Electric Current Conservation and Ward-Takahashi Identities
Outline
(1) Introduction.
(2) Current conservation in Quantum Field Theories.
(3) Formal proof of Ward-Takahashi identities.

(4) Ward-Takahashi identities for renormalization.

e Diagrammatic proof of Ward-Takahashi identities is explained in a feparate set of

noted.

(1) Introduction

QED has a large family of Ward-Takahashi identities. Of particular importance are two
series of W'T identities for the off-shell amplitudes involving 0 or 2 electronic external lines

and any number N of photonic external lines.

e No electrons, N photons amplitudes

— VI (B k) ——— iV (1)
shorthand

The Vi are amputated amplitudes, meaning no external leg bubbles in the diagrams,
and the external legs themselves are not included in the amplitudes. Ward-Takahashi

identities for the Vjy are simply

Vi, (ki) X VI (Ry . k) = 0, 2)
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e 2 electrons, N photons amplitudes

= SR NG bk, .k Sn(p,p). 3
N (p7p7 1, N) m N(pap) ()

The double straight lines with valence = 1 vertices at their ends indicate that the
Sy amplitude include the dressed propagators for the electrons’ external legs, meaning
both the free propagators and the arbitrary number of the external leg bubbles; in
other words, the electrons’ external legs are not amputated. On the other hand, all the
photons’ external legs are amputated: they include neither outside photon propagators

nor any external leg bubbles.

Ward—Takahashi for the Sy amplitudes are recursive relations relating Sy to Sy_1,

namely

Vi, (ki) xSty () p) = eShT N (ki) — eShe Y () Ky, ).

(4)
The sign convention for the external momenta here is as follows: All the photons’
momenta k; are treated as incoming, while the electron momenta follow the charge

arrows: p is incoming while p’ is outgoing, hence p’ —p = k1 +--- + ky.

Besides these two series, there are Ward—Takahashi identities for amplitudes with more
electronic external lines, — or for other kinds of charged particles you might want to add
to basic QED. Most generally, consider any kind of QFT, with any kinds of charged and
neutral fields, as long as they include the EM fields A*(x) coupled to the conserved electric
current, 0, J"(x) = 0. For any such QFT, consider an amplitude Sy js involving N photons

and M particles of other kinds, charged or neutral,



= SN (1o R, (5)

Similar to the 2-electron amplitudes (3), the N photonic external lines here are amputated
while the M external lines for all other particles include the dressed propagators. However,
here we all the external momenta as incoming, thus (p;+---+pa)+(k1+---+kny) = 0. The
Ward-Takahashi identities for the general off-shell amplitudes (5) relate them to amplitudes

with one less photon, specifically

(kl)uz X S]%]l’MMN(plaapMa kl)"-akN)

oo (6)
= —ZQ]' X SN—l,M(pl""’pj Jrl{?l,...,pM;kil,...,ki,...,k‘N)

J=1

where (); is the electric charge of the particle #j.

Note that the basic Ward-Takahashi identities (2) and (4) are special cases of the general
WT identity (6). Indeed, the purely photonic amputated amplitude Vy is the special case
Sy, of the amplitude (5) for M = 0, and in this case the RHS of eq. (6) is simply zero,
hence the identity (2). Likewise, the two-electron amplitudes Sy are special cases of Sy
where the two non-photonic external legs belong to electrons. Or rather, treating both of
these legs as incoming, one positron of momentum py = —p’ and one electron of momentum

p1 = +p. Consequently, eq. (6) becomes

(ki) % S5 (=0, 05 ks k)

— —(+6) XSN_ILQ(*])/Jrki,p; k?l,...,k‘]v) (7)
— (—e) x 3]'\'})5_“1';'2(—]9/,])+]€z:; ki,....kN),

and hence eq. (4).



