
Aharonov–Bohm Effect

Covariant Derivatives in Quantum Mechanics

In my my notes on the local phase symmetry, I have defined the covariant derivative of a

charged field φ(x) as Dµφ(x) = ∂µφ(x) + iqAµ(x)φ(x). In 3D-vector notations and in Gauss

units, this definition becomes

D = ∇ −
iq

h̄c
A(x, t), Dt =

∂

∂t
+

iq

h̄
A0(x, t). (1)

In this section, we shall see how these covariant derivatives fit into ordinary quantum me-

chanics of a charged particle.

A classical charged particle in EM background has canonical momentum p different from

the ordinary kinematic momentum ~π = mv, namely

p = mv +
q

c
A(x), (2)

hence classical Hamiltonian

H(x,p) =
m

2
v2 + qA0(x) =

1

2m

(

p −
q

c
A(x)

)2

+ qA0(x). (3)

In quantum mechanics, this translates to the Hamiltonian operator

Ĥ =
1

2m

(

p̂ −
q

c
A(x̂)

)2

+ qA0(x̂), (4)

where p̂ is the canonical momentum operator which obeys the canonical commutation rela-

tions with the coordinate operator x̂,

[x̂i, x̂j ] = 0, [p̂i, p̂j] = 0, [x̂i, p̂j] = ih̄δij . (5)

Consequently, in the coordinate basis for the wave functions, the canonical momentum op-

1

http://web2.ph.utexas.edu/~vadim/Classes/2024f-qft/gauge.pdf


erator p̂ acts as a gradient, or rather

p̂ψ(x) = −ih̄∇ψ(x). (6)

As to the kinematic momentum ~π = mv, in quantum mechanics it’s defined as

~̂π = p̂ −
q

c
A(x̂), (7)

so in the coordinate basis it acts as

~̂πψ(x) = −ih̄∇ψ(x) −
q

c
A(x)ψ(x) = −ih̄

(

∇−
iq

h̄c
A(x)

)

ψ(x) = −ih̄Dψ(x) (8)

where D is the covariant space derivative (1). Of course, this derivative is truly covariant

only when the wave function ψ(x) transforms under gauge transforms like the field of charge

q:

A′(x) = A(x) + ∇Λ(x), A0′(x) = A0 −
1

c

∂Λ

∂t
,

(9)

ψ′(x) = ψ(x)× exp
( iq

h̄c
Λ(x)

)

=⇒ D′ψ′(x) = Dψ(x)×
( iq

h̄c
Λ(x)

)

.

But once the wave function gauge-transforms according to this formula, the covariance of D

derivative makes the kinematic momentum — or rather its physically measurable expectation

values — gauge invariance:

〈ψ| ~̂π |ψ〉 =

∫

d3xψ∗(x)(−ih̄)Dψ(x)

gauge transforms to −→

∫

d3xψ′∗(x)(−ih̄)D′ψ′(x)

=

∫

d3x
(

exp
(

−i
q

h̄c
Λ(x)

)

ψ∗(x)
)

(−ih̄)
(

exp
(

i
q

h̄c
Λ(x)

)

Dψ(x)
)

=

∫

d3xψ∗(x)(−ih̄)Dψ(x)

= 〈ψ| ~̂π |ψ〉 .

(10)

On the other hand, the kinematic momentum π = mv is gauge-invariant in classical me-
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chanics, while in QM its expectation values obey

〈ψ| ~̂π |ψ〉 = m
d

dt
〈ψ| x̂ |ψ〉 , (11)

so it should be gauge invariant. And that’s why we need the covariance of the D derivative,

and so that’s why the wave function should change its phase as in eq. (9) under a gauge

transform!

