
Electric–Magnetic Duality and Magnetic Monopoles

Electric–Magnetic Duality

In vacuum, — and in the absence of any electric charges or currents, — the electric and

the magnetic field behave in similar ways. Moreover, for ρ = 0 and J = 0 there is an exact

electric-magnetic symmetry E↔ B, — or rather

B′ = +E, E′ = −B (1)

in Gauss units, — or more generally

B′ = cos θB + sin θE,

E′ = cos θE − sin θB.
(2)

Indeed, any such duality transform preserves the Maxwell equations

∇ · E = 0

∇ ·B = 0

∇× E = −1

c

∂B

∂t

∇×B = +
1

c

∂E

∂t

(for ρ = 0 and J = 0),

(3)

as well as the EM energy density

U =
1

8π

(
E2 + B2

)
, (4)

the Poynting vector

S =
1

4π
E×B (5)

governing the momentum density and the energy flux, and the EM stress-tensor

T ij =
1

4π

(
EiEj +BiBj

)
− δijU. (6)

As written, the electric-magnetic symmetry (2) works in empty space but not in presence

of any electric charges or currents. However, we may repair this duality symmetry in a gen-

eralized electromagnetic theory which has both electric and magnetic charges and currents.
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Both kinds of charges must be locally conserved, thus continuity equations

∇ · Jel +
∂

∂t
ρel = 0,

∇ · Jmag +
∂

∂t
ρmag = 0,

(7)

which make for consistent generalized Maxwell equations

∇ · E = 4πρel ,

∇ ·B = 4πρmag ,

∇× E = −1

c

∂B

∂t
− 4π

c
Jmag ,

∇×B = +
1

c

∂E

∂t
+

4π

c
Jel .

(8)

These equations are invariant under electric-magnetic dualities (2) provided they act on the

charges and currents similarly to how they act on the fields: In matrix notations,

(
E′

B′

)
=

(
+ cos θ − sin θ

+ sin θ + cos θ

)(
E

B

)
,

(
ρ′el

ρ′mag

)
=

(
+ cos θ − sin θ

+ sin θ + cos θ

)(
ρel

ρmag

)
,

(
J′el

J′mag

)
=

(
+ cos θ − sin θ

+ sin θ + cos θ

)(
Jel

Jmag

)
,

all for the same angle θ.

(9)

Microscopically, the electric charges and currents stem from the existence and motion

of the electrically charged elementary particles such as electrons or protons. Likewise, the

magnetic charges and currents should stem from the existence and motion of some not-yet-

discovered magnetically charged elementary particles better known as magnetic monopoles.
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A single monopole at rest generates a Coulomb-like magnetic field

B(x) =
M

r2
n (10)

(in Gauss units), which looks like the field of a single North or South pole of a long thin

bar magnet, hence the name. The magnetic monopoles play important roles in theoretical

high-energy physics, but the specifics are way too complicated for this class. Let me simply

say that most unified theories of the fundamental forces predict that the monopoles do exist

in Nature, but they are much too heavy to be made by the present-day accelerators, while

the primordial monopoles made at the Big Bang was subsequently diluted by the cosmic

inflation to such an extent that today the nearest monopole is a few good light years away

from Earth. And that’s why the monopoles have not been detected yet, and are unlikely to

be detected any time soon.

Magnetic Monopoles in Quantum Mechanics

I wish I would teach you a fully quantum theory of EM fields coupled to both elec-

trically and magnetically charged matter fields, but alas. . . Our current understanding of

such theories is rather limited, and most of what’s known is way beyond the scope of our

introductory QFT class. So let’s focus on a much simpler problem: take a classical static

monopole generating the magnetic field (10) and consider the quantum motion of an electri-

cally charged particle in this field. It turns out that such motion is inconsistent unless the

magnetic charge M of the monopole and the electric charge Q of the quantum particle obey

Dirac’s quantization condition:

M ×Q = 1
2 h̄c× an integer (11)

in Gauss units; in MKSA units this formula becomes

M ×Q =
2πh̄

µ0
× an integer, (12)

while in the rationalized h̄ = c = 1 units we use in this class it becomes simply

M ×Q = 2π × an integer. (13)
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A heuristic argument

Let me start with a heuristic argument for the Dirac’s quantization condition based

on the Aharonov–Bohm effect. The easiest way to visualize a magnetic monopole is by

considering a pole of a long, thin magnet or an end point of a long, thin solenoid. Let us

choose our coordinates such that the pole is at the origin and the magnet goes along the

negative z semi-axis. Then, in spherical coordinates (r, θ, φ), everywhere outside the magnet

B(r, θ, φ) =
M

r2
nr (14)

where nr us the unit vector in the radial direction, while inside the magnet there is magnetic

flux Φ = 4πM towards the pole.