(2) Current Conservation in Quantum Field Theories

Consider a field theory with an exact U(1) phase symmetry — global or local, — and
the corresponding conserved current J*(z), 0,J" = 0. In the quantum theory, current
quantization formally means that in the Heisenberg picture the current operator J H(x) obeys
the continuity equation 8Mj“ = 0. But since the current does not live in the vacuum — in
any sense of the word, — in practice we measure or calculate not the current operator itself
but rather its correlation functions with the other local operators of the theory, especially

the quantum fields themselves. So let
Gh(@r,. s xniy) = (QTor(an) - @ulza) x JH(y)|Q) (8)

be such a correlation function of the current J#(y) with n fields ¢;(x;) of any kind: charged
or neutral, vectors, spinor, scalar, whatever. For example, in basic QED each ¢; can be any
of the A” , \ifa, or @a. (To avoid clattering my notations, I suppress the vectors, spinor,
etc., indices of G, due to the fields p;(x;) and keep only the index p due to the current
Ji(y).) In eq. (8), |€) is the physical vacuum state of the theory, while all the ¢%(z) are
fully interacting fields in the Heisenberg picture of QM; likewise, the current operator J H(y)

is in the Heisenberg picture.

Naively, one might expect that the continuity equation @Lj“(y) = 0 for the current

operator translates into similar continuity equations
Y I
a—yugn(xla"'al‘n;y) = 07 (9)

but the reality is more complicated because the time-ordering in eq. (8) does not commute
with the time derivative for p = 0. Indeed, for any two local operators A(z) and B(y) we

have

8iy0 (A@) x B(y)) = T(A(x) 8%3@)) + 52" — %) x [A(2), B(y)]  (10)

0_,0

where the second term stems from sudden re-ordering of the two factors when x y . In

particular, for a quantum field $(x) and the conserved current JH(x)

0

gy T(#@) % 71w)) = T(p) x 0,7 () + 66" — ) x [p) '), (11)

where the first term on the RHS vanishes by the current conservation, but the second term



gives rise to a singularity when x = y. Indeed, a field ¢(x) of charge ) — that is, a field

creating particles of charge () and/or annihilating particles of charge —@), — obeys
[6(2),Q] = ~Q x p(x),
hence for a local density J O(y) of the charge operator Q
[2(2), °(y)] = —Q@x 8P (x—y) x@(x) whena® = 3.

Plugging this formula into eq. (11), we immediately arrive at

%T<¢(x) < M) = 0+ 8@ —y) x —Q x p(a).

In the same way, for multiple fields inside the times ordering T we get
0
Consequently, the correlation functions
Gh(w1, - onsy) = (QT@r(w1) - Gulwn) x JH(y) Q)
of the conserved current obey

9 n
ay“gﬁ(wh vy Iy Zl/) = _Fn(flfla e :xn> X Z Q[\P‘/] X 5(4)(11 - y)

where

Fo(z1,. . zn) = (QTe1(z1) - - - Pnln) )

T(@1(e) - Gulan) x F () = T(@1(e1) - Gulen) ) x Y (~QLes]) x 00 (e

(12)

(14)

—y).

(15)

(17)

is the correlation function of the same n fields but without the current operator J*(y).

The delta-function terms on the RHS of eq. (16) are called the contact terms because they

show up only when the current operator comes into direct contact with a field operator,

i.e. acts at exactly the same spacetime point y = ;. As we shall see in the next section,

it is the contact terms which are responsible for the non-zero RHS of the Ward-Takahashi

identities (4) or (6).



To complete this section, let’s Fourier transform the contact terms — and hence eq. (16)
— to the momentum space. For n = 1, a contact term of the form f(z) x 6®(z — y)

transforms to
Flp) = [dec fatye x )5~ y)
_ /d4x eP7 5 kT () (18)
= f(p+k),

which depends only on the sum p + k instead of separate dependence on the two momenta.
Likewise, for n > 1 a contact term of the form f(x1,...,z,) x §*)(z; —y) Fourier transforms

to f(p1,...,pj +k,...,pn), hence the RHS of eq. (16) transforms to

—ZQ[(pj] X Fnlpt,-..spj +Fk,....pn). (19)
j=1

At the same time, the LHS of eq. (16) Fourier transforms to

_Zk,u X gﬁ(pl,,pr“k), (20)
so the entire eq. (16) becomes
n
kyxGh(p1,...,pni k) = —LZQ[@/] X Fn(pt,....0j+ k... pn). (21)
j=1

(3) Formal Proof of Ward—Takahashi Identities

Egs. (16) and (21) from the previous section apply to any conserved current j“(y) in
any QFT. Now let’s apply them to the electric current in QED, or perhaps a larger theory
including QED, like the Standard Model.

