
ANOMALIES AND DIFFERENTIAL FORMS

Introduction to Differential Forms

Mathematics of various antisymmetric tensor fields becomes much simpler in the lan-

guage of differential forms. Students interested in string theory and related fields should

master this language and then go ahead and learn as much differential geometry and topol-

ogy as they can; take a class on the subject or at least read a book. Wikipedia has a quick

and dirty introduction to differential forms at http://en.wikipedia.org/wiki/Differential form

and related web pages.

The differential form language is also very useful to describe axial and chiral anomalies

of all kinds — which is what these notes are about. So let me start with a very basic

introduction to differential forms.

Consider a space or spacetime of dimension D; it can be Euclidean or Minkowski, flat

or curved; it might even be a differential manifold without any metric at all. A differential

form of rank p ≤ D in such a space combines an antisymmetric tensor with p indices and

a differential suitable for integration over a sub-manifold of dimension p (a line for p = 1,

a surface for p = 2, etc., etc.). For example,

A = Aµ(x) dxµ, B = Bµν(x) dxµ ∧ dxν , C = Cλµν(x) dxλ ∧ dxµ ∧ dxν , . . . . (1)

For p = 2, a 2–form should be integrated over an oriented surface, so the order of dxµ and dxν

matters; in fact they anticommute, dxµ ∧ dxν = −dxν ∧ dxµ, so the 2-index tensor Bµν(x)

should be antisymmetric. Likewise, the 3-volume differential dxλ ∧ dxµ ∧ dxν is totally

antisymmetric with respect to permutation of indices λµν, so the 3-index tensor Cλµν(x)

should also be totally antisymmetric in all of its 3 indices. And a general form of rank p

E = Eµ1µ2···µp(x) dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµp (2)

involves a p-index totally antisymmetric tensor Eµ1µ2···µp(x).

1

http://en.wikipedia.org/wiki/Differential_form


The exterior derivative of a rank-p form E is a form dE of rank p+ 1 defined as

dE =
(
dEµ1µ2···µp(x)

)
∧ dxµ1 ∧ · · · ∧ dxµp = ∂λEµ1µ2···µp(x) dxλ ∧ dxµ1 ∧ · · · ∧ dxµp , (3)

but this compact formula hides the antisymmetrization due to anticommutativity of the dxµ

differentials. In the antisymmetric tensor form, J = dE means

Jµ1···µp+1(x) =
1

p!
∂[µ1

Eµ2···µp+1](x) =

p+1∑
j=1

(−1)j−1∂µjEµ1···6µj ···µp+1
(x)

= ∂µ1Eµ2···µp+1 − ∂µ2Eµ1µ3···µp+1 ± · · · + (−1)p∂µp+1Eµ1···µp .

(4)

The exterior derivative generalizes the 3D notions of gradient, curl, and divergence. Indeed,

a scalar φ(x) is a 0–form and its gradient ∇φ is a vector defining a 1-form (∇φ)i dx
i = dφ.

Likewise, for a vector ~A(x) and its curl ~B(x) = ∇ × ~A(x) we have a 1-form A = Ai(x)dxi

and a 2-form B = Bij(x)dxi ∧ dxj = dA where Bij = ∂iAj − ∂jAi; note that in 3D this

antisymmetric tensor is equivalent to an axial vector, Bij = εijkBk. Finally, for a vector ~E(x)

and its divergence f(x) = ∇· ~E we have an exterior derivative relation f = dE for the 2-form

E = Ei(x)εijkdx
j∧dxk equivalent to the vector Ei(x) and a 3-form f = f(x)εijkdx

i∧dxj∧dxk

equivalent to the scalar f(x).

There is a version of Leibniz rule for wedge products of forms: For any p-form B(p) and

a q-form C(q),

d
(
B(p) ∧ C(q)

)
= (dB(p)) ∧ C(q) + (−1)pB(p) ∧ (dC(q)). (5)

But the most important property of the exterior derivative is its nilpotency: for any dif-

ferential form E, ddE = 0. This rule corresponds to the differential identities for all kinds

of antisymmetric tensors, in particular the vector calculus identities ∇ × (∇φ) = 0 and

∇ · (∇ × ~A) = 0. The proof is very simple: If E is a form of rank p, J = dE is a form of
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rank p+ 1, and K = dJ is a form of rank p+ 2, then applying eq. (4) twice, we have

Kλµν1···νp(x) =
1

(p+ 1)!
∂[λJµν1···νp](x)

=
1

(p+ 1)! p!
∂[λ∂[µEν1···νp]](x)

=
1

p!
∂[λ∂µEν1···νp](x)

= 0

(6)

where the last equality follow from ∂[λ∂µ] = 0.

