
CORRELATION FUNCTIONS IN PERTURBATION THEORY

Many aspects of quantum field theory are related to its n-point correlation functions

Fn(x1, . . . , xn) def
= 〈Ω|TΦ̂H(x1) · · · Φ̂H(xn) |Ω〉 (1)

— or for theories with multiple fields Φ̂a,

Fa1,...,an
n (x1, . . . , xn)

def
= 〈Ω|TΦ̂a1H (x1) · · · Φ̂anH (xn) |Ω〉 . (2)

Note that all the fields Φ̂H(x) here are in the Heisenberg picture so their time dependence

involves the complete Hamiltonian Ĥ of the interacting theory. Likewise, |Ω〉 is the ground

state of Ĥ , i.e. the true physical vacuum of the theory.

In perturbation theory, the correlation functions Fn of the interacting theory are related to

the free theory’s correlation functions

〈0|TΦ̂I(x1) · · · Φ̂I(xn) · · ·more Φ̂I(z1)Φ̂I(z2) · · · |0〉 . (3)

involving additional fields Φ̂I(z1)Φ̂I(z2) · · ·. Note that in eq. (3) the fields are in the interaction

rather than Heisenberg picture, so they evolve with time as free fields according to the free

Hamiltonian Ĥ0. Likewise, |0〉 is the free theory’s vacuum, i.e. the ground state of the free

Hamiltonian Ĥ0 rather than the full Hamiltonian Ĥ.

To work out the relation between (1) and (3), we start by formally relating quantum fields

in the Heisenberg and the interaction pictures,

Φ̂H (x, t) = e+iĤtΦ̂S(x)e
−iĤt = e+iĤte−iĤ0tΦ̂I(x, t)e

+iĤ0te−iĤt. (4)

We may re-state this relation in terms of evolution operators using a formal expression for the

later,

ÛI(t, t0) = e+iĤ0te−iĤ(t−t0)e−iĤ0t0. (5)

Note that this formula applies for both forward and backward evolution, i.e. regardless of
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whether t > t0 or t < t0. In particular,

ÛI(t, 0) = e+iĤ0te−iĤt and ÛI(0, t) = e+iĤte−iĤ0t, (6)

which allows us to re-state eq. (4) as

Φ̂H(x) = ÛI(0, x
0)Φ̂I(x)ÛI(x

0, 0). (7)

Consequently,

Φ̂H(x)Φ̂H(y) = ÛI(0, x
0)Φ̂I(x)ÛI(x

0, y0)Φ̂I(y)ÛI(y
0, 0) (8)

because ÛI(x
0, 0)ÛI(0, y

0) = ÛI(x
0, y0), and likewise for n fields

Φ̂H(x1)Φ̂H(x2) · · · Φ̂H(xn) = (9)

= ÛI(0, x
0
1)Φ̂I(x1)ÛI(x

0
1, x

0
2)Φ̂I(x2) · · · ÛI(x0n−1, x

0
n)Φ̂I(xn)ÛI(x

0
n, 0).

Now we need to relate the free vacuum |0〉 and the true physical vacuum |Ω〉. Consider

the state ÛI(0,−T ) |0〉 for a complex T , and take the limit of T → (+1 − iǫ) × ∞. That is,

ReT → +∞, ImT → −∞, but the imaginary part grows slower than the real part. Pictorially,

in the complex T plane,

T

(10)

we go infinitely far to the right at an infinitesimally small angle below the real axis.
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Without loss of generality we assume the free theory has zero vacuum energy, thus Ĥ0 |0〉 = 0

and hence

ÛI(0,−T ) |0〉 = e−iĤT e+iĤ0T |0〉 = e−iĤT |0〉 . (11)

From the interacting theory’s point of view, |0〉 is a superposition of eigenstates |Q〉 of the full

Hamiltonian Ĥ,

|0〉 =
∑

Q

|Q〉 × 〈Q|0〉 =⇒ e−iĤT |0〉 =
∑

Q

|Q〉 × e−iTEQ 〈Q|0〉 (12)

For complex T , |e−iTEQ| = exp(+EQ Im(T )), so in the T → (+1 − iǫ) ×∞ limit, the sum in

the second eq. (12) is dominated by the term with the lowest EQ. Or rather, it’s dominated by

the lowest-energy eigenstate |Q0〉 of Ĥ with the same quantum numbers as |0〉 since otherwise,
we would have zero overlap 〈Q0|0〉. Obviously, this lowest-energy state is the physical vacuum

|Ω〉, thus

ÛI(0,−T ) |0〉 −−−−−−−−→
T→(+1−iǫ)∞

|Ω〉 × e−iTEΩ 〈Ω|0〉 (13)

and therefore

|Ω〉 = lim
T→(+1−iǫ)∞

ÛI(0,−T ) |0〉 ×
e+iTEΩ

〈Ω|0〉 . (14)

Likewise,

〈0|UI(+T, 0) = 〈0| e−iĤT =
∑

Q

〈0|Q〉 e−iTEQ 〈Q| −−−−−−−→
T→(1−iǫ)∞

〈0|Ω〉 e−iTEΩ × 〈Ω| (15)

and therefore

〈Ω| = lim
T→(+1−iǫ)∞

e+iTEΩ

〈0|Ω〉 × 〈0| ÛI(+T, 0) . (16)

Combining eqs. (8), (14), and (16), we may now express the two-point function as

〈Ω| Φ̂H(x)Φ̂H (y) |Ω〉 = lim
T→(+1−iǫ)∞

C(T )× 〈0|Big Product |0〉 (17)
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where

C(T ) =
e2iTEΩ

|〈0|Ω〉|2
(18)

is a just a coefficient, and

Big Product = ÛI(+T, 0)ÛI(0, x
0)Φ̂I(x)ÛI(x

0, y0)Φ̂I(y)ÛI(y
0, 0)ÛI(0,−T )

= ÛI(+T, x
0)Φ̂I(x)ÛI(x

0, y0)Φ̂I(y)ÛI(y
0,−T ).

(19)

For x0 > y0, the last line here is in proper time order, so if we re-order the operators, the

time-orderer T would put them back where they belong. Thus, using T to keep track of the

operator order, we have

Big Product = T
(
ÛI(+T, x

0)Φ̂I(x)ÛI(x
0, y0)Φ̂I(y)ÛI(y

0,−T )
)

= T
(
Φ̂I(x)Φ̂I (y)× ÛI(+T, x

0)ÛI(x
0, y0)ÛI(y

0,−T )
)

= T
(
Φ̂I(x)Φ̂I (y)× ÛI(+T,−T )

)

= T


Φ̂I (x)Φ̂I(y)× exp


−iλ

24

+T∫

−T

dt

∫
d3z Φ̂4

I(t, z)






(20)

where the last line follows from the Dyson series for the evolution operator

UI(tf , ti) = T-exp


−i

tf∫

ti

dt V̂I(t)


 = T-exp


−iλ

24

tf∫

ti

dt

∫
d3z Φ̂4

I(t, z)


 .

Altogether, the two-point correlation function becomes

F2(x, y)
def
= 〈Ω|TΦ̂H(x)Φ̂H(y) |Ω〉

= lim
T→(+1−iǫ)∞

C(T )× 〈0|T
(
Φ̂I(x)Φ̂I(y)× exp

(−iλ
24

∫
d4z Φ̂4

I(z)

))
|0〉 ,

(21)

where the spacetime integral has ranges

∫
d4z ≡

+T∫

−T

dz0
∫

whole

space

d3z . (22)
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Similarly, the n-point correlation functions can be written as

Fn(x1, . . . , xn) def
= 〈Ω|TΦ̂H(x1) · · · Φ̂H(xn) |Ω〉

= lim
T→(+1−iǫ)∞

C(T )× 〈0|T
(
Φ̂I(x1) · · · Φ̂I(xn)× exp

(−iλ
24

∫
d4z Φ̂4

I(z)

))
|0〉 .