Diagrammatically, the correlation function F,(z1,...,x,) is the net coordinate-space

amplitude of all the Feynman diagrams with n un-amputated external legs of appropriate



kinds,
T3 T2
T
T4
iFn(T1, .. 1) = : (22)
x5
7s
Z6

T

For example, in basic QED (the EM and electron fields, and nothing else)

iFg () = (] T () (29) W ()W (4) A" (25) AN (6) [ Q) =

Now consider the correlation functions
Gl (z1,. .., an;y) = (TS (x1) @™ (zn) x JH(y) Q) (8)

of the electric current J#(y) with the quantum fields. In basic QED J#(y) = —eﬁ(y)y“ﬁ/(y),
so in the Feynman rules for the correlation functions, j“(y) becomes an external vertex of

valence = 2 connected to 2 electron lines, one for the ¥(y) and the other for the @(y) For

example,
r3 X4
1) x5
T Te
G (T1,..., w6;y) =
= QT W (1) U (2) U (3) W (wa) A (5) A (26) T () [©2) =
A\z



Note that the Dirac indexology of the bottom vertex at y is (—ey"),3 — which is exactly
similar to the photon’s vertex (iey"),s, apart from the overall factor of i. Consequently,
each diagram contributing to a G,, correlation function can be interpreted as i x the diagram
with an extra external EM field A“(y), except that we do not have the dressed propagator
for that extra EM field. In other words, the external leg for that extra photon is amputated,

unlike the un-amputated external legs for the other n fields.

Altogether, the GG, correlation function of n fields plus electric current is 7 x amplitude

with n un-amputated external legs plus one amputated leg for an extra photon, for example

I3 T4
) xT5

1 T6

(25)

Now consider a general QFT including the QED — anything ranging from QED with
extra charged leptons to the Standard Model, — pretty musc any QFT which includes
the massless EM fields coupled to a conserved electric current. In any such theory, the
correlation functions of the electric current with n quantum fields have similar relations to

the amplitudes with n un-amputated legs and one amputated leg for an extra photon,

3

(Qn; pn)

gﬁ(plaapnak:) =

(K, 1)

amputated

NOT amputated (26)

)

Vs

Eq. (21) relates such amplitudes (multiplied by the k,) to the amplitudes G, without the



extra photon. Diagrammatically, this equation reads

\

(Qn?pn)

NOT
ky x
amputated
(ka :u) (QZ; pZ)
amputated (Q1;p1)
)
\
(Qn;pn)
. .
NOT
= — ; pj+k
;QJX (Qs3 pj + ) amputated
(Q1:p1)
)
(27)
This diagrammatic equation is very similar to the general Ward—-Takahashi identity
(ki) X SN 1o opars Ky k)
M
" (6)
= _ZQJ X SN7M (plu"'7pj +kiw"7pM;k17"'7ki7"'7kN+1>7
j=1
except that the amplitudes

= iS]’ﬁM“N(pl,...,pM; /{Zl,...,]{}N). (28)

has all of their photonic external legs amputated, while the external legs for all other particle
species — charged or neutral — remain un-amputated. However, it is easy to translate

eq. (21) or eq. (27) to the language of the Sy s amplitudes by simply factoring out the



dressed propagators for all the photons on both sides of the equation. Indeed, let N out
of n particles of the un-amputated n-particle amplitude F,, be photons while the remaining

M = n — N particles belong to other species, charged or neutral, then

N .
dressed\ "
FRr N (pry oo Ky k) = S (01 R k) X I I ( ) (Fi).

i1\ PTOP
(29)
Likewise, for the G,, amplitude involving an extra photon
Z.ggl’...7HN;u<p17 -y PM; k17 R kNv k) = S]V\}jklilj\ljv’u(plu -y PM; k17 R kNv k) X
N/ dressed ) M (30)
<1 (ks).
o1\ PIOP /o,

Note that there are only N dressed photon propagators in the is formula because the extra

photon’s propagator is already amputated.