Next, a couple of definitions. A differential p-form is called exact iff it happens to be

the exterior derivative of some (p − 1)-form Ω, Q = dΩ. A form Q is called closed iff its

own exterior derivative vanishes, dQ = 0. By nilpotency of the exterior derivative, any exact

form is closed: dQ = ddΩ = 0. But the converse relation depends on the topology of the

manifold in which the differential form live.

Poincare Lemma: in a topologically trivial manifold, all closed differential forms are exact.

That is, if a p-form Q happens to have dQ = 0 then there exists a (p− 1)-form Ω such that

dΩ = Q. But this is not true if the manifold has topologically non-trivial p-cycles over which

Q may be integrated. Instead, there is a not trivial linear space of closed p-forms modulo

exact p-forms, i.e.

Hp =
{

equivalence classes of {Q(p) such that dQ(p)} modulo dΩ(p−1)

}
. (7)

This spaceHp is called the p-cohomology of the manifold in question. It has a finite dimension

equal to the number of independent topologically non-trivial p cycles of the manifold.

For example, consider a 2-torus T 2 = S1 × S1. It has two independent 1-cycles corre-

sponding to the two S1 circles of the manifold. In terms of the 2 periodic coordinates of the

torus, (x, y), x modulo 2πR1, y modulo 2πR2, one cycle corresponds to x running from 0 to

2πR1 ≡ 0 at a fixed y, while the other cycle has y running from 0 to 2πR2 ≡ 0 at a fixed x.

Now consider the 1-forms A = Aµdx
µ on the torus. An exact 1-form A = dΛ is a

gradient of a 0-form Λ, thus Aµ(x, y) = ∂µΛ(x, y). However, to be a proper 0-form, the
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function Λ(x, y) must be single-valued on the torus, thus

Λ(x, y) = Λ(x+ 2πR1, y) = Λ(x, y + 2πR2). (8)

Consequently, ∮
x cycle

A =

∮
y cycle

A = 0. (9)

OOH, a closed 1-form A has a zero curl ∂µAν − ∂νAµ = 0, so locally A is a gradient of some

scalar, Aµ(x, y) = ∂µΦ(x, y). However, the scalar Φ here does not have to be single valued,

as long as its gradient is single valued. Consequently, we may have∮
x cycle

A = Φ(x+ 2πR1, y) − Φ(x, y) 6= 0 (10)

and likewise ∮
y cycle

A = Φ(x, y + 2πR2) − Φ(x, y) 6= 0. (11)

For example A1 = dx is locally the gradient of Φ1(x, y) = x, but since this Φ1 is multi-valued

on the torus, the A1 form is not exact. However, A1 itself is single valued and has a zero

curl, so it is closed. Likewise, the A2 = dy is closed but not exact. Furthermore, it is easy

to see that any multi-value Φ(x, y) with a single valued gradient ∂µΦ has form

Φ(x, y) = α× x + β × y + single-valued Λ(x, y) (12)

for some constant coefficients α and β related to the integrals (10) and (11). Consequently,

any closed 1-form A can be written as

A = αA1 + βA2 + exact dΛ. (13)

Which means that the H1 cohomology of the torus is 2-dimensional, with the A1 = dx and

the Ay = dy serving as its basis.
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Differential Forms for Gauge Fields

Let’s start with the abelian gauge fields. The potentials Aµ(x) form a 1-form A = Aµdx
µ

subject to gauge transforms A′ = A − dΛ for a 0-form Λ. The tension fields Fµν(x) form a

2-form

F = Fµνdx
µ ∧ dxν = dA, (14)

which is gauge invariant because ddΛ = 0 by nilpotency of the exterior derivative d.

The covariant exterior derivative of a p-form Ψ of electric charge q is

DΨ = dΨ + iqA ∧Ψ. (15)

Unlike the ordinary exterior derivative d, the covariant exterior derivative D is not nilpotent.