Suppose the magnet is infinitely thin, infinitely long and does not interact with the

rest of the universe except through the magnetic field it carries. Classically, all one can

observe under such circumstances is the magnetic field (14), so for all intents and purposes

we have a magnetic monopole of magnetic charge M . (In Gauss units; in rationalized units

the magnetic charge is 4πM .) In quantum mechanics however, one can also detect the

Aharonov-Bohm effect due to the magnetic flux Φ = 4πM inside the magnet, and that

would make the magnet itself detectable along its whole length. Moreover, in quantum field

theory the AB effect would disturb the free-wave modes of the charged fields — instead of

the plane waves we would get eigen-waves of some x-dependent differential operator. This

would give rise to a Casimir effect — a finite and detectable change of the net zero point

energy. For a long thin magnet this Casimir energy would be proportional to the magnet’s

length, so the magnet would behave as a string with finite tension force T . Consequently, the

two poles of the magnet would not be able to separate from each other to infinite distance

and acts as independent magnetic monopoles. Instead, the North pole and the South pole

would pull each other with a finite force T no matter how far they get from each other.

However, the Aharonov–Bohm effect disappears when the magnetic flux Φ = 4πM is

an integral multiplet of 2πh̄c/Q. Consequently, for an infinitely thin magnet there would

not be any Casimir effect, hence no string tension, and the poles would be allowed to move

independently from each other as if they were separate magnetic monopoles. Since this can
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happen only when the magnetic flux is not detectable by the AB effect, this gives rise to

the Dirac’s quantization condition: For all magnetic monopoles in the universe and for all

electrically-charged particles in the universe,

M ×Q = 1
2 h̄c× an integer (11)

(in Gauss units). Hence, if there is a magnetic monopole anywhere in the universe, then all

the electrical charges must be quantized.

Dirac Monopole

A more rigorous argument was made by P. A. M. Dirac himself years before the discovery

of the Aharonov-Bohm effect. Instead of using just one vector potential A(x) to describe the

magnetic field of a monopole, Dirac have used two potentials AN (x) and AS(x) related by

a gauge transform. From the mathematical point of view, Dirac monopole is a gauge bundle,

a construction that generalizes multiple coordinate patches in Riemannian geometry.

Most Riemannian manifolds cannot be covered by a single coordinate system without

singularities or multi-valuedness. Instead, one covers the manifold with several overlapping

patches and uses different coordinate systems for each patch. This is OK as long as: (1)

the patches overlap their neighbors and collectively cover the whole manifold; (2) each patch

has a single-valued non-singular coordinate system; (3) in the overlap regions, the coor-

dinate systems of the overlapping patches map onto each other without singularities, i.e.,

the derivatives ∂xµ
(1)
/∂xν(2) are all finite and the matrix of those derivatives has a non-zero

determinant (the Jacobian).

In a gauge bundle, different patches covering a manifold have not only different coor-

dinate systems but also different gauges for the Aµ(x) and the charged fields. But in the

overlap regions, all fields from the overlapping patches are related to each other by a gauge

transform, eg.,

A
(2)
µ (x) = A

(1)
µ (x) − ∂µΛ1,2(x), each Ψ

(2)
a (x) = Ψ

(1)
a (x)× exp

(
iqaΛ

1,2(x)
)

(15)

in the overlap between patches 1 and 2. Eq. (15) is written for the abelian gauge symmetry,

but there are suitable generalizations to the non-abelian symmetry groups. In string theory,
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abelian and non-abelian gauge bundles on curved 6D manifolds play a very important role

in obtaining effective four-dimensional theories from the ten-dimensional superstring.