Now consider the Hamiltonian operator (4). In the coordinate basis, it acts as

Ĥψ(x) =
−h̄2

2m
D2ψ(x) + qA0(x)ψ(x), (12)

where the vector potential A hides inside the covariant derivative D. Consequently, the

time-dependent Schrödinger equation

ih̄
∂

∂t
|ψ〉 = Ĥ |ψ〉 (13)

becomes in the coordinate basis

ih̄
∂

∂t
ψ(x, t) =

−h̄2

2m
D2ψ(x, t) + qA0(x, t)ψ(x, t). (14)

Moving the second term on the RHS to the LHS of the equation, we get

ih̄
∂

∂t
ψ(x, t) − qA0(x, t)ψ(x, t) =

−h̄2

2m
D2ψ(x, t) (15)

where the LHS amounts to

ih̄
∂

∂t
ψ(x, t) − qA0(x, t)ψ(x, t) = ih̄

(

∂

∂t
+
iq

h̄
A0(x, t)

)

ψ(x, t) = ih̄Dtψ(x, t), (16)

Dt being the covariant time derivative (1).
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Thus, we arrive at the covariant Schrödinger equation

ih̄Dtψ(x, t) =
−h̄2

2m
D2ψ(x, t). (17)

In this form, neither electric potential A0 nor the magnetic potential A are manifest in this

equation; instead, they are hiding inside the covariant derivatives Dt and D. As written,

eq. (17) applies to a spinless non-relativistic charged particle. For a non-relativistic charged

particle of spin = 1
2 — like an electron or a proton — it becomes

ih̄Dtψ(x, t) = −
h̄2

2m
D2ψ(x, t) −

gqh̄

4mc
B(x, t) · ~σψ(x, t) (18)

where σx, σy, σz are the Pauli matrices acting on the spin and g is the gyromagnetic factor.

(For the electron, g ≈ 2.) Since the magnetic field B is gauge-invariant, eq. (16) is just as

covariant as eq. (17).

Again, the covariant Schrödinger equations (17) or (18) are covariant only when a gauge

transform of the EM potentials is accompanied under a phase transform of the charged

particle’s wave function:

A′(x) = A(x) + ∇Λ(x), A0′(x) = A0 −
1

c

∂Λ

∂t
, (19)

ψ′(x) = ψ(x)× exp
( iq

h̄c
Λ(x)

)

. (20)

In the next section of these notes we shall see how this phase transform of the wave

function gives rise to the Aharonov–Bohm effect. But the Aharonov–Bohm effect is best

described in terms of the propagation amplitude — also called the evolution kernel — and

the way it transforms under EM gauge transforms. The propagation amplitude U(y ← x) is

defined as an amplitude of a particle initially at point x at time x0 to reach the point y at

a later time y0; in Dirac notations

U(y ← x) =
〈

y, y0|x, x0
〉

Heisenberg
= 〈y| exp

(

−i
y0 − x0

h̄
Ĥ

)

|x〉Schroedinger . (21)

Consequently, given the wave function (in the coordinate basis) at time x0, the propagation
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amplitude gives us the wave function at a later time y0 as

ψ(y, y0) =

∫

d3xU(y ← x)ψ(x, x0). (22)

Now let’s apply this formula to the propagation amplitude and the wave function of a

charged particle. Under a gauge transform of the EM potentials, the wave function changes

its phase according to eq. (20). Hence, to compensate the phase change of ψ(x, x0) inside the

integral (22), the propagation amplitude U(y ← x) must change its phase by an opposite

factor exp
(

−(iq/h̄c)Λ(x, x0)
)

. At the same time, to change the phase of ψ(y, y0) on the

LHS of eq. (22), the U(y ← x) must change its phase by exp
(

+(iq/h̄c)Λ(y, y0)
)

. Altogether,

under a gauge transform of the EM potentials, the propagation amplitude of a charged

particle changes its phase by

U ′(y ← x) = U(y ← x)× exp

(

iq

h̄c

(

Λ(y)− Λ(x)
)

)

. (23)

Aharonov–Bohm Effect

In classical mechanics, the motion of a charged particle depends only on the electric and

magnetic tension fields E and B; the potentials A0 and A do not have any direct effect. Also,

the motion depends only on the E and B fields along the particle’s world-line — the EM fields

in some volume of space the particle never goes through do not affect it at all. But in quantum

mechanics, interference between two trajectories a charged particle might take depends on

the magnetic field between the trajectories, even if along the trajectories themselves B = 0.