(23)

Note that the coefficient C(T ) is the same for all the correlations functions (for any n);

it’s related to the vacuum energy shift according to eq. (18). In particular, for n = 0 the

F0 = 〈Ω|Ω〉 = 1, but it’s also given by eq. (23), hence

lim
T→(+1−iǫ)∞

C(T )× 〈0|T
(
exp

(−iλ
24

∫
d4z Φ̂4

I(z)

))
|0〉 = 1. (24)

This allows us to eliminate the C(T ) factors from eqs. (23) by taking ratios of the free-theory

correlation functions,

Fn(x1, . . . , xn) = lim
T

〈0|T
(
Φ̂I(x1) · · · Φ̂I(xn)× exp

(
−iλ
24

∫
d4z Φ̂4

I(z)
))

|0〉

〈0|T
(
exp

(
−iλ
24

∫
d4z Φ̂4

I(z)
))

|0〉
. (25)

The limit here is T → (+1− iǫ)×∞, and the T dependence under the limit is implicit in the

ranges of the spacetime integrals, cf. eq. (22).

In perturbation theory, the vacuum sandwiches in the numerator and the denominator of

eq. (25) can be expanded into sums of Feynman diagrams. Indeed, expanding the numerator

in a power series in λ, we obtain

〈0|T
(
Φ̂I(x1) · · · Φ̂I(xn)× exp

(−iλ
24

∫
d4z Φ̂4

I(z)

))
|0〉 =

=
∞∑

N=0

(−iλ)N
(4!)N N !

∫
d4z1 · · ·

∫
d4zN 〈0|TΦ̂I(x1) · · · Φ̂I(xn)× Φ̂4

I(z1) · · · Φ̂4
I(zN ) |0〉

(26)

where each sub-sandwich 〈0|TΦ̂I(x1) · · · Φ̂I(xn)× Φ̂4
I(z1) · · · Φ̂4

I(zN ) |0〉 expands into a big sum

of products of 4N+n
2 Feynman propagators GF (xi − xj), GF (xi − zj), or GF (zi − zj). We have

gone through expansion back in November — here are my notes — so let me simply summarize

the result in terms of the Feynman rules for the correlation functions:
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⋆ A generic Feynman diagram for the n-point correlation function has n external ver-

tices x1, . . . , xn or valence = 1 plus some number N = 0, 1, 2, 3, . . . of internal vertices

z1, . . . , zN of valence = 4. On the other hand, it has no external lines but only the internal

lines between the vertices. Here is an example diagram with 2 external vertices, 2 internal

vertices, and 5 internal lines:

(27)

• To evaluate a diagram in coordinate space, first multiply the usual factors:

∗ The free propagator GF (zi− zj) for a line connecting vertices internal zi and zj , and

likewise for lines connecting an internal vertex zi to an external vertex xj , or two

external vertices xi and xj .

∗ (−iλ) factor for each internal vertex.

∗ The combinatorial factor 1/#symmetries of the diagram (including the trivial sym-

metry).

• Second, integrate
∫
d4z over each internal vertex location; the integration range is as in

eq. (22). But do not integrate over the external vertices — their location’s x1, . . . , xn are

the arguments of the n-point correlation function Fn(x1, . . . , xn).

• To calculate the numerator of eq. (25) to order λNmax , sum over all diagrams with n

external vertices, N ≤ Nmax internal vertices, and any pattern of lines respecting the

valences of all the vertices.

At this point, we are summing over all kinds of diagrams, connected or disconnected, and

even the vacuum bubbles are allowed. However, similar to what we had back in November, the

vacuum bubbles can be factored out:

∑
(all diagrams) =

∑(
diagrams without

vacuum bubbles

)
×
∑(

vacuum bubbles

without external vertices

)
. (28)
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Moreover, the vacuum bubble factor here is the same for all the free-theory vacuum sandwiches

〈0|T
(
Φ̂I(x1) · · · Φ̂I(xn)× exp

(−iλ
24

∫
d4z Φ̂4

I(z)

))
|0〉

in the numerators of eqs. (25) for all the correlation functions, and also in the n = 0 sandwich

〈0|T
(
exp

(−iλ
24

∫
d4z Φ̂4

I(z)

))
|0〉 =

∑(
vacuum bubbles

without external vertices

)
(29)

in the all the denominators. This means that the vacuum bubbles simply cancel out from the

correlation functions! In other words,

Fn(x1, . . . , xn) =
∑




Feynman diagrams with

n external vertices x1, . . . xn

and without vacuum bubbles


 . (30)

Besides reducing the number of diagrams we need to calculate, the cancellation of the

vacuum bubbles leads to another simplification: Instead of evaluating each diagram for a finite

T , taking the ratio of two sums of diagrams, and only then taking the T → (+1 − iǫ)∞ limit,

we may now take that limit directly for each diagram. In practice, this means integrating

each
∫
d4zi over the whole Minkowski spacetime instead of a limited time range from −T to

+T as in eq. (22). Consequently, when we Fourier transform the Feynman rules from the

coordinate space to the momentum space, we end up with the usual momentum-conservation

factors (2π)4δ(4)(±q1 ± q2 ± q3 ± q4) at each internal vertex instead of something much more

complicated.

So here are the momentum-space Feynman rules for the correlation functions:

• Since all the lines are internal, assign a variable momentum qµi to each line and specify

the direction of this momentum flow (from which vertex to which vertex).

∗ Each line carries a propagator
i

q2 −m2 + i0
.

∗ Each external vertex x carries a factor e+iqx or e−iqx, depending on whether the momen-

tum q flows into or out from the vertex.
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∗ Each internal vertex carries factor (−iλ)× (2π)4δ(4)(±q±1 q2 ± q3 ± q4).

∗ Overall combinatorial factor 1/#symmetries for the whole diagram.

• Multiply all these factors together, then integrate over all the momenta qµi .

For example, the diagram (27) evaluates to

F2(x, y) ⊃ 1

6

∫
d4q1
(2π)4

· · ·
∫
d4q5
(2π)4

5∏

i=1

i

q2i −m2 + iǫ
× e−iq1x × e+iq2y×

× (−iλ)(2π)4δ(4)(q1 − q3 − q4 − q5)×

× (−iλ)(2π)4δ(4)(q3 + q4 + q5 − q2)

=
−iλ2
6

∫
d4q1
(2π)4

e−iq1(x−y) ×
(

1

q21 −m2 + iǫ

)2

×

×
∫∫
d4q3 d

4q4
(2π)8

1

q23 −m2 + iǫ
× 1

q24 −m2 + iǫ
×

× 1

(q5 = q1 − q3 − q4)2 −m2 + iǫ

(31)

Note: as defined in eq. (1), the correlation functions Fn(x1, . . . , xn) obtain by summing all

Feynman diagrams without vacuum bubbles, cf. eq. (30). Both connected and disconnected

diagrams are included, as long as each connected part of a disconnected diagram has some

external vertices. However, the disconnected diagrams’ contributions can be re-summed in

terms of correlation functions of fewer fields. Indeed, let’s define the connected correlation

functions

F conn
n (x1, . . . , xn) =

∑(
connected Feynman diagrams

with n external vertices

)
. (32)

Then the original Fn functions can be obtained from these via cluster expansion:
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F2(x, y) = F conn
2 (x, y),

F4(x, y, x, w) = F conn
4 (x, y, z, w) + F conn

2 (x, y)×F conn
2 (z, w)

+ F conn
2 (x, z)×F conn

2 (y, w) + F conn
2 (x, w)× F conn

2 (y, z),

F6(x, y, x, u, v, w) = F conn
6 (x, y, z, u, v, w)

+
(
F conn
2 (x, y)×F conn

4 (z, u, v, w) + permutations
)

+
(
F conn
2 (x, y)×F conn

2 (z, u)×F conn
2 (v, w) + permutations

)
,

etc., etc.

(33)

The connected 4-point, 6-point, etc., correlation functions are related to the scattering ampli-

tudes via the LSZ reduction formula — named after Harry Lehmann, Kurt Symanzik, and

Wolfhart Zimmermann, — see $7.2 of the Peskin and Schroeder textbook for the details. I

shall explain the LSZ reduction formula later in class; here are my notes on the subject.

The 2–Point Correlation Function

Meanwhile, let us focus on the 2-point correlation function F2(x − y), which is related to

the renormalization of the particle mass and the strength of the quantum field. Also, let’s put

aside the perturbation theory — we shall return to it later in these notes — and focus on the

analytic features of the two-point function and their relation to the particle spectrum of the

quantum theory.