Instead,

DDΨ = iqF ∧Ψ. (16)

Next, consider the non-abelian gauge fields. This time, the potentials Aaµ(x) form a

matrix-valued 1-form A = gAaµt
adxµ. Likewise, the non-abelian tension fields form a matrix-

valued 2-form

F = gF aµνt
a dxµ ∧ dxν = dA + iA ∧A. (17)

Note the antisymmetry of the wedge product A∧A: in components, it turns the product of

Aµ and Aν into the matrix commutator [Aµ,Aν ]. The covariant derivative of a fundamental

multiplet Φi(x) of scalar fields becomes in matrix notations DµΦ = ∂µΦ + iAµΦ where Φ is

a column vector. Together, these derivatives comprise a fundamental multiplet of 1-forms

DΦ = dΦ+iAΦ. Likewise, for a fundamental multiplet of p-forms Φi
(p), the covariant exterior

derivative D yields a (p+ 1)-form

DΦ(p) = dΦ(p) + iA ∧ Φ(p) . (18)

For an adjoint multiplet of scalars Ξ(x) = Ξa(x)ta or p-forms Ξ(p) = Ξa(p)t
a, the gauge
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field in the covariant derivative acts by matrix commutation rather than matrix multiplica-

tion. Thus, in the matrix-valued differential form language,

DΞ(p) = dΞ(p) + i[A,Ξ(p)] = dΞ(p) + iA ∧ Ξ(p) − i(−1)pΞ(p) ∧ A. (19)

In particular, the tension fields Faµν themselves form an adjoint multiplet of 2-forms F , hence

DF = dF + iAF − iFA. (20)

However, back in homework set#6 we saw that the non-abelian tension fields obey the

homogeneous Yang–Mills equation

DλFµν + DµFνλ + DνFλµ = 0, (21)

which in the differential form language becomes

DF = 0. (22)

Similar to the abelian case, the covariant exterior derivative is not nilpotent but squares

to the tension 2-form, DD = iF . That is, for a fundamental multiplet of p forms

DDΦ(p) = iF ∧ Φ(p) , (23)

while for an adjoint multiplet of p forms

DDΞ(p) = i[F ,Ξ(p)] = iF ∧ Ξ(p) − iΞ(p) ∧ F . (24)

Also, the covariant exterior derivative obeys Leibniz rules. For example, for an adjoint
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multiplet B(p) of p-forms and another adjoint multiplet C(q) of q forms,

D
(
B(p) ∧ C(q)

)
= (DB(p)) ∧ C(q) + (−1)pB(p) ∧ (DC(q)). (25)

Moreover, since traces of commutators vanish, we have

tr
(
D(B ∧ C)

)
= tr

(
d(B ∧ C) + i[A, (B ∧ C)]

)
= d tr(B ∧ C) + 0, (26)

and therefore

d tr(B ∧ C) = tr
(
D(B ∧ C)

)
= tr

(
(DB) ∧ C

)
+ (−1)p tr

(
B ∧ (DC)

)
. (27)

We shall find this Leibniz rule quite useful later in these notes.

Anomaly forms

In class, we have calculated the axial anomaly of QED or QCD with massless fermions

as

∂µJ
µ
A = −

Nf
16π2

tr
(
εαβµνFαβFµν

)
. (28)

But axial symmetries of massless Dirac fermions exist in all even spacetime dimensions

d = 2n = 2, 4, 6, . . ., and in all such dimensions they suffer from anomalies due to gauge

fields that couple to the fermions. Specifically,

∂µJ
µ
A = −

2Nf
n!

(−1)n

(4π)n
tr
(
εα1β1α2β2···αnβnFα1β1Fα2β2 · · · Fαnβn

)
, (29)

as you should have derived in problem 2 of homework set#24a.

Now let’s rewrite these formulae in the language of differential forms. In d spacetime

dimensions, a current Jµ is dual to the (d − 1)-form ∗J , which can be integrated over a

hypersurface (of dimension d−1) to yield the net charge or charge variation. For a conserved
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current, ∂µJ
µ(x) = 0 translates to d∗J = 0. But for an anomalous axial current JµA, eq. (29)

translates to the differential form language as

d ∗ JA = −
2Nf
n!

(−1)n

(4π)n
Q(2n) (30)

where Q(2n)
def
= tr

(
F ∧ F ∧ · · · ∧ F

)
, product of n tension 2-forms. (31)

Note: while the anomaly equations (30) apply only for d = 2n, the anomaly forms Q(2n)

themselves can be constructed in spaces of any dimension d ≥ 2n, and they turn out to be

quite useful in many contexts besides the anomaly eqs. (30). In particular, they are quite

useful in string theory.