Finally, we may rewrite eq. (21)as

k< aGyt B (pys o pags R - R )

M N (31)
= —ZQ]' X f#l"“’u (pl,...,pj JrkT,...,pM; k?l,...,k?]\])

J=1

where the sum on the RHS is limited to the non-photonic external lines since the photons

have @); = 0. Consequently, plugging eqgs. (30) and (29) into this formula, we obtain
N )
. dressed\ "
Vi,...,VUNl . . -
k/U'XSN+1,M (pla-"7pM7 k17--'7kN7 k)xr[l< prop )l/<kl)
Z: 1

M N
— —ZQ]' X S]?’M’VN<p1,...,pj —i—k‘,...,pM; ]{Zl,...,/{}]\]) X H (
j=1 =1

(Ki),

(32)
where the product of N dressed photon propagators is exactly the same on both sides of the

dressed\ "
prop

Vi

equation. Consequently, dropping this product on both sides, we finally arrive at the general

10



Ward-Takahashi identity for the Sy; y amplitudes,

ki < S (o1 o kR k)

(33)
= — E P X SR pi+k vk k
= Qj X N,M (p1,---ypj + koo R, EN).
J=1

In this formula, we have contracted the Sy 1y amplitude with the last photon’s momentum

k, = (kn41)u. By Bose symmetry, we can use any other photon to get a similar result, thus

(ki) X SN T (15 oaas Ry k)

M (34)
— . S;I'l7"'7)‘(’i7"'7;l’]\"+1 . k: MDAt k . k:
= § Qj X ON M (plr"'vp]+ sy PMs 17"'7kl7"'7 N—H)'

j=1

Quod erat demonstrandum.

(4) Ward—Takahashi Identities and QED Renormalization

Earlier in class we saw (c¢f. ny notes on QED Feynman rules and renormalization]) how

the Ward-Takahashi identities for the no-electron, 2-photon amplitude V4" = 3£ and no-
electron, 4-photon amplitude VZA“ ¥ allow for complete cancellation of all the UV divergences
of QED by just 4 counterterms 41, d2, 03, 6,,, which actually exist in QED. And that is what

makes QED a truly renormalizable theory.

In this section, we are going to see how the Ward-Takahashi identity for the 2-electron,
1-photon amplitude S}'(p/, p; k) relates the electron vertex renormalization factor Z; to the

electron field strength renormalization factor Zs. Specifically, we shall see that
Z1 = Z5 (both infinite and finite parts), (35)

or in terms of the counterterms d; = 92, exactly. The identity (35) is often called the Ward
identity.

For simplicity, let us work in the bare perturbation theory where the electric charges of

various particles are the bare charges rather than the physical charges. In particular, for the

11
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2-electron, 1-photon amplitude we have
k< SY(0, k) = epSo(p,p+k=p) — epSo(p' —k=p,p). (36)

On the RHS of this formula, the Sy is the un-amputated 2-electron, no-photon amplitude,

which is nothing but the electron’s two-point correlation function also known as the dressed

electron propagator,

B 1
ﬂ—mb—z(]@-i-ie'

So(p' =p) = Fa(p) = e—=& » (37)

The S amplitude on the LHS of eq. (36) is more complicated: it has two un-amputated
electron legs and one amputated photon leg. In other words, the S{‘ comprises a completely

amputated core plus two dressed propagators for the incoming and outgoing electrons,

St p) =

amputated

Moreover, any amputated core with just 3 external legs is automatically one particle irre-
ducible (1PI), so the green disk in the schematic diagram (38) is the 1PI dressed electron-
electron-photon vertex ie,I'*(p/, p); note that in the bare perturbation theory the electric
charge e, here is the bare charge rather than the physical charge e we would use in the
counterterm perturbation theory. Thus, spelling the diagram (38) as a formula for the S{‘

we get

ST, p) = So(p) x ies (1, p) x So(p). (39)
Now let’s plug this formula into the WT identity (36), which gives us
So(p') x iepk, L (p', p) x So(p) = epSo(p') — enSo(p)- (40)

Note bare electric charge factors e, on both sides of this formula, so dropping these factors

12



(and also dividing by i) we get

So(p) x k,LH(P,p) x So(p) = —iSo(p') + iSo(p). (41)

Next, let’s divide both sides of this equation by the Sy(p’) on the left and by the Sp(p) on
the right; this gives us
—1 )
k(' p) = +
D= 500 S (12)
= —F—m—20@) + (¢ —mp—20F))

where the second equality follows from eq. (37) for the dressed electron propagator Sp.

Now let’s take the limit of a small photon momentum k& = p’ — p — 0 while both the
incoming and the outgoing electron momenta go on-shell, p — Mpys and p' — Mppys. In

the on-shell limit,

for ¥ — Mpp : g mbl— %) — p _Z;/[ph + finite, (43)
M
hence (f—my — X(¥)) — @TQP}I) + O(— Mph)Q), (44)

and likewise for the outgoing electron, hence

.