By definition, the F2(x− y) for x0 > y0 amounts to

F2(x− y)
def
= 〈Ω|TΦ̂H(x)Φ̂H (y) |Ω〉 = 〈Ω| Φ̂H(x)Φ̂H(y) |Ω〉

=
∑

|Ψ〉

〈Ω| Φ̂H(x) |Ψ〉 × 〈Ψ| Φ̂H(y) |Ω〉 (34)

where the sum is over all the quantum states |Ψ〉 of the theory. Or rather, over all quantum

states which can be created by the action of the quantum field Φ̂(y) on the vacuum state. In

the free theory, such states would be limited to the one-particle states with different momenta,

but the interacting field Φ̂H(y) may also create a three-particle state, or a five-particle state,

etc., etc. In a more general theory, the quantum states |Ψ〉 which could be created by the
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action of some quantum field ϕ̂(y) on the vacuum include all the multi-particle states which

have the same net conserved quantum numbers as a single naive quantum of the field ϕ̂(y). For

example, in QED, the states Âµ(y) |Ω〉 created by the EM field acting on the vacuum include

the one-photon states, the three-photon states, etc., but also the electron-positron states —

including both the un-bound two-particle states and the hydrogen atom-like bound states, —

as well as the states including one or more e−e+ pairs and several photons. In other words, all

the quantum states which can get mixed with a single-photon state by the QED interactions.

For simplicity, let me keep the states |Ψ〉 in eq. (34) completely generic. As to their quantum

numbers, let me separate the net energy-momentum pµ of all the particles involved from all

the other quantum numbers which I’ll denote by the lower-case ψ, thus |Ψ〉 = |ψ, pµ〉. Note:

for the single-particle and bound states, the spectrum of ψ is discrete, while for the un-bound

multi-particle states the spectrum of ψ is continuous since ψ includes the relative velocities of

the several particles. As to the spectrum of the net momentum pµ, it spans the positive-energy

mass shell for the mass which depends on ψ, thus

any p, p0 = +
√

p2 +M2(ψ) (35)

where M(ψ) is the invariant mass of the state |ψ; p〉. Altogether, in terms of the |Ψ〉 = |ψ; p〉
eq. (34) becomes

F2(x− y) =
∑

ψ

∫
d3p

(2π)3
1

2E(p,M(ψ))
× 〈Ω| Φ̂H(x) |ψ, p〉 × 〈ψ, p| Φ̂H(y) |Ω〉 . (36)

Next, consider the x–dependence of the matrix element 〈Ω| Φ̂H (x) |ψ, p〉 and the y–depen-

dence of the 〈ψ, p| Φ̂H(y) |Ω〉. The quantum field theory has translational symmetry in all 4

dimensions of spacetime, and the net energy-momentum operator P̂ µ is the generator of this

symmetry. In the Heisenberg picture of the theory, this means

Φ̂H(x+ a) = exp(+iaµP̂
µ) Φ̂H(x) exp(−iaµP̂ µ) (37)

and in particular

Φ̂H(x) = exp(+ixµP̂
µ) Φ̂H(0) exp(−ixµP̂ µ). (38)

At the same time, the states 〈Ω| and |ψ, p〉 are eigenstates of the net energy-momentum oper-
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ators: the vacuum 〈Ω| has P = 0 while the state |ψ, p〉 has P = p. Consequently,

〈Ω| exp(ixµP̂ µ) = 〈Ω| while exp(−ixµP̂ µ) |ψ, p〉 = e−ixµp
µ × |ψ, p〉 , (39)

and therefore

〈Ω| Φ̂H(x) |ψ, p〉 = 〈Ω| exp(ixµP̂ µ) Φ̂H(0) exp(−ixµP̂ µ) |ψ, p〉 = e−ixµp
µ × 〈Ω| Φ̂H(0) |ψ, p〉 .

(40)

Similarly,

〈ψ, p| Φ̂H(y) |Ω〉 = 〈ψ, p| exp(iyµP̂ µ) Φ̂H(0) exp(−iyµP̂ µ) |Ω〉 = e+iyµp
µ × 〈ψ, p| Φ̂H(0) |Ω〉 .

(41)

Combining these two formulae, we have

〈Ω| Φ̂H(x) |ψ, p〉 × 〈ψ, p| Φ̂H(y) |Ω〉 = e−ipx+ipy × 〈Ω| Φ̂H(0) |ψ, p〉 〈ψ, p| Φ̂H(0) |Ω〉

= e−ip(x−y) ×
∣∣∣〈ψ, p| Φ̂H(0) |Ω〉

∣∣∣
2 (42)

where only the e−ip(x−y) factor depends on the x and y coordinates. Moreover, it’s the only

factor depending on the total momentum p! Indeed, the state Φ̂H(0) |Ω〉 is invariant under

orthochronous Lorentz symmetries, hence

the matrix element 〈ψ, p| Φ̂H(0) |Ω〉 is the same for all p ∈ the mass shell. (43)

Renaming this p-independent matrix element as simply 〈ψ| Φ̂H(0) |Ω〉, we have

〈Ω| Φ̂H(x) |ψ, p〉 × 〈ψ, p| Φ̂H(y) |Ω〉 =
∣∣∣〈ψ| Φ̂H(0) |Ω〉

∣∣∣
2
× e−ip(x−y). (44)

Consequently, eq. (36) for the two-point correlation function becomes

F2(x− y) =
∑

ψ

∣∣∣〈ψ| Φ̂H(0) |Ω〉
∣∣∣
2
×
∫

d3p

(2π)3
1

2p0
e−ip(x−y)

∣∣∣∣
p0=+

√
p2+M2(ψ)

=
∑

ψ

∣∣∣〈ψ| Φ̂H(0) |Ω〉
∣∣∣
2
×D(x− y;M(ψ)).

(45)

Now remember that eq. (45) follows from eq. (34), which obtains only for x0 > y0. In the

11



opposite case of x0 < y0, we have

F2(x− y) = 〈Ω|TΦ̂H(x)Φ̂H(y) |Ω〉 = 〈Ω| Φ̂H(y)Φ̂H(x) |Ω〉

=
∑

ψ

∫
d3p

(2π)3
1

2E(p,M(ψ))
〈Ω| Φ̂H(y) |ψ, p〉 × 〈ψ, p| Φ̂H(x) |Ω〉 ,

(46)

similar to eq. (36) but with x and y exchanging their roles. Consequently, proceeding exactly

as above, we obtain

F2(x− y) =
∑

ψ

∣∣∣〈ψ| Φ̂H(0) |Ω〉
∣∣∣
2
×D(y − x;M(ψ)). (47)

Altogether, for any time order of the x0 and the y0, we have

F2(x− y) =
∑

ψ

∣∣∣〈ψ| Φ̂H(0) |Ω〉
∣∣∣
2
×
{
D(x− y;M(ψ)) for x0 > y0,

D(y − x;M(ψ)) for x0 < y0,

=
∑

ψ

∣∣∣〈ψ| Φ̂H(0) |Ω〉
∣∣∣
2
×GF (x− y;M(ψ))

=
∑

ψ

∣∣∣〈ψ| Φ̂H(0) |Ω〉
∣∣∣
2
×
∫

d4p

(2π)4
ie−ip(x−y)

p2 −M2(ψ) + iǫ
.

(48)

Eq. (48) is usually written as the Källén–Lehmann spectral representation:

F2(x− y) =

∞∫

0

dm2

2π
ρ(m2)×

∫
d4p

(2π)4
ie−ip(x−y)

p2 −m2 + iǫ
. (49)

where

ρ(m2)
def
=
∑

ψ

∣∣∣〈ψ| Φ̂H(0) |Ω〉
∣∣∣
2
× (2π)δ(M2(ψ)−m2) (50)

is the spectral density function. Here are some of its key features:

• In any QFT, for any quantum field, the spectral density function is real and non-negative,

ρ(m2) ≥ 0 at all m2.

• In the free field theory, ρ(m2) = 2πδ(m2 −M2) where M is the particle’s mass.
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• In the interacting λΦ4 theory, the spectral density function has both a delta-spike at

m2 =M2 and a smooth continuum above the 3-particle threshold,

m2

ρ

M2 (3M)2

⋆ Note: the M2 position of the delta-spike is the mass2 of the physical particle rather

than the bare mass2 in the Feynman rules of the perturbation theory. Likewise, the

continuum begins at (3M)2, which is the threshold for the mass2 for the physical

3-particle states.

• In a general quantum field theory, the spectral density functions get contributions from

several kind of states: single particle, bound states of several particles, unbound states,

unstable resonances, etc., etc. The single-particle states and the bound states give rise

to the delta-spikes of the spectral density function, the un-bound multi-particle states

give rise to the continuum starting at the threshold (the minimal invariant mass2 of the

unbound state), while the resonances give rise to narrow peaks on top of the continuum.