A very important property of all the anomaly forms Q(2n) is that all of them are closed,

dQ(2n) = 0. (32)

Indeed, by the Leibniz rule (27),

d tr
(
F ∧ F ∧ · · · ∧ F

)
= tr

(
(DF) ∧ F ∧ · · · ∧ F

)
+ tr

(
F ∧ (DF) ∧ · · · ∧ F

)
+ · · · + tr

(
F ∧ · · · ∧ F ∧ (DF)

)
= 0 because DF = 0.

(33)

By the Poincare Lemma, it follows that in flat Minkowski or Euclidean spacetimes — which

are topologically trivial — all these closed forms should be exact. That is, for any even

2n = 2, 4, 6, . . ., Q(2n) = dΩ(2n−1) for some (2n − 1)-form Ω(2n−1). Moreover, we may

construct such forms — called the Chern–Simons forms — as traces of polynomials of F
and A forms. For example:

Ω(1) = tr
(
A
)

[only for the abelian fields], (34)

dΩ(1) = tr
(
F
)

= Q(2) , (35)

Ω(3) = tr
(
A ∧ F − i

3A ∧A ∧A
)
, (36)

dΩ(3) = tr
(
F ∧ F

)
= Q(4) , (37)
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Ω(5) = tr
(
A ∧ F ∧ F − i

2A ∧A ∧A ∧ F −
1
10A ∧A ∧A ∧A ∧A

)
, (38)

dΩ(5) = tr
(
F ∧ F ∧ F

)
= Q(6) , (39)

etc., etc.

Verifying these formulae is a part of your homework set#24a (problem 3(a)).

Although the Chern–Simons forms Ω(2n−1) are constructed from the anomaly forms

Q(2n), they can be quite interesting in their own rights. They are particularly useful for

gauge theories in odd spacetime dimensions d = 2n− 1. For example, in d = 3 dimensions,

adding the Chern–Simons 3-form to the Lagrangian,

L = LYM +
k

8π
Ω(3) , (40)

makes the gauge bosons massive without breaking the gauge invariance of the theory, cf.

Fall 2024 midterm exam (problem 2). Similarly, in d = 5 dimensions one may add the

Chern–Simons 5-form Ω(5) to the Lagrangian, which gives rise to interesting parity-violating

interactions between the gauge bosons. This is particularly important for the supersymmetric

5D gauge theories, where supersymmetry relates the Ω(5) to the scalar-dependence of the

gauge couplings.

There are also many uses of Chern–Simons form in string theory, in both odd and even

spacetime dimensions. But that subject is beyond the scope of our QFT class.

Now consider the behavior of Chern–Simons forms under gauge transformations,

A′ = i(dU)U−1 + UAU−1, F ′ = UFU−1, (41)

for some x-dependent unitary matrix U(x). (Or more general, an x-dependent element U(x)

of the gauge group G.) By the cyclic symmetry of the trace, all the anomaly forms Q(2n)

are gauge invariant:

Q′(2n) = tr
(
F ′∧· · ·∧F ′

)
= tr

(
UFU−1∧· · ·∧UFU−1

)
= tr

(
F∧· · ·∧F

)
= Q(2n) . (42)

On the other hand, the Chern–Simons forms Ω(2n−1) are not gauge invariant. However,

since their exterior derivatives dΩ(2n−1) = Q(2n) happen to be gauge invariant, the gauge
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variations of the Chern–Simons forms must be closed,

d
(
Ω′(2n−1) − Ω(2n−1)

)
= 0. (43)

Consequently, by the Poincare Lemma, in flat Minkowski or Euclidean spaces, the gauge

variations of the Chern–Simons forms must be exact,

Ω′(2n−1) − Ω(2n−1) = −dH(2n−2) (44)

for some (2n− 2) form. In particular, for infinitesimal gauge transforms parametrized by a

matrix-valued zero form Λ = Λa(x)ta — thus to the first order in Λ

U(x) = 1 + iΛ(x), δA = −DΛ = −dΛ − iAΛ + iΛA, δF = −iFΛ + iΛF ,
(45)

— one may construct the H(2n−2) forms in eqs. (44) as

H(2n−2) = tr
(
Λ× dK(2n−3)

)
(46)

for some (2n− 3)-forms K(2n−3) that are polynomials in A and F . (Or, equivalently, poly-

nomials in A and dA.) In particular,

H(0) = tr(Λ) [for the abelian theories only], (47)

δΛΩ(1) = −dH(0) , (48)

H(2) = tr
(
Λ× dA

)
, (49)

δΛΩ(3) = −dH(2) , (50)

H(4) = tr
(
Λ× d(A ∧ dA + i

2A ∧A ∧A)
)
, (51)

δΛΩ(5) = −dH(4) , (52)

etc., etc.