~ + O((f— M) x k) + O(K>) . (45)
2

~@—my—2) + ¢ —m—2))
Plugging this limit into eq. (42), and comparing the leading orders in k£ on both sides of the

equation, we arrive at

— o M
ky x T*(on shell p’ = p) = %TW (46)

and therefore
AH

[*(on shell p’ = p) = 7 (47)

To relate this formula to the electric charge renormalization, consider how we measure

the physical electron’s charge —epp, in terms of QED. Basically, we let an on-shell electron

13



emit or absorb a zero-momentum photon and measure the amplitude
M = ephys X €07 u. (48)

In the bare perturbation theory, the scattering amplitudes beyond the tree level obtain as

M = H V7 % Z (amputated>’ (49)

diagrams

eternal
legs

see my _notes on the LS7 reduction formulal for the explanation. In particular, for the

electron-electron-photon ‘scattering” amplitude we have

M = Zy\/Zs % (Z (amputated)) " (spln/polanzatlon) (50)

diagrams factors €, u,u

Since any amputated diagram with just 3 external legs is 1PI, the sum of amputated diagrams
here amounts to the dressed vertex ie,I'* for the appropriate momenta: k = 0 and on-shell

p' = p. Consequently,

iM = Za\/Z3 X ienare X €, TH(onshell p’ = p)u, (51)
and comparing this formula to eq. (48) we get

€phys X Y = Zan/Z3 X €epare X [*(onshell p’ = p). (52)

Moreover, by definition of the electric charge renormalization factor 7y,

Z3 V Z3 X €bare — Z1 X €phys (53)

(cf. Iy notes on QED Feynman ruled), so eq. (52) becomes

ephys X V' = Z1 X ephys X I'(on shellp’ = p) (54)
and therefore
A
[*(onshellp’ = p) = 7 (55)
1

Comparing this formula to eq. (47), we immediately see that we must have
Zy = 4oy, (35)

quod erat demonstrandum.
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In terms of the electric charge renormalization, the Ward identity (35) reduces eq. (52)
to simply

€phys — V Z3 X epare - (56)

Thus, the electric charge renormalization in QED stems solely from the EM field renormal-
ization, regardless to what happens to the electron field. Moreover, the bare and the physical

EM fields are related to each other by the same +/Z3 factor,

Aﬁare Y Z3 X Aghys’ (57)
hence eq. (57) leads to
6phySAghys = 6bareAﬁaure' (58)

Consequently, the gauge-covariant derivative D, = 0,, —ieA,, works in exactly the same way
in terms of bare or physical fields and couplings. Thus, the gauge-covariant kinetic term for

the electron field in the physical Lagrangian

Longs D V(iy"D,)V (59)

in the bare Lagrangian simply gets multiplied by the overall factor Zs,

Lpare D Zo X E(’L”)/MDM)\I/, (60)

but the covariant derivative D, remains unchanged.

In QED with multiple charged fermions, each fermion species gets its own bare mass
my i, and its own field and coupling renormalization factors Zi1 and ZZZ, but for each species

ZZ.1 = ZY? . Consequently, the renormalized electric charges of all species remain exactly the

15



same multiples of the physical charge unit:

bare bare

. h,
given ¢; = n;xe”™, wegetq Y = n;x ePYs for same €phys = V 23X €pare- (61)

If we add a charged scalar field to QED, its renormalization is governed by similar Ward

identities. The gauge-covariant kinetic term in the physical Lagrangian for such scalar is

Lohgs D (D@ (Dy®) = (9,8%)(0"®) + eA, x (—i®* "D + i®I'D*) + 2 A, A X D*,
(62)

which in the bare Lagrangian becomes
Lhare D Zax(9,0%)(9"®) + Z,7 xeA, x (—i®* D + idI D*) + 277 xe2 A, A x D*D. (63)

A priori, we should have 3 field and coupling renormalization factors here, Zs, Zlm, and ZfV,

but the Ward identity for the scalar field makes them identically equal,
Zy = 27 = 777, (64)

Consequently, the 3 terms in the bare Lagrangian (63) can be reassembled into a gauge-

invariant combination

Loae D Zo x (D, 0%)(DFD), (65)

Finally, in terms of the counterterm perturbation theory, all these Ward identities become

V charged fermion field ¥;(x), 5§i) = 59, (66)
V charged scalar field ®;(z), 5§i) = 5&)17) = 5&)27) (67)
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