Schematically,

m2

ρ

1 particle bound
states

threshold

continuum of unbound states

resonance
narrow

13



Analytic Behavior

Now let’s translate all these features of the spectral density function ρ(m2) into the analytic

behavior of the two-point function F2(x− y), or rather of its Fourier transform

F2(p) =

∫
d4x eipµx

µ F2(x− 0) =

∞∫

0

dm2

2π
ρ(m2)× i

p2 −m2 + iǫ
. (51)

In the λΦ4 theory, the one-particle state contributes a delta-spike to the spectral density

function, while the multi-particle unbound states give rise to a smooth continuum, thus

ρ(m2) = Z × 2πδ(m2 −M2
particle) + smooth continuum, (52)

where

Z =
∣∣∣〈1 particle| Φ̂H(0) |Ω〉

∣∣∣
2
> 0. (53)

In other words,
√
Z is the strength with which the quantum field Φ̂ creates single particles from

the vacuum. In the free theory Z = 1, but in the interacting theory Z is subject to quantum

corrections.

Plugging the spectral density (52) into eq. (51) for the two-point function, we get

F2(p
2) =

iZ

p2 −M2
particle + iǫ

+ smooth(p2) (54)

where the pole is at the physical particle’s mass2 and its residue Z is the square of the field’s

strength in creating that particle. Conversely, if we find — from the perturbation theory, or by

any other means — that the two-point function has a pole at p2 = M2 with residue Z, then

the spectral density function has a delta-spike just like in eq. (52), which means that the pole

position M2 is precisely the physical mass of the particle!

In perturbation theory, the Feynman vertices use the bare coupling λbare which is different

from the physical coupling λphys of the theory; likewise, the Feynman propagators use the bare

mass mbare which is different from the physical mass of the particle. To relate the bare mass to

14



the physical mass, we should use the perturbation theory to calculate the two-point correlation

function F2(p
2). That two-point function should have a pole, generally at M2

pole 6= m2
bare. It

is that pole mass2 M2
pole which should be identified with the physical mass2 of the particle! In

other words, we should get the pole mass2 as a perturbative expansion

M2
pole = m2

bare + loop corrections = f(m2
bare, λbare,ΛUV ), (55)

and then we should identify M2
pole =M2

particle and solve the equation

f(m2
bare; other stuff) = M2

particle (56)

for the m2
bare. We shall see how this works in practice later in these notes.

Meanwhile, let’s consider the un-bound states contribution to the two-point function. In

the integral

F2(p
2) =

∞∫

0

dm2

2π
ρ(m2)× i

p2 −m2 + iǫ
, (51)

a smooth positive ρ(m2) above the threshold m2
thr = 9M2 gives rise to the branch cut running

from the threshold to +∞ along the real axis. Indeed, for p2 > the threshold so that ρ(m2 = p2)

is positive and smooth, we have

F2(p
2 + iǫ) − F2(p

2 − iǫ) =
1

2πi

∞∫

0

dm2 ρ(m2)

m2 − p2 − iǫ
− 1

2πi

∞∫

0

dm2 ρ(m2)

m2 − p2 + iǫ

=
1

2πi

∮

circle

around p

dm2 ρ(m2)

m2 − p2
= ρ(p2).

(57)

Thus, the 2-point function has a discontinuity across the real axis between p2 + iǫ and p2 − iǫ,
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which means a branch cut on its Riemann surface:

pole branch cut
Re(p2)

Im(p2)

F2(p
2)

Let’s take a closer look at the real axis of this Riemann surface. For the real and negative

(spacelike) p2, the two-point function, or rather the

iF2(p
2) =

+∞∫

0

dm2

2π

ρ(m2)

m2 − p2
(58)

is real, positive, and single-valued. As we continue to the positive (timelike) p2 but stay below

the threshold, the iF2(p
2) remains real and single-valued. But once we cross over the threshold,

the integral (58) includes the singularity at m2 = p2, which gives rise to the branch cut. In this

regime,

(above the threshold) iF2(p
2 ± iǫ) = real ± i

ρ(p2)

2
. (59)

So what should we do for real p2 above the threshold? The iǫ in the denominator under

the integral (51) gives the answer
⋆
: we should shift such real p2 upward in the complex plane,

⋆ The p2−m2+iǫ in the denominator of eq. (51) stems from the similar denominator in the Källén–Lehmann
representation (49), which in turn comes from the Feynman propagator GF (x − y;M(ψ)) for the scalar
field, cf. eq. (48).
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p2 → p2 + iǫ, and evaluate the 2-point function for p2 + iǫ. In other words, the physical ‘bank’

of the branch cut is the upper bank.

More generally, the Riemann surface of the 2-point function F2(p
2) has the physical sheet

and an infinite series of the un-physical sheets. The physical sheet begins on the upper bank of

the branch cut and extends counterclockwise to the negative real axis and back to the positive

axis. On this physical sheet, the F2(p
2) has no off-axis poles. Instead, all the poles are at real

positive p2 and correspond to physical stable particles (or bound states).

However, the two-point function may have additional off-axis poles on the un-physical

sheet of the Riemann surface beyond the branch cut. Such poles — if any — corresponds to

the unstable particles or resonances. Specifically:

• First, we define the F(p2)
def
= F2(p

2 + iǫ) along the upper — physical — bank of the

branch cut.

• Second, we analytically continue this function to complex p2. For positive Im(p2) this

continuation takes us to the physical sheet of the Riemann surface, while for the negative

Im(p2) it takes us to the unphysical sheet below the branch cut.

• It is on this un-physical sheet that the two-point function may have an off-axis pole, or

perhaps several poles. For example, suppose it has a pole at p2 =M2− iMΓ. Mathemat-

ically, this means we start with p2 = M2 + iǫ, analytically continue from positive Im p2

to negative Im p2, and only then hit the pole at Im p2 = −MΓ.

• Suppose Γ is small so the pole on the un-physical sheet is close to the real axis. Then for

the real p2 near M2, the two-point function is dominated by that pole,

for p2 ≈ M2, F(p2) =
iZ

p2 −M2 + iMΓ
+ smooth(p2). (60)

This is the Breit–Wigner resonance.

• Physically, such a resonance corresponds to an un-stable particle. By the optical theorem,

the resonance’s width Γ equals to the net decay rate of the unstable particle, including

all possible decay products. In other words, 1/Γ is the average lifetime of the unstable

particle.

17



Perturbation Theory for the Two–Point Function

By now we have learned the expected analytical behavior of the two-point function F2(x−y)
— or rather of its Fourier transform F2(p), — let’s calculate this function in the perturbation

theory. At the tree level we have a single Feynman diagram

F tree
2 = =

i

p2 −m2
b + iǫ

, (61)

at the one-loop level we also have a single diagram

F1 loop
2 = =

(
i

p2 −m2
b + iǫ

)2

× other factors, (62)

at the two-loop level we have three diagrams,

F2 loops
2 =

+ +

=

(
i

p2 −m2
b + iǫ

)3

× other factors

+

(
i

p2 −m2
b + iǫ

)2

× other factors +

(
i

p2 −m2
b + iǫ

)2

× other factors,

(63)

etc., etc. Similar to the one-loop and two-loop diagrams shown here, all higher-loop diagrams

also have two or more propagators whose momentum is fixed at p, so the whole diagram depends
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on p as
(

i

p2 −m2
b + iǫ

)power≥2

× other factors. (64)

Thus, instead shifting the tree-level pole at p2 = bare mass2 to the physical mass2, the loop

diagrams all have poles at the same p2 = bare mass2 as the tree graph. Worse, the loop

diagrams have double poles, triple poles, or worse, while the physical correlation function may

have simple poles but no higher-order poles. To resolve this conundrum, we need to partially

re-sum the perturbative expansion so that the higher-order poles would add up to a simple but

shifted pole such as in the series

∞∑

n=0

(
i

p2 −m2
b + iǫ

)n+1

× (−i∆)n =
i

p2 −m2
b + iǫ

× 1

1− ∆
p2−m2

b+iǫ

=
i

p2 − (m2
b +∆) + iǫ

.