Again, verifying these formulae is a part of your homework set#24a (problem 3(b)).
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The way we have constructed the H(2n−2) forms is known as the anomaly descent: Start

with the Q(2n) = tr(F ∧· · ·∧F) forms (known to mathematicians as indices), then construct

the Chern–Simons forms so that dΩ(2n−1) = Q(2n), and then construct the H forms such

that δΛΩ(2n−1) = −dH(2n−2). However, once constructed, the H(2n−2) forms may be used

in any dimension d ≥ 2n − 2, including d = 2n − 2 for which the original Q(2n) form does

not exist. And as we shall see momentarily, the H(2n−2) form in d = 2n − 2 dimensions

governs the non-abelian gauge anomalies of chiral gauge theories: Under an infinitesimal

gauge transform, the effective action for the gauge fields varies by

δS[Aaµ(x)] = (coeff)×
∫

whole
spacetime

H(2n−2=d) . (53)

Non Abelian Anomaly in 4 Dimensions

Let’s start with the non-abelian anomaly in 4 dimensions, as they were already explained

in class, cf. my notes on anomalies, pages 50–58. Let the theory in question have a general

gauge group G and some chiral fermions, namely LH Weyl fermions in some generic multiplet

(mL) of G, and RH fermions in some different multiplet (mR) of G. Both (mL) and (mR)

multiplets may be reducible — i.e., comprise several irreducible multiplets, — but we do not

need their details for the general discussion here. All we need are the chiral traces

Zabc def
= tr(mL)

(
ta{tb, tc}

)
− tr(mR)

(
ta{tb, tc}

)
(54)

for all sets of 3 gauge group generators ta, tb, tb. (These traces were called Aabc in my notes

on the gauge anomalies.) By the cyclic symmetry of the traces (54), the coefficients Zabc are

totally symmetric WRT permutations of a, b, c, and for any simple gauge group

Zabc = dabc ×
(
Znet = R3(mL)−R3(mR)

)
(55)

where R3(m) is the cubic index of the multiplet (m). Thus, if the gauge theory is chi-

ral, (mL) 6= (mR), but the multiplets of LH and RH fermions have the same cubic index,

R3(mL) = R3(mR), then the gauge anomaly happens to cancel and the functional integral

over all the chiral fermions of the theory happens to be gauge invariant.
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But suppose the anomalies do not cancel, Znet 6= 0, or more generally Zabc 6= 0 for some

combinations of the adjoint indices a, b, c. In this case, we have learned earlier in class that

the effective action for the gauge fields stemming from the fermionic functional integrals is

not gauge invariant. Instead, under the infinitesimal gauge transforms Λa(x), the effective

Euclidean action varies by

∆Se[Λ] =
g2Zabc

16π2

∫
d4xe Λa × εαλµν∂α

(
Abλ

(
∂µA

c
ν −

g

4
f cdeAdµA

e
ν

))
. (56)

Consequently, the gauge symmetry currents Jµ,a instead of being covariantly conserved,

DµJ
µ,a = 0, obey anomalous equations

DµJ
µa = −g

2Zabc

16π2
εαλµν∂α

(
Abλ

(
∂µA

c
ν −

g

4
f cdeAdµA

e
ν

))
(57)

inconsistent with the Yang–Mills equations DµF
µν,a = Jµ,a.

In the differential form language, eq. (57) becomes

D ∗ Ja = −g
2Zabe

32π2
d
(
Ab ∧

(
dAe − g

2
fecdAc ∧ Ad

))
= −Z

abe

32π2
d
(
Ab ∧

(
dA + i

2A ∧A
)e)

,

(58)

while eq. (56) becomes

∆Se[Λ] = −Z
abe

32π2

∫
Λa × d

(
Ab ∧

(
dA + i

2A ∧A
)e)

. (59)

where the 4-form on the RHS is integrated over the whole Euclidean space. Furthermore,

since the anomaly coefficients Zabe obtain as generalized traces

Zabe = trχ
(
ta{tb, te}

) def
= tr(mL)

(
ta{tb, te}

)
− tr(mR)

