for the incoming and outgoing electrons,

Sµ
1 (p

′, p) = amputated (38)

Moreover, any amputated core with just 3 external legs is automatically one particle irre-

ducible (1PI), so the green disk in the schematic diagram (38) is the 1PI dressed electron-

electron-photon vertex iebΓ
µ(p′, p); note that in the bare perturbation theory the electric

charge eb here is the bare charge rather than the physical charge e we would use in the

counterterm perturbation theory. Thus, spelling the diagram (38) as a formula for the Sµ
1

we get

Sµ
1 (p

′, p) = S0(p
′)× iebΓ

µ(p′, p)× S0(p). (39)

Now let’s plug this formula into the WT identity (36), which gives us

S0(p
′)× iebkµΓ

µ(p′, p)× S0(p) = ebS0(p
′) − ebS0(p). (40)

Note bare electric charge factors eb on both sides of this formula, so dropping these factors
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(and also dividing by i) we get

S0(p
′)× kµΓ

µ(p′, p)× S0(p) = −iS0(p
′) + iS0(p). (41)

Next, let’s divide both sides of this equation by the S0(p
′) on the left and by the S0(p) on

the right; this gives us

kµΓ
µ(p′, p) =

−i

S0(p)
+

i

S0(p′)

= −
(

6p−mb − Σ(6p)
)

+
(

6p′ −mb − Σ(6p′)
)

(42)

where the second equality follows from eq. (37) for the dressed electron propagator S0.

Now let’s take the limit of a small photon momentum k = p′ − p → 0 while both the

incoming and the outgoing electron momenta go on-shell, 6 p → Mphys and 6 p′ → Mphys. In

the on-shell limit,

for 6p → Mph :
1

6p−mb − Σ(6p) → Z2

6p−Mph
+ finite, (43)

hence
(

6p−mb − Σ(6p)
)

→ (6p−Mph)

Z2
+ O

(

(6p−Mph)
2
)

, (44)

and likewise for the outgoing electron, hence

−
(

6p−mb −Σ(6p)
)

+
(

6p′−mb −Σ(6p′)
)

→ −6p+ 6p′ =6k
Z2

+ O((6p−M)× k) + O(k2) . (45)

Plugging this limit into eq. (42), and comparing the leading orders in k on both sides of the

equation, we arrive at

kµ × Γµ(on shell p′ = p) =
6k = kµγ

µ

Z2
(46)

and therefore

Γµ(on shell p′ = p) =
γµ

Z2
. (47)

To relate this formula to the electric charge renormalization, consider how we measure

the physical electron’s charge −eph in terms of QED. Basically, we let an on-shell electron
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emit or absorb a zero-momentum photon and measure the amplitude

M = ephys × ǫµū
′γµu. (48)

In the bare perturbation theory, the scattering amplitudes beyond the tree level obtain as

iM =
∏

eternal

legs

√
Z ×

∑

(

amputated

diagrams

)

, (49)

see my notes on the LSZ reduction formula for the explanation. In particular, for the

electron-electron-photon ‘scattering’ amplitude we have

iM = Z2

√

Z3 ×
(

∑

(

amputated

diagrams

))

×
(

spin/polarization

factors ǫµ, ū′, u

)

. (50)

Since any amputated diagram with just 3 external legs is 1PI, the sum of amputated diagrams

here amounts to the dressed vertex iebΓ
µ for the appropriate momenta: k = 0 and on-shell

p′ = p. Consequently,

iM = Z2

√

Z3 × iebare × ǫµū
′Γµ(on shell p′ = p)u, (51)

and comparing this formula to eq. (48) we get

ephys × γµ = Z2

√

Z3 × ebare × Γµ(on shell p′ = p). (52)

Moreover, by definition of the electric charge renormalization factor Z1,

Z2

√

Z3 × ebare = Z1 × ephys (53)

(cf. my notes on QED Feynman rules), so eq. (52) becomes

ephys × γµ = Z1 × ephys × Γµ(on shell p′ = p) (54)

and therefore

Γµ(on shell p′ = p) =
γµ

Z1
. (55)

Comparing this formula to eq. (47), we immediately see that we must have

Z1 = Z2 , (35)

quod erat demonstrandum.
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⋆ ⋆ ⋆

In terms of the electric charge renormalization, the Ward identity (35) reduces eq. (52)

to simply

ephys =
√

Z3 × ebare . (56)

Thus, the electric charge renormalization in QED stems solely from the EM field renormal-

ization, regardless to what happens to the electron field. Moreover, the bare and the physical

EM fields are related to each other by the same
√
Z3 factor,

Aµ
bare =

√

Z3 ×Aµ
phys , (57)

hence eq. (57) leads to

ephysA
µ
phys = ebareA

µ
bare . (58)

Consequently, the gauge-covariant derivative Dµ = ∂µ− ieAµ works in exactly the same way

in terms of bare or physical fields and couplings. Thus, the gauge-covariant kinetic term for

the electron field in the physical Lagrangian

Lphys ⊃ Ψ(iγµDµ)Ψ (59)

in the bare Lagrangian simply gets multiplied by the overall factor Z2,

Lbare ⊃ Z2 ×Ψ(iγµDµ)Ψ, (60)

but the covariant derivative Dµ remains unchanged.

In QED with multiple charged fermions, each fermion species gets its own bare mass

mb,i, and its own field and coupling renormalization factors Z1
i and Z2

i , but for each species

Z1
i = Z2

i . Consequently, the renormalized electric charges of all species remain exactly the
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same multiples of the physical charge unit:

given qbarei = ni×ebare, we get qphysi = ni×ephys for same ephys =
√

Z3×ebare. (61)

If we add a charged scalar field to QED, its renormalization is governed by similar Ward

identities. The gauge-covariant kinetic term in the physical Lagrangian for such scalar is

Lphys ⊃ (DµΦ
∗)(DµΦ) = (∂µΦ

∗)(∂µΦ) + eAµ× (−iΦ∗∂µΦ + iΦ∂µΦ∗) + e2AµA
µ×Φ∗Φ,

(62)

which in the bare Lagrangian becomes

Lbare ⊃ Z2×(∂µΦ
∗)(∂µΦ) + Z1γ

1 ×eAµ×(−iΦ∗∂µΦ+ iΦ∂µΦ∗) + Z2γ
1 ×e2AµA

µ×Φ∗Φ. (63)

A priori, we should have 3 field and coupling renormalization factors here, Z2, Z
1γ
1 , and Z2γ

1 ,

but the Ward identity for the scalar field makes them identically equal,

Z2 = Z1γ
1 = Z2γ

1 . (64)

Consequently, the 3 terms in the bare Lagrangian (63) can be reassembled into a gauge-

invariant combination

Lbare ⊃ Z2 × (DµΦ
∗)(DµΦ). (65)

Finally, in terms of the counterterm perturbation theory, all these Ward identities become

∀ charged fermion field Ψi(x), δ
(i)
2 = δ

(i)
1 , (66)

∀ charged scalar field Φi(x), δ
(i)
2 = δ

(i)
1(1γ)

= δ
(i)
1(2γ)

. (67)
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