(65)

To see how such resummation might work, note that a general multi-loop Feynman graph

for the two-point correlation function looks like

(66)

where the red circles stand for one-particle irreducible (1PI) subgraphs. That is, subgraphs

which would remain connected after cutting any single internal propagator, hence the name one-

propagator irreducible, which turned into one-particle irreducible. For example, the subgraphs

(67)

are 1PI but the subgraph

(68)
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is not 1PI — cutting the purple propagator breaks the graph into 2 disconnected pieces. In a

1PI Feynman graph, none of the internal propagator’s momenta is fixed by the external legs’

momenta; consequently, there are no poles when the external momenta — or any combinations

of the external momenta — go to the mass shell p2 =M2. Thus, when we evaluate a Feynman

graph

(69)

with N 1PI bubbles connected to each other and to the external vertices by N +1 propagators,

we get

F =

(
i

p2 −m2
b + iǫ

)N+1

×
N∏

i=1

[1PI bubble#i] (70)

where the bubble factors are analytic functions of p2 which are regular at p2 =M2.

Now let’s reorganize the perturbative expansion of the two-point correlation function into

diagrams like (69) according to the number N of the 1PI bubbles. That is, we first formally

sum up the diagrams with a fixed number N of the 1PI bubbles but allow any kinds of such

bubbles, and only then sum over N . This gives us

FN bubbles(p
2) =

(
i

p2 −m2
b + iǫ

)N+1

×
∑

sets of N
1PI bubbles

(
N∏

i=1

[1PI bubble#i]

)
(71)

and since we can choose any 1PI subgraph for each bubble#i independently from the other

bubbles, the sum here factorizes to N th power of the sum over single 1PI bubbles,

FN bubbles(p
2) =

(
i

p2 −m2
b + iǫ

)N+1

×




∑

single

1PI bubbles

[bubble]




N

. (72)
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To simplify our notations, let’s denote the sum over single 1PI bubbles

−iΣ(p2) = + +

+ higher-loop 1PI graphs,

(73)

then the sum over all the N -bubble diagrams for the two-point function is

FN bubbles(p
2) =

(
i

p2 −m2
b + iǫ

)N+1

×
(
−iΣ(p2)

)N
. (74)

Finally, we sum over N , — and that’s when the higher-order poles in the N -bubble diagrams

— add up to a shifted pole in the complete two-point function

F2(p
2) =

∞∑

N=0

iFN bubbles(p
2) =

∞∑

N=0

(
i

p2 −m2
b + iǫ

)N+1

×
(
−iΣ(p2)

)N

=
i

p2 −m2
b + iǫ

×




∞∑

N=0

(
Σ(p2)

p2 −m2
b + iǫ

)N
=

1

1 − Σ(p2)
p2−m2

b+iǫ




=
i

p2 −m2
b − Σ(p2) + iǫ

.

(75)

The specific location of the shifted pole is wherever the denominator of the above formula

happens to vanish, i.e. the solution of the equation

p2 − m2
b − Σ(p2) = 0. (76)

It is this solution which gives us the physical mass2 of the particle M2. In other words, given

the physical mass M of the particle, we should set the bare mass2 of the perturbation theory
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not to M2 but to

m2
b = M2 − Σ(p2 =M2). (77)

Of course, the Σ(p2) here itself obtains from the perturbation theory, so it implicitly depends

on the bare coupling λb, on the bare mass2 m2
b , and on the UV cutoff Λ, thus Σ(p2;λb, m

2
b ,Λ

2).

Consequently, eq. (77) becomes a non-trivial equation

m2
b = M2 − Σ(p2 =M2;λb, m

2
b ,Λ

2) (78)

which we need to solve for the bare mass parameter of the perturbation theory in order to get

physically correct results.

Now consider the field strength factor Z which obtains as the residue of the pole of F2(p
2)

at the physical mass2 of the particle. Let p2 =M2 + δp2 for an infinitesimally small δp2; then

Σ(p2) = Σ(M2) + δp2 × dΣ

dp2

∣∣∣∣
p2=M2

+ 1
2(δp

2)2 × d2Σ

(dp2)2

∣∣∣∣
p2=M2

+ · · · , (79)

hence in the denominator of

F2(p
2) =

i

p2 −m2
b − Σ(p2) + iǫ

(80)

we have

p2 − m2
b − Σ(p2) = M2 + δp2 − m2

b − Σ(M2) − δp2 × dΣ

dp2

∣∣∣∣
p2=M2

+ O
(
(δp2)2

)

=
(
M2 − m2

b − Σ(M2)
)

+ δp2 ×
(
1 − dΣ

dp2

∣∣∣∣
p2=M2

)
+ O

(
(δp2)2

)

〈〈where the first term = 0 〉〉

= δp2 ×
(
1 − dΣ

dp2

∣∣∣∣
p2=M2

+ O(δp2)

)

(81)
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Taking the inverse of this expression, we get

F2(p
2 =M2 + δp2) =

i

δp2
×
(
1 − dΣ

dp2

∣∣∣∣
p2=M2

+ O(δp2)

)−1

=
i

δp2
×
(

1

1 − (dΣ/dp2)
+ O(δp2)

)

=
i

δp2
× 1

1 − (dΣ/dp2)
+ finite.

(82)

Or in other words,

F2(p
2 nearM2) =

iZ

p2 −M2 + iǫ
+ finite (83)

for

Z =
1

1 − dΣ
dp2

∣∣∣
p2=M2

. (84)

One Loop Example

Formally, −iΣ(p2) is the sum of all 1PI graphs with 2 external legs. In practice, we can

only calculate the graphs up to some maximal number L of loops to get

Σ(p2) = λ× f1(p
2) + λ2 × f2(p

2) + · · · + λL × fL(p
2) +

(
O(λL+1) unknown

)
. (85)

Consequently, the bare mass mb has to be adjusted order-by-order in perturbation theory, just

like we adjust the bare coupling λb.

So let’s start with the one-loop order, in which we have only one 1PI graph to calculate,

namely

−iΣ1 loop(p
2) = (86)

Evaluating this graph, we get

−iΣ1 loop(p
2) =

−iλ
2

∫
d4q

(2π)4
i

q2 −m2
b + iǫ

, (87)

and before we calculate the integral on the RHS, we immediately see that it does not depend
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on the momentum p. Consequently, at the one-loop order we get the mass shift according to

m2
b = M2 − Σ (88)

but no field strength renormalization,

dΣ1 loop

dp2
= 0 =⇒ Z1 loop = 1. (89)

This behavior is peculiar to the λφ4 theory — in other theories, quantum corrections to Z begin

at the one-loop order, as we shall see next class for the Yukawa theory. But in the λφ4 theory,

corrections to the field strength Z happen to start at the two loop order,

Z = 1 + O(λ2). (90)

Indeed, there are two 2-loop 1PI graphs for the Σ(p2), namely

−iΣ2 loop(p
2) = + (91)

and in the second graph here — and only in the second graph — the internal momenta do

depend on p, so it yields a non-zero contribution to dΣ/dp2 and hence to Z − 1. I leave the

calculation of that graph for your homework set#14, so get ready to work hard.

For the moment, let’s focus on the one-loop graph (86) and its momentum integral

∫
d4q

(2π)4
i

q2 −m2
b + iǫ

.

Wick-rotating the loop momentum q to the Euclidean momentum space, we get

d4q → id4qE ;
i

q2 −m2
b + iǫ

=
i

−q2E −m2
b

=
−i

q2E +m2
b

(92)
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and hence

Σ1 loop =
λ

2

∫
d4qE
(2π)4

1

q2E +m2
b

. (93)

The integral here diverges quadratically at qE → ∞, so let’s regulate it using Wilson’s hard-edge

cutoff instead of dimensional regularization. Thus,

∫

reg

d4qE
(2π)4

1

q2E +m2
b

=

Λ∫

0

dqE × q3E × 1

q2E +m2
b

×
∫
d3Ω(qµE)

(2π)4

=
2π2

(2π)4
×

Λ2∫

0

1
2dq

2
E

q2E
q2E +m2

b

=
1

16π2

Λ2+m2
b∫

m2
b

dt
t−m2

b

t

=
1

16π2

(
Λ2 − m2

b × log
Λ2 +m2

b

m2
b

)

=
1

16π2

(
Λ2 − m2

b × log
Λ2

m2
b

+ O(m4
b/Λ

2)

)
.