(
ta{tb, te}

)
, (60)

cf. eq. (54), we may rewrite eq. (59) as

∆Se[Λ] = − 1

32π2

∫
trχ

(
Λ× d

{
A,
(
dA + i

2A ∧A
)})

. (61)

Actually, the anticommutator here is unnecessary since the two factors in it commute with
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each other up to a total derivative,

[
A,
(
dA + i

2A ∧A
)]

= A ∧ dA − dA ∧A = d(−A ∧A), (62)

hence

d
[
A,
(
dA + i

2A ∧A
)]

= 0

and therefore

d{A, (· · ·)} = 2d
(
A ∧ (· · ·)

)
. (63)

Thus,

∆Se[Λ] = − 1

16π2

∫
trχ

(
Λ× d

(
A ∧ (dA + i

2A ∧A)
))
. (64)

By inspection, the differential form under the integral here looks just like the H(4) form

H(4) = tr
(

Λ× d
(
A ∧ (dA + i

2A ∧A)
))

(51)

which obtains by anomaly descent from the 6-form

Q(6) = tr
(
F ∧ F ∧ F

)
. (65)

Indeed, the only differences between the 4-forms in eqs. (64) and (51) is the generalized

trace over all fermionic species in eq. (64) versus the abstract trace over gauge indices only

in eq. (51).

To repair this difference, let’s rework the anomaly descent procedure. Take a most

general gauge theory in 4D with some gauge group G — which may be simple or a product

of several factors. Let’s treat all fermions of the theory as Weyl fermions, left-handed or

right-handed. The LH Weyl fermions form some kind of multiplet (mL) of G; this multiplet

may be irreducible, or it may have several irreducible components, we do not care as long

as it is a complete multiplet of G. Likewise, the RH Weyl fermions form another multiplet

(mR) of G; again, we do not care if it’s reducible or irreducible as long as it’s complete. If
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both (mL) and (mR) multiplets are equivalent, the gauge theory in question is non-chiral so

it’s automatically free from any gauge anomaly. So let us focus on the chiral theories with

(mL) 6∼= (mR).

Despite the theory in question being 4-dimensional, let’s formally define a 6-forms —

presumably living in 6 or more dimensions —

Q̂(6) = tr(mL)

(
F ∧ F ∧ F

)
− tr(mR)

(
F ∧ F ∧ F

)
= trχ

(
F ∧ F ∧ F

)
. (66)

In terms of the Fa components of the adjoint multiplet of tension fields,

Q̂(6) = Fa ∧ F b ∧ Fc × trχ(tatbtc). (67)

Moreover, the wedge product of component 2-forms is totally symmetric,

Fa ∧ F b ∧ Fc = Fc ∧ F b ∧ Fa = · · · , (68)

we we may just as well symmetrize their adjoint indices, thus

Q̂(6) = Fa ∧ F b ∧ Fc × 1
6 trχ

(
tatbtc + (5 other permutations of ta, tb, tc)

)
= Fa ∧ F b ∧ Fc × 1

2 tr
(
tatbtc + tatctb

)
= Fa ∧ F b ∧ Fc × 1

2Z
abc

(69)

for exactly the same anomaly coefficients Zabc as in eq. (60). Thus, if all these coefficients

happen to vanish — and hence the theory in question is anomaly free — then Q̂(6) = 0, and

we may stop at this point.

But if some of the Zabc do not vanish, then the gauge theory is anomalous, and we may

work out the details of its anomaly by descent from the formal 6-form Q̂(6). That is, given

the Q̂(6), we work out the corresponding Chern–Simons 5-form

Ω̂(5) = trχ

(
A ∧ F ∧ F − i

2A ∧A ∧A ∧ F −
1
10A ∧A ∧A ∧A ∧A

)
, (70)

dΩ̂(5) = Q̂(6) . (71)

Similar to the 6-form Q̂(6), the Chern–Simons 5-form Ω̂(5) does not ‘fit’ into 4 spacetime

dimensions of the gauge theory, but we may treat both of them as formal constructions in

higher space dimensions.
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Going from the Q̂(6) ‘down’ to the Ω̂(5) is the first stage of the anomaly descent procedure.