This effect was first predicted by Werner Ehrenberg and Raymond E. Siday in 1949, but

their paper was not noticed until the effect was re-discovered theoretically by David Bohm

and Yakir Aharonov in 1959 and then confirmed experimentally by R. G. Chambers in 1960.

Consider the following idealized experiment: Take a two-slit electron interference setup,

5



and put a solenoid between the two slits as shown below:

~B

path 1

path
2

The solenoid is thin, densely wound, and very long, so the magnetic field outside the solenoid

is negligible. Inside the solenoid there is a strong B field, but the electrons do not go there;

instead, they fly outside the solenoid along paths 1 and 2. But despite B = 0 along both

paths, the magnetic flux Φ inside the solenoid affects the interference pattern between the

two paths.

The key to the Aharonov–Bohm effect is the vector potential A. Outside the solenoid

B = ∇×A = 0 but A 6= 0 because for any closed loop surrounding the solenoid we have a

non-zero integral

∮

loop

A(x) · dx =

∫∮∫

inside the loop

including the solenoid

B(x) · d2Area = Φ. (24)

Locally, ∇×A = 0 makes the vector potential a gradient of some function so we may gauge

it away:

A(x) → A′(x) = A(x) + ∇Λ(x) = 0 for some Λ(x), (25)

but globally no single-valued Λ(x) can gauge away the vector potential along both paths

around the solenoid. Indeed, consider two points — the electron gun at x0 and some point

on the screen at y, and let

∆Λ = Λ(y) − Λ(x0). (26)
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Then using two different electron’s paths from x0 to y gives two different values of the ∆Λ:

∆Λ(path) =

∫

path

∇Λ · dx = −

∫

path

A(x) · dx

since A + ∇Λ = 0, (27)

∆Λ(path#1) − ∆Λ(path#2) = −

∫

path#1

A · dx +

∫

path#2

A · dx

= −

∮

A(x) · dx = −Φ 6= 0, (28)

which is utterly impossible for any single-valued Λ(x). Instead, we have two separate gauge

transforms parametrized by two different Λ(x): the Λ1(x) that gauges away A(x) along the

path #1, and the Λ2(x) that gauges away A(x) along the path #2, thus

∇Λ1(x) = −A(x) [along path#1],

∇Λ2(x) = −A(x) [along path#2],

and Λ1(x) 6= Λ2(x).

(29)

In quantum mechanics, a gauge transform affects not only the vector potential but

also the phase of a charged particle’s wave function and hence the propagation amplitudes,

cf. eq. (23). So consider an electron traveling along some path from the electron gun at x0

to some point y on the screen through a region where these is no magnetic field, B = 0,

but the vector potential does not vanish. We assume this A(x) to be time-independent, so

we may gauge it away using a time-independent Λ(x) without raising an electric potential,

A′ = A+∇Λ = 0 while A0′ = A0 = 0. Gauging away the vector potential also changes the

phase of the evolution amplitude according to

U0(y← x0) = UA(y ← x0)× exp

(

iq

h̄c

(

Λ(y)− Λ(x0)
)

)

(30)

where UA is the initial amplitude in presence of the vector potentialA(x), U0 is the amplitude
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resulting from gauging A away, and

Λ(y) − Λ(x0) =

y
∫

x0

∇Λ(x) · dx = −

y
∫

x0

A(x) · dx 〈〈 since A′ = A+∇Λ = 0 〉〉. (31)

Consequently,

U0(y ← x0) = UA(y← x0)× exp



−
iq

h̄c

y
∫

x0

A(x) · dx



 , (32)

or equivalently

UA(y ← x0) = U0(y← x0)× exp



+
iq

h̄c

y
∫

x0

A(x) · dx



 . (33)

Thus, given the amplitude U0 in the total absence of a vector potential, turning on a pure-

gauge vector potential changes the amplitude’s phase according to eq. (33).

In the Aharonov–Bohm experiment we have two different paths from the same point x0

(the electron gun) to the same point y on the screen. Along each path B = 0 but A 6= 0,

and the amplitudes depend on the vector potential according to eq. (33):

Upath 1
A (y ← x0) = Upath 1

0 (y ← x0)× exp






+
iq

h̄c

∫

path 1

A(x) · dx






,

Upath 2
A (y ← x0) = Upath 2

0 (y ← x0)× exp






+
iq

h̄c

∫

path 2

A(x) · dx






.