(94)

and hence

Σ1 loop =
λ

32π2

(
Λ2 − m2

b × log
Λ2

m2
b

)
. (95)

In terms of the difference between the bare and the physical masses, this means

M2
phys = m2

b +
λ

32π2

(
Λ2 − m2

b × log
Λ2

m2
b

)
+ O(λ2). (96)

The (λ/32π2)Λ2 on the RHS here stems from the quadratic UV divergence of the momentum

integral, and it causes the fine tuning problem of loop corrections to the bare mass being much

larger than the mass itself. Indeed, we always take the UV cutoff scale to be much larger than

the particle’s mass, Λ ≫M , so even for a rather small coupling λ we may end up with

M2 − m2
b ∼ λΛ2

32π2
≫ M2. (97)

For example, consider the Higgs particle of the Standard model: it has massM ≈ 125 GeV and

self-coupling λ ≈ 0.25. So if we set the UV cutoff just above the LHC reach at Λ = 10 TeV, we
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would end up with the one-loop correction to the Higgs field’s bare mass ∆m2 ≈ (280 GeV)2,

larger than the mass itself. And that was just the correction due to Higgs field interacting with

itself; the corrections due to its interactions with the other fields — especially the W± and Z0

vector fields and the top quark — are even stronger than the corrections due to self interaction.

These large corrections mean that the physical mass2 of the particle comes out as a small

difference between a large bare mass2 and a large quantum correction. So if we want to end up

with the physical mass in the same ballpark as the experimental data, we would need to fine

tune the m2
b parameter of the perturbation theory to a high precision. And the higher we set

the UV cutoff scale Λ, the worse the fine tuning problem becomes. For example, if we set Λ

to the Grand Unification scale of 1016 GeV and λb to 0.3, then the quantum correction to the

particle mass would be about

M2 − m2
b ∼ 1029 GeV2. (98)

Hence, if we want the physical mass M to be in the 100 GeV ballpark, we would need to

fine tune the m2
b parameter to the accuracy of 25 significant figures! Moreover, at the higher

loop orders we would also get large quantum corrections of the order (λ/32π2)#loops × Λ2, so

we would need to adjust the already fine-tuned m2
b parameter order by order in perturbations

theory, up to about ten-loop order!

Aside: Regulator Dependence of Quadratic Divergences

Regularization of the quadratic UV divergences is much more sensitive to the details of the

cutoff that the logarithmic divergences. Indeed, consider the one-loop mass shift

Σ =
λ

32π2

(
Λ2
HE − m2

b × log
Λ2
HE

m2
b

)
(99)

we have calculated using the hard-edge cutoff. Now consider some other UV cutoff whose scale

Λ is equivalent to the hard-edge cutoff scale as Λ2
HE = C × Λ2 for some O(1) constant C. If

we simply plug this relation into eq. (99), we would get

Σ =
λ

32π2

(
C × Λ2 − m2

b × log
Λ2

m2
b

− m2
b × log(C)

)
. (100)
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But actually, using another cutoff would lead to

Σ =
λ

32π2

(
a× Λ2 − m2

b × log
Λ2

m2
b

− b×m2
b

)
(101)

for some O(1) constants a and b, which are generally not related to the ratio C of the equivalent

cutoff scales. Thus, the coefficient of the leading Λ2 divergence is not universal, so the O(Λ2)

correction to the bare mass2 of the theory depends on the type of the UV cutoff! On the other

hand, the coefficient of the subleading log Λ2 divergence is universal — it is the same for all

regularization schemes.

In particular, we shall see in a moment that in dimensional regularization a = 0, so we

do not get the leading quadratic divergence at all, only the subleading logarithmic divergence.

However, the dimensional regularization has its own way to signal that the divergence of some

amplitude is worse than logarithmic. Specifically, the dimension-dependent amplitude gets a

pole at some D < 4 in additional to the usual pole at D = 4.

To see how this works, consider the dimensional regularization of the mass shift,

Σ(D) =
λ

2
×
∫
µ4−d dDqE
(2π)D

1

q2E +m2
b

. (102)

The momentum integral here diverges for any D ≥ 2, so we need to evaluate it for a low

dimension D < 2 and then analytically continue the result all the way back to D = 4.

To evaluate the momentum integral in a non-integer dimension, we need to relate it to a

Gaussian integral, so let’s use

1

q2E +m2
b

=

∞∫

0

dt e−t(q
2
E+m

2
b). (103)
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Consequently,

Σ(D) =
λ

2
µ4−D

∫
dDqE
(2π)D

∞∫

0

dt e−t(q
2
E+m

2
b)

=
λ

2
µ4−D

∞∫

0

dt e−tm
2
b ×

∫
dDqE
(2π)D

e−tq
2
E

=
λ

2
µ4−D

∞∫

0

dt e−tm
2
b × (4πt)−D/2 .

(104)

In the last integral over t here, the integrand behaves as t−D/2 for small t, so the integral

diverges for D ≥ 2. This is the t-integral’s way to indicate the UV divergence: in terms of the
∫
dt it translates to a divergence at t → 0. So we need to analytically continue the mass shift

Σ to D < 2 dimensions, and then the t integral evaluates to

Σ(D) =
λµ4−D

2(4π)D/2
× Γ

(
1− D

2

)
(m2

b)
(D/2)−1 (105)

Given this analytic formula, we may continue it toD ≥ 2 and even to complex D, so let’s look at

the poles of Σ(D) in the complex D plane. The Γ(x) function has poles at x = 0,−1,−2,−3, . . .,

so Σ(D) has poles at D = 2, D = 4, D = 6, etc. The pole at D = 4 and the poles at higher

dimensions are common for all the UV-divergent amplitudes. But the pole at D = 2 — or

for other amplitudes, any pole at D < 4 — indicates that the UV divergence is worse than

logarithmic.

Now let’s analytically continue the mass shift (105) to D = 4, or rather to D = 4− 2ǫ:

Σ =
λ

32π2
(4πµ2)ǫ(m2

b)
1−ǫΓ(ǫ− 1) =

λm2
b

32π2

(
4πµ2

m2
b

)ǫ
Γ(ǫ− 1). (106)

For small ǫ we have

Γ(ǫ− 1) =
Γ(ǫ)

ǫ− 1
=

−1

1− ǫ
×
(
1

ǫ
− γE + O(ǫ)

)
= −

(
1

ǫ
− γE + 1 + O(ǫ)

)
,

while
(
4πµ2

m2
b

)ǫ
= exp

(
ǫ× log

4πµ2

m2
b

)
= 1 + ǫ× log

4πµ2

m2
b

+ O(ǫ2), (107)
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hence

Γ(ǫ− 1)×
(
4πµ2

m2
b

)ǫ
= −

(
1

ǫ
− γE + 1 + log

4πµ2

m2
b

+ O(ǫ)

)
, (108)

where the O(ǫ) term can be neglected in the ǫ → 0 limit.

Altogether, we end up with

Σ = − λm2
b

32π2
×
(
1

ǫ
− γE + 1 + log

4πµ2

m2
b

)
, (109)

which we may interpret as

Σ = −λm2
b

32π2
×
(
log

Λ2
eff

m2
b

+ const

)
. (110)

As promised, the dimensional regularization yields the correct subleading logarithmic divergence

but misses the leading quadratic divergence. Although the pole at D = 2 does give a warning

sign that the divergence is worse than logarithmic.

Yukawa Theory as Example of Z 6= 1

As an example of a theory where we can see the field strength renormalization at one-loop

order, let’s consider the Yukawa theory: A Dirac fermion field Ψ and a real scalar field Φ

governed by the bare Lagrangian

L = Ψ(i 6∂ −mf )Ψ + 1
2(∂µΦ)

2 − 1
2m

2
sΦ

2 + gΦΨΨ, (111)

where the last term gΦΨΨ is treated as a perturbation. Since the Yukawa theory has two

unrelated fields, it also has separate two-point correlation functions FΦ(p
2) and FΨ(6 p), hence

separate physical masses Mf and Mb and separate field strength factors ZΦ and ZΨ. In these
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notes I focus on the scalar field’s correlation function

FΦ(p
2) =

i

p2 −m2
s − ΣΦ(p2) + iǫ

(112)

for

−iΣΦ(p
2) = 1PI (113)

At the one-loop level, there is only one 1PI graph contributing to the ΣΦ, thus

−iΣ1 loop
Φ = (114)

which evaluates to

−iΣ1 loop
Φ (p2) = −

∫
d4q1
(2π)4

Tr

(
i

6q1 −mf + iǫ
(−ig) i

6q2 −mf + iǫ
(−ig)

)
(115)

for q2 = p+ q1. To calculate this integral, we start with the trace

Trace = Tr

(
6q1 +mf

q21 −m2
f + iǫ

g
6q2 +mf

q22 −m2
f + iǫ

g

)
=

g2 tr
[
(6q1 +mf )(6q2 +mf )

]

(q21 −m2
f + iǫ)(q22 −m2

f + iǫ)

= g2
4(q1q2) + 4m2

f

(q21 −m2
f + iǫ)(q22 −m2

f + iǫ)
.