The second stage is going from the Chern–Simons form Ω̂(5) ‘down’ to the 4-form Ĥ(4) such

that under infinitesimal gauge variations

δΩ̂(5) = −dĤ(4) . (72)

As we have already seen, this calls for

Ĥ = trχ

(
Λ× d

(
A ∧ (dA + i

2A ∧A)
))

= 1
2Z

abc × Λa × d
(
Ab ∧

(
dA + i

2A ∧A
)c)

.
(73)

Unlike the higher-dimensional forms Q̂(6) and Ω̂(5) we have used in the above anomaly

descent procedure, the 4-form (73) is well defined in the 4 dimensions of the gauge theory.

And it’s the whole-spacetime integral of this 4-form that governs the anomalous variation of

the effective action for the gauge fields,

∆Se[Λ] = − 1

16π2

∫
R4

H(4) . (74)

Gauge Anomalies in Other Even Dimensions

Weyl fermions — and hence chiral gauge theories — exist in all even spacetime dimen-

sions. So let’s adapt the anomaly descent procedure from the previous sections to other

spacetime dimensions.

Take a chiral gauge theory in d dimensions with gauge group G, LH Weyl fermions in

some multiplet (mL) and RH Weyl fermions in another multiplet (mR). Let

n =
d

2
+ 1, (75)

and let’s formally define a (2n) form (living in d+ 2 or more dimensions)

Q̂(2n) = tr(mL)

(
F ∧ · · · ∧ F

)
− tr(mR)

(
F ∧ · · · ∧ F

)
(76)

where F ∧ · · · ∧ F has n matrix-valued factors of F = Fata. In terms of the component
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2-forms Fa,

Q̂(2n) = Fa1 ∧ Fa2 ∧ · · · ∧ Fan ×
(

tr(mL)

(
ta1ta2 · · · tan

)
− tr(mR)

(
ta1ta2 · · · tan

))
, (77)

and since the wedge product of 2 forms is totally symmetric, we may just as well totally

symmetrize the adjoint indices a1, a2, . . . an. Thus,

Q̂(2n) =
Za1,a2,...,an

(n− 1)!
×Fa1 ∧ Fa2 ∧ · · · ∧ Fan (78)

for

Za1,a2,...,an = tr(mL)

(
ta1ta2 · · · tan + non-cyclic permutations

)
− tr(mR)

(
ta1ta2 · · · tan + non-cyclic permutations

)
.

(79)

Similar to 4D, if all the coefficients Za1,a2,...,an happen to vanish, then the chiral gauge

theory in question is anomaly free. Otherwise, the theory is anomalous and is inconsistent

as a quantum theory.

For the anomalous theories, we may work out the gauge variance of the effective action

by the two-step descent procedure: First, start with the formal Q̂(2n) form and construct

the Chern–Simons (2n− 1) form Ω̂(2n−1) such that

dΩ̂(2n−1) = Q̂(2n) . (80)

Second, consider infinitesimal gauge variance of this Chern–Simons form and construct a

(2n− 2) form Ĥ(2n−2) such that

δΛΩ̂(2n−1) = −dĤ(2n−2) . (81)

This form has rank 2n − 2 = d so it may be integrated over a d-cycle such as the whole

Euclidean space Rd, and the integral gives the gauge variance of the effective action,

∆Se[Λ] = (coefficient)

∫
Rd

H(2n−2) . (82)

Physically, we are mostly interested in the anomaly free theories, so let’s take a closer
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look at the anomaly coefficients (79), or in short-hand notations

Za,b,...,z = tr(mL)−(mR)

(
tatb · · · tz + permutations

)
. (83)

In d = 4 dimensions, n = 3 and the traces here are cubic polynomials of the gauge group

generators. But in other dimensions, we get polynomials of other degrees — quadratic for

d = 2, quartic for d = 6, degree n = 6 for d = 10, etc., — so we end up with very different

rules for the anomaly cancellation.

To see how this works, consider a simple gauge group G. In d = 4 we saw that this leads

to

trany (m)

(
tatbtc + tatctb

)
= R3(m)× dabc (84)

for the same dabc for all representations (m), with the only (m) dependence being the overall

factor R3(m), the cubic index of the representation. Consequently, in 4 dimensions

Za,b,c = dabc ×Znet (85)

for

Znet = Rnet
3 (mL) − Rnet

3 (mR) =
∑

LH Weyl multiplets

R3 −
∑

RH Weyl multiplets

R3 . (86)

Since the cubic index R3 is odd WRT complex conjugation, it vanishes for any real or

pseudoreal multiplet, so Weyl fermions in such multiplets of G do not contribute to the

anomaly. Also, for the complex multiplets R3(m) = −R3(m), so from the anomaly point

of view, a multiplet (m) of LH fermions is equivalent to the conjugate (m) multiplet of RH

fermions and vice verse. This is related to the fact that in 4 dimensions, the Hermitian

conjugate ψ†L of a LH Weyl spinor is equivalent to a RH Weyl spinor ψR, and vice verse

ψ†R
∼= ψL.