Dirac himself did not use the gauge bundle language, he simply divided the space outside

the monopole itself into two overlapping regions and wrote different but gauge-equivalent

vector potentials for each region. In spherical coordinates (r, θ, φ), the Northern region (N)

spans latitudes 0 ≤ θ < π− ε while the Southern region (S) spans ε < θ ≤ π; the two regions

overlap in a broad band around the equator. The vector potentials for the two regions are

AN (r, θ, φ) = M(+1− cos θ)∇φ = M
+1− cos θ

r sin θ
nφ ,

AS(r, θ, φ) = M(−1− cos θ)∇φ = M
−1− cos θ

r sin θ
nφ ;

(16)

The two potentials are gauge-equivalent:

AN − AS =
2M

r sin θ
nφ = 2M∇φ (17)

so they lead to the same magnetic field, namely (14). Indeed,

∇×AN or S = ∇× (M(±1− cos θ)∇φ)

= M (∇(±1− cos θ))×∇φ

= M
sin θ nθ

r
×

nφ
r sin θ

= M
nr
r2
.

(18)

The vector potentials (16) may be analytically continued to the entire 3D space (except

the monopole point r = 0 itself), but such continuations are singular: The AN (r, θ, φ) has

a so-called “Dirac string” of singularities along the negative z semi-axis (θ = π), while the

AS(r, θ, φ) has a similar Dirac string of singularities along the positive z semi-axis (θ = 0).

To make a non-singular picture of the monopole field, Dirac used both vector potentials AN

and AS but restricted each potential to the region of space where it is not singular. The two

regions overlap, and in the overlap we may use either AN or AS , whichever we like.
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In QFT or even in quantum mechanics, a gauge transform of the vector potential should

be accompanied by a phase transform of the charged fields or charged particles’ wave func-

tions. Consequently, for each charged species we must use different charged ΨN (x) and

ΨS(x) in the Northern and Southern regions; in the overlap ε < θ < π− ε, the two fields for

the same species are related according to eq. (15). For the gauge transform (17) in question,

Λ(r, θ, φ) = 2Mφ =⇒ ΨN
a (r, θ, φ) = ΨS

a (r, θ, φ) · exp

(
i
Q

h̄c
× 2Mφ

)
. (19)

Both ΨN (x) and ΨS(x) are single-valued functions of x everywhere they are defined. In the

overlap region both functions are defined and both are single valued, so the phase factor

exp(i2QM
h̄c φ) in eq. (19) must be single valued. This single-valuedness requires an integer

value of 2QM/h̄c, hence the Dirac quantization condition

M ×Q = 1
2 h̄c× an integer. (11)

Suggested Reading: J. J. Sakurai, Modern Quantum Mechanics, §2.7.

Implications for QFT and Electric–Magnetic Duality

In quantum field theory, for every existing species of a charged particle there are countless

virtual particles of that species everywhere. Therefore, if as much as a single magnetic

monopole exist anywhere in the Universe, then the electric charges of all particle species

must be quantized,

Q =
h̄c

2M
× an integer. (20)

Historically, Dirac discovered the magnetic monopole while trying to explain the rather small

value of the electric charge quantum e — in Gauss units,

e2 ≈ h̄c

137
. (21)

The monopole gives us an excellent reason for the charge quantization in the first place, but

alas it does not explain the value (21) of the quantum, and Dirac was quite disappointed.
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BTW, in Gauss units, the electric and the magnetic charges have the same dimensionality.

But in light of eqs. (11) and (21), they are quantized in rather different units, e for the electric

charges and

h̄c

2e
≈ 137

2
e (22)

for the magnetic charges. Of course, as far as the Quantum ElectroDynamics is concerned,

the monopoles do not have to exist at all. But if they do exist, their charges must be

quantized in units of (22). Also, the very existence of a single monopole would explain the

electric charge quantization.

Today, we have other explanations of the electric charge quantization; in particular

the Grand Unification of strong, weak and electromagnetic interactions at extremely high

energies produces quantized electrical charges. Curiously, the same Grand Unified Theories

also predict that there are magnetic monopoles with charges (22). More recently, several

attempts to unify all the fundamental interactions within the context of the String Theory

also gave rise to magnetic monopoles, with charges quantized in units of Nh̄c/2e, where N is

an integer such as 3 or 5. It was later found that in the same theories, there were superheavy

particles with fractional electric charges e/N , so the monopoles in fact had the smallest

non-zero charges allowed by the Dirac condition (11)! Nowadays, most theoretical physicists

believe that any fundamental theory that provides for exact quantization of the electric

charge should also provide for the existence of magnetic monopoles, but this conjecture has

not been proved (yet).