(34)

The interference pattern on the screen depends on the phase difference

∆ϕ(y) = arg
(

Upath 1(y← x0)
)

− arg
(

Upath 2(y← x0)
)

(35)

between the two amplitudes. In light of eqs. (34), this phase difference depends on the vector
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potential A as

∆Aϕ(y) = ∆0ϕ(y) +
q

h̄c

∫

path 1

A(x) · dx −
q

h̄c

∫

path 2

A(x) · dx . (36)

Moreover, the difference between the two integrals here is nothing but the magnetic flux

Φ inside the solenoid! Indeed, consider a closed loop around the solenoid that first follows

path 1 from the electron gun to the screen and then goes back to the electron gun along

path 2 (in reverse). For this loop,

∫

path 1

A(x) · dx −

∫

path 2

A(x) · dx =

∮

closed loop

A(x) · dx = Φ, (37)

hence

∆Aϕ(y) = ∆0ϕ(y) +
q

h̄c
× Φ. (38)

Thus, even though B = 0 along both paths an electron might take from the gun to the

screen, the quantum interference between the paths depends on the magnetic flux in the

solenoid!

Now consider the mathematical side of the Aharonov–Bohm effect — the cohomology of

the vector potential A(x). In a topologically trivial space — like the flat 3D space without

any holes — specifying A(x) modulo gauge transforms A(x)→ A(x)−∇Λ(x) is equivalent

to specifying the magnetic field B(x) = ∇ × A. However, in spaces with holes the vector

potential modulo ∇Λ(x) for single-valued Λ(x) contains more information than the magnetic

field: In addition toB(x) for x outside the holes, the vector potential also knows the magnetic

fluxes through the holes! Indeed, the integrals along closed loops

∮

loop

A(x) · dx = Φ(loop) (39)

are gauge-invariant for single-valued Λ(x), and when ∇ × A ≡ 0 everywhere outside the

holes, then the fluxes (39) depend only on the topologies of the loops in question — which

hole(s) they surround and how many times. In math, such integrals are called cohomologies

of the one-form A(x).
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In classical mechanics, the motion of a charged particle depends on the magnetic field

B in the region of space through which the particle travels, and it does not care about any

cohomologies of the vector potential A. But in quantum mechanics, the Aharonov–Bohm

effect makes quantum interference sensitive to the cohomologies that the classical mechanics

does not see. Specifically, when the space has some holes through which the particle does

not get to travel — like the solenoid (and a bit of space around it) in the AB experiment

— the interference between alternative paths on different sides of a hole depends on the

cohomology of A for that hole — i.e., the magnetic flux through the hole.

To be precise, the interference between two paths depends on the phase difference (38)

only modulo 2π — changing the phase by 2πn for some integer n would not affect the

interference at all. Consequently, the Aharonov–Bohm effect is un-detectable for

Φ =
2πh̄c

q
× an integer, (40)

or in other words, the AB effect measures only the fractional part of the magnetic flux

through the solenoid in units of

Φ1 =
2πh̄c

|q|
(41)

where q is the electric charge of the particles used in the experiment. For example, a SQUID

(SuperConducting Quantum Interferometry Device) measures the magnetic flux through a

hole surrounded by superconductor using Aharonov–Bohm–like interference of the Cooper

pairs in the superconductor. Since a Cooper pair has electric charge −2e, a SQUID measure

only the fractional part of the flux in units of

Φsquid =
2πh̄c

2e
= 2.067 833 667(52)× 10−7 Mx (Maxwells or Gauss× cm2). (42)

Note that particles of different charges would measure the fractional part of the magnetic

flux Φ in different units! Thus, were Nature kind enough to provide us with two particle

species with an irrational charge ratio q1/q2, then in principle we could have measured the

whole magnetic flux Φ and not just its fractional part in some units.
⋆

However, in reality

⋆ To be precise, we could have measure the fractional parts of Φ in different units Φ1 and Φ2, but for

irrational ratio Φ1/Φ2 this would have allowed us to reconstruct the whole flux Φ.
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all electric charges are integral multiplets of the fundamental charge units e. Consequently,

the AB effect using any existing particle species can measure only the fractional part of the

magnetic flux in universal units

Φu =
2πh̄c

e
= 2Φsquid . (43)