(116)

Next, we use Feynman parameter trick to bring the denominator here to the form

1

denominator
=

1∫

0

dξ

D2
(117)

for

D = (1− ξ)× (q21 −m2
f + iǫ) + ξ × (q22 −m2

f + iǫ)

= (1− ξ)q21 + ξ(q2 = q1 + p)2 − m2
f + iǫ

= q21 + 2ξ(q1p) + ξp2 − m2
f + iǫ

= (q1 + ξp)2 + ξ(1− ξ)p2 − m2
f + iǫ,

(118)
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which we may rewrite as

D = k2 − ∆(ξ) + iǫ (119)

for

k = q1 + ξp and ∆(ξ) = m2
f − ξ(1− ξ)p2. (120)

In terms of the shifted momentum variable k, the propagator momenta are

q1 = k − ξp, q2 = k + (1− ξ)p, (121)

hence the numerator of the trace (116) becomes

4(q1q2) + 4m2
f = 4(k − ξp)µ(k + (1− ξ)p)µ + 4m2

f

= 4k2 + 4(1− 2ξ)(kp) − 4ξ(1− ξ)p2 + 4m2
f

= 4k2 + 4∆(ξ) + 4(1− 2ξ)(kp).

(122)

Collecting all these formulae and plugging them into eq. (115), we arrive at

ΣΦ(p
2) = −4ig2

∫

reg

d4q1
(2π)4

1∫

0

dξ
k2 +∆+ (1− 2ξ)(kp)

[k2 −∆+ iǫ]2

= −4ig2
1∫

0

dξ

∫

reg

d4k

(2π)4
k2 +∆+ (1− 2ξ)(kp)

[k2 −∆+ iǫ]2
,

(123)

where on the second line we have integrated over the loop momentum before integrating over

ξ and then shifted the momentum integration variable from q1 to k = q1 + ξp. Note: for large

k, the integrand here behaves as 1/k2, so the integral suffers from a quadratic UV divergence,

which must be regulated (cut off). Thus, for any UV cutoff we could use here, we must be careful

restating it in terms of the shifted momentum k rather than the propagator momenta q1 and

q2. For the logarithmically divergent integrals such details of the cutoff can be neglected, but
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for the worse-than-logarithmic divergences they become important. For example, a quadratic

O(Λ2) divergence may turn into

O(Λ2) + O(Λp) + O(p2). (124)

where the subleading terms depends on the details of the cutoff in terms of the shifted momen-

tum k.

Fortunately, in dimensional regularization this problem does not arise since the DR cutoff

does not affect the integrand or the range of kµ — it stays infinite, both before and after shifting

the momentum variable. Only the measure of the d4k integral changes to µ4−DdDk, but that

is not affected by shifting the momentum variable from q1 to k. And that’s why we are going

to use the dimensional regularization to calculate the ΣΦ in these notes.

But first, let’s simplify the integral (123) a bit using the kµ → −kµ symmetry of the

integration range — which in DR is the whole momentum space. The denominator of the

integral also has this symmetry since it depends on the kµ only via k2. As to the numerator,

the k2 and the ∆ terms are invariant under this symmetry, but the (1−2ξ)(kp) term flips sign.

Consequently, that term by itself would integrate to zero, so we may just as well truncate the

numerator to the symmetric terms k2 +∆, thus

ΣΦ = −4ig2
1∫

0

dξ

∫
d4k

(2π)4
k2 +∆

[k2 −∆+ iǫ]2
. (125)

At this point, kµ is the Minkowski momentum, but we are ready to Wick-rotate it to the

Euclidean momentum space:

d4k → id4kE , (k2 +∆) → (∆− k2E), (k2 −∆+ iǫ) → −(k2E +∆), (126)

and therefore

ΣΦ = 4g2
1∫

0

dξ

∫
d4kE
(2π)4

∆− k2E
(k2E +∆)2

. (127)

In 4 Euclidean dimensions this integral diverges quadratically since the integrand behaves

as 1/k2E at large kE. But but before we reduce the dimension to evaluate this integral, let’s
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see how the UV divergence affects the p-dependence of the ΣΦ(p
2). That is, let’s take the

derivatives

dΣΦ

dp2
,

d2ΣΦ

(dp2)2
, . . . , (128)

and check what kinds of UV divergences do they suffer from — or if they diverge at all.

Note that the integral (127) depends on the scalar’s momentum p only via ∆(p) = m2
f −

ξ(1− ξ)p2. Consequently, in the context of Σ(p2) and its derivatives,

∂(integrand)

∂p2
= −ξ(1− ξ)

∂(integrand)

∂∆
. (129)

Thus,

dΣΦ

dp2
= −4g2

1∫

0

dξ ξ(1− ξ)×
∫

d4kE
(2π)4

∂

∂∆

(
∆− k2E

(k2E +∆)2

)
, (130)

d2ΣΦ

(dp2)2
= +4g2

1∫

0

dξ ξ2(1− ξ)2 ×
∫

d4kE
(2π)4

∂2

∂∆2

(
∆− k2E

(k2E +∆)2

)
, (131)

etc., etc. To take the ∆ derivatives, we note that

∆− k2E
(k2E +∆)2

=
1

(∆ + k2E)
− 2k2E

(∆ + k2E)
2
, (132)

hence

∂

∂∆

(
∆− k2E

(k2E +∆)2

)
=

−1

(∆ + k2E)
2

+
4k2E

(∆ + k2E)
3

=
3k2E −∆

(∆+ k2E)
3
,

∂2

∂∆2

(
∆− k2E

(k2E +∆)2

)
=

+2

(∆ + k2E)
3

+
−12k2E

(∆ + k2E)
4

=
2∆− 10k2E
(∆ + k2E)

4
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(133)

Consequently, the first derivative of Σ(p2) is

dΣΦ

dp2
= −4g2

1∫

0

dξ ξ(1− ξ)×
∫

d4kE
(2π)4

3k2E −∆

(∆+ k2E)
3
. (134)

In this formula, the integrand at large Euclidean momenta k2E ≫ ∆ behaves as 1/k4E, so the

integral suffers from a logarithmic UV divergence. But note that this is a milder UV divergence

than the quadratic divergence of the integral (127) for the Σ(p2) itself!
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Next, for the second derivative of Σ(p2) we have

d2ΣΦ

(dp2)2
= +4g2

1∫

0

dξ ξ2(1− ξ)2 ×
∫

d4kE
(2π)4

2∆− 10k2E
(∆ + k2E)

4
. (135)

This time, the integrand at large Euclidean momenta behaves as 1/k6E , so the integral converges

in 4D. Thus,

d2ΣΦ

(dp2)2
is a finite function of p2. (136)

From the first derivative’s dΣΦ/dp
2 point of view, the finite second derivative means that the

divergence of the first derivative must be constant, i.e., p2–independent, thus

dΣΦ

dp2
= divergent constant + finite function(p2). (137)

Similarly, integrating once again WRT to p2, we obtain that the ΣΦ itself has form

ΣΦ(p
2) = divergent constant1 + divergent constant2 × p2 + finite function(p2) (138)

where

divergent constant1 = O(Λ2) while divergent constant2 = O(log Λ2). (139)

Later in class we shall learn that this is a general behavior of ΣΦ for any scalar field in any

renormalizable theory, and to all loop orders. In particular, your shall see this behavior in your

homework set#14 in the λΦ4 theory at the 2-loop level of perturbation theory.