Finally, many kinds of gauge groups do not have cubic Casimirs and hence cubic in-

variants dabc. For such groups, in 4D we have automagic Zabc = 0, and there is no gauge

anomaly at all.
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Similar rules work in other dimensions d divisible by 4, hence odd n = (d/2) + 1. But

they do not work in dimensions d ≡ 2 (mod 4) for which n is even. For example, in 2

dimensions n = 2, hence

tr(m)(t
atb) = R2(m)× δab (87)

where R2(m) is the quadratic rather than cubic index of the multiplet (m). Consequently,

Zab = Znet × δab (88)

for

Znet = Rnet
2 (mL) − Rnet

2 (mR) =
∑

LH Weyl multiplets

R2 −
∑

RH Weyl multiplets

R2 . (89)

But the quadratic index is even WRT the charge conjugation, so it does not vanish for real or

pseudoreal multiplets. Thus all non-trivial fermion multiplets — complex, real, or pseudoreal

— do contribute to the gauge anomaly in 2D. Also, for complex multiplets R2(m) = +R2(m),

so we may not trade a multiplet (m) of LH Weyl fermions for a conjugate multiplet (m) of

RH Weyl fermions or vice verse. This is related to the fact that in 2D — or in any dimension

d ≡ 2 (mod 4) — the Hermitian conjugate ψ†L of the LH weyl spinor is equivalent to a LH

Weyl spinor ψL rather than a RH Weyl spinor ψR, and likewise ψ†R
∼= ψR rather than ψL.

Also, while many groups do not have cubic Casimirs, all groups have quadratic Casimirs

and hence quadratic invariants δab. Consequently, there are no automagically anomaly-free

gauge groups in 2D.

In 6 dimensions, the situation is similar, and even more complicated. For n = 4, many

groups have 2 independent quartic Casimirs, C2
2 and a separate C4. Consequently, there are

2 independent symmetric quartic invariants dabcd1 and dabcd2 while

tr(m)

(
tatbtctd + permutations

)
= R4,1(m)× dabcd1 + R4,2(m)× dabcd2 (90)

for two independent quartic indices of multiplets, R4,1(m) and R4,2(m). Therefore, in 6D

Zabcd = Z1 × dabcd1 + Zabcd2 (91)
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for

Z1 = Rnet
4,1 (mL) − Rnet

4,1 (mR),

Z2 = Rnet
4,2 (mL) − Rnet

4,2 (mR).
(92)

Thus, an anomaly free chiral gauge theory in 6D needs

both Rnet
4,1 (mL) = Rnet

4,1 (mR) and Rnet
4,2 (mL) = Rnet

4,2 (mR). (93)

And similar to 2D, all multiplets — real or complex — do contribute to these indices,

and there is no trading between between conjugate multiplets of LH and RH fermions.

Consequently, canceling all the anomalies of a chiral 6D gauge theory is a non-trivial exercise.

In 10 dimensions — which are particularly relevant to the superstring theory — because

for n = 6 most groups have 3 independent degree 6 Casimirs, hence 3 symmetric invariants

and 3 separate indices R6,1(m), R(6,2(m), R6,3(m) which must cancel between the LH and

the RH Weyl fermions. This constraint on the Weyl fermion spectrum of the theory is very

difficult to satisfy.

In particular, the 10D super–Yang–Mills theory has LH Weyl fermions in the adjoint

multiplet of the gauge group and no RH Weyl fermions at all. For any gauge group, the

adjoint multiplet has at least one non-zero degree-6 index, so the SYM theory by itself is

always anomalous.

Fortunately, in 1984 Michael Green and John Schwarz discovered that some of the 10D

anomalies can be canceled by adding to the theory a 2-form field Bµν(x) with certain interac-

tions, and then the remaining anomalies cancel for G = SO(32) or G = E8×E8. Moreover,

they saw that the 2-form field with the required interactions already exists in the superstring

theory, and verified the anomaly cancellation by a string-theoretic calculation. That result

— and the explosion of the follow-up papers — signalled the birth of the modern string

theory in 1984.
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