Mathematically, this reduction of our ability to measure the cohomology of the A field is

related to the compactification of the gauge symmetry group when all charges are integer

multiples of e. Indeed, consider a generic gauge transform parametrized by Λ(x, t) and let

u(x, t) = exp
(

i(e/h̄c)Λ(x, t)
)

∈ U(1). (44)

The U(1) here is a special case of U(N) — the group of complex unitary N × N matrices.

For N = 1, such a matrix is simply a unimodular complex number u; in other words, the u’s

in eq. (44) live on a unit circle in the complex plane. As a group, the U(1) is the group of

phase symmetries, where changing the phase by 2π × an integer has no effect whatsoever.

Taking a spacetime derivative of eq. (44) we get

∂µu(x) = u(x)×
ie

h̄c
∂µΛ(x), (45)

hence the gauge transform of the 4-vector field Aµ(x) can be restated in terms of u(x) as

A′

µ(x) = Aµ(x) +
h̄c

e
× iu−1(x)∂µu(x). (46)

At the same time, a charged field Ψ(x) of charge q = n× e transforms as

Ψ′(x) = Ψ(x)× exp

(

inq

h̄c
Λ(x)

)

= Ψ(x)×

[

exp

(

iq

h̄c
Λ(x)

)]n

= Ψ(x)× un(x). (47)

Thus, if all the fields have integer charges n in units of e, then any single-valued unimodular

u(x) parametrizes a single-valued gauge/phase transform, even if Λ(x) = (h̄c/e) arg(u(x))

happens to be multi-valued!
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In a topologically trivial spacetime, one can write down a single-valued Λ(x) for any

single-valued u(x), but this is not true in a spacetime with holes. For example, let’s focus on

time-independent gauge transforms and consider a space with a cylindrical hole (the solenoid

in the AB experiment); in cylindrical coordinates (ρ, φ, z), the points outside the hole have

ρ > ρh. The angle coordinate φ is multi-valued modulo 2π, but exp(iφ) is single valued. In

a space without the hole, exp(iφ) would be ill-defined along the axis, but outside the hole

it’s a perfectly well-defined single-valued function of x. Consequently, letting

Λ(ρ, φ, z) =
h̄c

e
× φ ⇐⇒ u(ρ, φ, z) = e+iφ (48)

would give us a multi-valued Λ(x) but a single-valued u(x). In the gauge theory with integral

charges only, such gauge transforms are legitimate — as long as all the charged fields and

the A(x) transform in a single-valued fashion, we don’t care if the Λ(x) parameter itself is

single-valued or multi-valued.

However, the magnetic fluxes through holes in space are not invariant under gauge trans-

forms with multi-valued Λ’s. Instead, they change by integral multiplets of the Aharonov–

Bohm flux unit (43). Indeed, for a gauge transform (48), the vector potential outside the

hole changes to

A′(x) = A(x) +
h̄c

e
∇φ = A(x) +

h̄c

e

nφ

ρ
(49)

where nφ is the unit vector in the φ direction. Consequently, the magnetic flux through the

hole changes by

Φ′ − Φ =
h̄c

e

∮

∇φ · dx =
h̄c

e

2π
∫

0

dφ =
2πh̄c

e
≡ Φu . (50)

Likewise, we may change the flux by any integer multiple k of the flux unit Φu using

u(x) = eikφ (single valued for integer k) =⇒ Φ′ = Φ + k × Φu . (51)

Consequently, specifying the vector potential A(x) modulo gauge transforms with single-

valued u(x) phases would give us fluxes through holes in space only modulo Φu; in other
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words, we can find the fractional parts of those fluxes (in units of Φu) but not the whole

parts. The Aharonov–Bohm effect measures precisely these data — the fractional parts of

the fluxes through holes. The whole parts of the fluxes are not detectable because they are

gauge-dependent in the theory with a compact group U(1) of local phase symmetries.
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