Now that we know how the divergences of ΣΦ depend on the scalar’s momentum, let

actually calculate the ΣΦ(p
2) using dimensional regularization. This UV cutoff is going to miss

the leading O(Λ2) divergence in the constant term in eq. (138), but it should get all the other
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features of the ΣΦ. We start by rewriting the integrand in eq. (127) as

∆− k2E
(k2E +∆)2

=
2∆

(k2E +∆)2
− 1

(k2E +∆)
=

∞∫

0

dt (2∆× t − 1)× e−t(k
2
E+∆). (140)

Consequently, the momentum integral in D Euclidean dimensions becomes

µ4−D
∫

dDkE
(2π)D

∆− k2E
(k2E +∆)2

= µ4−D
∫

dDkE
(2π)D

∞∫

0

dt (2∆× t − 1)× e−t(k
2
E+∆)

=

∞∫

0

dt (2∆t− 1) e−t∆ × µ4−D
∫

dDkE
(2π)D

e−tk
2
E

=

∞∫

0

dt (2∆t− 1) e−t∆ × µ4−D(4πt)−D/2

= µ4−D(4π)−D/2
∞∫

0

dt e−t∆
(
2∆t1−(D/2) − t−(D/2)

)
.

(141)

On the last line here, the integrand for t → 0 behaves as t−(D/2), so the t-integral converges

only for D < 2. Consequently, we must evaluate this integral in a dimension lowered to D < 2

and then analytically continue D up to 4 or rather 4− 2ǫ dimensions.

For D < 2, the t integral on the last line of eq. (141) is a Γ-function integral, or rather

∞∫

0

dt e−t∆
(
2∆t1−(D/2) − t−(D/2)

)
= 2∆× Γ

(
2− D

2

)
×∆(D/2)−2 − Γ

(
1− D

2

)
×∆(D/2)−1

= ∆(D/2)−1 ×
[
2Γ
(
2− D

2

)
− Γ

(
1− D

2

)]
.

(142)

Moreover,

Γ
(
1− D

2

)
=

Γ
(
2− D

2

)

1− D
2

, (143)

hence

[
2Γ
(
2− D

2

)
− Γ

(
1− D

2

)]
= Γ

(
2− D

2

)
×
[
2 − 1

1− D
2

=
2D − 2

D − 2

]
, (144)

which has poles (in the complex D plane) at D = 2 as well as at D = 4, D = 6, D = 8,
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etc. As we saw earlier, a pole at D < 2 is the dimensional regularization’s signal that the UV

divergence is worse than logarithmic.

Altogether, we have in D < 2 dimensions

ΣΦ = 4g2µ4−D(4π)−D/2 Γ
(
2− D

2

)2D − 2

D − 2
×

1∫

0

dξ [∆(ξ)](D/2)−1. (145)

Analytically continuing this formula to D = 4− 2ǫ dimensions, we get

ΣΦ =
g2

4π2
Γ(ǫ)

6− 4ǫ

2− 2ǫ
×

1∫

0

dξ∆(ξ)×
(
4πµ2

∆(ξ)

)ǫ
. (146)

In the ǫ→ 0 limit, we have

Γ(ǫ) =
1

ǫ
− γE + O(ǫ),

6− 4ǫ

2− 2ǫ
= 3 + ǫ + O(ǫ2),

(
4πµ2

∆(ξ)

)ǫ
= 1 + ǫ log

4πµ2

∆(ξ)
+ O(ǫ2),

(147)

hence

ΣΦ(p
2) =

3g2

4π2

1∫

0

dξ∆(ξ)×
(
1

ǫ
− γE +

1

3
+ log

4πµ2

∆(ξ)

)
. (148)

Note the divergent part of this formula:

Σdivergent
Φ =

1

ǫ
× 3g2

4π2
×

1∫

0

dξ
(
∆(ξ) = m2

f − ξ(1− ξ)p2
)

=
1

ǫ
× 3g2

4π2
× (m2

f − 1
6p

2). (149)

This divergent part indeed has form a+ b× p2 for some divergent constants a and b. For the b

constant, the dimensional regularization correctly shows that

b = O(1/ǫ) which corresponds to O(log Λ2), (150)

while for the a constant the DR misses the leading O(Λ2) divergence and shows only the
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subleading logarithmic divergence

a ∝ m2
f ×

1

ǫ
→ m2

f × log Λ2. (151)

As to the finite part of ΣΦ(p
2), in your homework set#14 you will see that it’s real for

p2 < 4m2
f but becomes complex for p2 > 4m2

f . In particular, IF ms > 2mf — so that a scalar

particle may decay into a fermion and an antifermion — then at p2 = m2
s, the imaginary part

of ΣΦ is related to the scalar’s decay rate as

ImΣ1 loop
Φ (p2 = m2

s) = −msΓ
tree(Φ → Ψ+Ψ). (152)

This is the leading order in g2 of the optical theorem for decay rates

Im 〈Φ| M̂ |Φ〉 ≡ − ImΣΦ(p
2 =M2

s ) = +MsΓtotal(Φ → anything). (153)

Or rather,

Im 〈Φ| M̂ |Φ〉 ≡ − ImΣΦ

(
p2 analytically

continued from M2
s + iǫ to M2

s − iΓtotal

)

= +MsΓtotal(Φ → anything).
(154)

Finally, consider the momentum derivative dΣΦ/dp
2 — which we need to calculate the field

strength renormalization factor ZΦ. Taking the derivative of eq. (145) before taking the D → 4

limit, we have

dΣΦ

dp2
= 4g2µ4−D(4π)−D/2 Γ

(
2− D

2

)D − 1
D
2 − 1

×
∞∫

0

dξ
∂

∂p2
[∆(ξ, p2)](D/2)−1 (155)

where

∂

∂p2
∆(D/2)−1 =

(
D
2 − 1

)
∆(D/2)−2 ×

(
∂∆

∂p2
= −ξ(1− ξ)

)
, (156)

thus

dΣΦ

dp2
= −4g2µ4−D(4π)−D/2 (D − 1)Γ

(
2− D

2

)
×

∞∫

0

dξ ξ(1− ξ)× [∆(ξ, p2)](D/2)−2. (157)

Note that in the complex D plane, this dΣΦ/dp
2 has poles at D = 4, D = 6, D = 8, etc., but no

pole at D = 2 or any other D < 4. This is the dimensional regularization’s way of saying that
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the UV divergence of the dΣΦ/dp
2 is purely logarithmic and we are not missing a quadratic (or

other power-of-Λ) divergence.

Next, let D = 4− 2ǫ and take the ǫ→ 0 limit, thus

4g2µ4−D(4π)−D/2 (D − 1)Γ
(
2− D

2

)
×∆(D/2)−2 =

=
4g2

16π2
(3− 2ǫ)Γ(ǫ)×

(
4πµ2

∆

)ǫ

−→ 3g2

4π2
(1− 2

3ǫ)

(
1

ǫ
− γE +O(ǫ)

)
×
(
1 + ǫ log

4πµ2

∆
+ O(ǫ2)

)

=
3g2

4π2

(
1

ǫ
− γE − 2

3
+ log

4πµ2

∆
+ O(ǫ)

)
.

(158)

Neglecting the positive powers of ǫ in the ǫ → 0 limit and plugging this formula back into

eq. (157), we arrive at

dΣΦ

dp2
= −3g2

4π2

1∫

0

dξ ξ(1−ξ)×
[
1

ǫ
− γE − 2

3
+

(
log

4πµ2

∆(ξ)
= log

4πµ2

m2
f

− log
∆(ξ)

m2
f

)]
. (159)

Using

1∫

0

dξ ξ(1− ξ) =
1

6
(160)

we may rewrite this formula as

dΣ1 loop
Φ

dp2
= − g2

8π2

(
1

ǫ
− γE − 2

3
+ log

4πµ2

m2
f

− I(p2/m2
f )

)
. (161)

where

I(p2/m2
f )

6
=

1∫

0

dξ ξ(1− ξ) log
∆ = m2

f − ξ(1− ξ)p2

m2
f

. (162)

The derivative (161) evaluated at p2 =M2
s determines the scalar field’s strength factor

ZΦ =
∣∣∣〈1 scalar particle| Φ̂ |Ω〉

∣∣∣
2

(163)
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according to

1

ZΦ
= 1 − dΣΦ

dp2

∣∣∣∣
p2=M2

s

. (164)

Thus, at the one-loop level

1

ZΦ
= 1 +

g2

8π2

(
1

ǫ
− γE − 2

3
+ log

4πµ2

m2
f

− I(M2
s /m

2
f )

)
+ O(g4), (165)

and therefore

ZΦ = 1 − g2

8π2

(
1

ǫ
− γE − 2

3
+ log

4πµ2

m2
f

− I(M2
s /m

2
f )

)
+ O(g4). (166)
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