In quantum field theories including EM fields coupled to both electrically and magneti-

cally charged particles, the classical electric-magnetic symmetries

(
E′

B′

)
=

(
+ cos θ − sin θ

+ sin θ + cos θ

)(
E

B

)
,

(
Q′

M ′

)
=

(
+ cos θ − sin θ

+ sin θ + cos θ

)(
Q

M

)

for the same θ,

(23)
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are generally incompatible with the Dirac’s charge quantization condition (11) and hence

Q = mel × e, M = nmag ×
h̄c

2e
. (24)

The best we can do is the electric-magnetic duality relating theories with different values of

the electric charge quantum e:

E′ = B, B′ = −E,

n′el = mmag, n′mag = −nel ,

e′ =
h̄c

2e
, (25)

or in terms of the dimensionless QED coupling α = e2

h̄c ,

α′ =
1

4α
(26)

The real-life quantum electrodynamics has rather weak coupling α ≈ 1/137, so we may

use perturbation theory expanding various amplitudes in powers of α. Alas, the QED-like

theories with stronger couplings α ∼ 1 cannot use such perturbation theory, so they are

much harder to understand and work with. Fortunately, in the really strong coupling limit

α� 1, we may use the electric-magnetic duality (25) to map the original theory to another

theory with a weak coupling α′ = 1
4α � 1, and then use a perturbative expansion in powers

of the dual coupling α′. This way, we can understand the original theory’s behavior in both

the weak-coupling and the strong-coupling regimes, and then try to interpolate between the

two extremes to the α ∼ 1 regime.

Angular Momentum of Dyons

A dyon is an elementary particle — or a particle-like bound state of several elementary

particles — which has both electric and magnetic charges. The net angular momentum of

the dyon includes the spins of all the constituent particles, the orbital angular momentum

of their relative motion, but there is also a contribution from the momentum density

1

c
S =

1

4πc
E×B (27)

of the EM fields generated by the dyon. To see how this works, let’s consider a simple system

of a single static magnetic monopole of charge M located at some point xm and a single
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static electric charge Q located at some other point xq 6= xm. For this system: (1) The net

linear momentum of the EM fields happens to vanish,

PEM =
1

4πc

∫∫∫
E×B d3x = 0. (28)

Consequently, the net angular momentum of the EM fields

LEM =
1

4πc

∫∫∫
x× (E×B) d3x (29)

does not depend on our choice of the coordinate origin (acting as the pivot point). However,

(2) this EM angular momentum does not vanish. Instead, it has magnitude MQ/c regardless

of the distance between the electric and the magnetic charges, while it’s direction points from

the electric charge towards the monopole. (J. J. Thomson, 1904.)

In 1936, M. N Saha used this result to derive what’s now called Dirac’s quantization rule

M ×Q =
h̄c

2
× an integer (30)

slightly before Dirac, albeit in a much less rigorous fashion. Basically, he argues that semi-

classically, any kind of angular momentum of a quantum system should have magnitude

1
2 h̄ × an integer. Imposing this requirement on the Thomson’s EM angular momentum

LEM = |MQ|/c then immediately leads to the charge quantization rule (30). Soon after

Saha, Dirac re-derived this rule in a much more rigorous fashion, and that’s why it’s called

the Dirac’s quantization rule rather than the Saha’s rule.

Proofs: Let’s start by verifying that the net linear momentum is zero. In eq. (28),

E×B = −(∇Φ)×B = −∇× (ΦB) + Φ(∇×B), (31)

where the monopole’s magnetic field

B(x) = M
x− xm
|x− xm|3

= −∇
(

M

|x− xm|

)
(32)
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has zero curl ∇×B = 0, even at the monopole’s location x = xm. Hence, eq. (31) becomes

E×B = −∇× (ΦB) (33)

and therefore

P iEM = − 1

4πc

∫∫∫
εijk∇j(ΦBk) d3x = − 1

4πc

∫∫
εijkΦBk d2areaj , (34)

or in vector notations

PEM = +
1

4πc

∫∫
d2area×BΦ. (35)

The surface integral here is over the surface of the integration volume in eq. (28), and since

that volume was over the whole 3D space, its surface can be thought as as R → ∞ limit

of the sphere of radius R. In the R → ∞ limit, the electrostatic potential of the E field

behaves as 1/R, the magnetic field of the monopole as 1/R2, the area as R2, so the whole

integral behaves as 1/R — if not smaller — and vanishes for R→∞. Consequently, the net

momentum of the EM field indeed vanishes.

Now consider the net angular momentum of the EM field. Since the net linear momentum

happen to vanish, we are free to put the coordinate origin wherever we like, so let’s put it

at the monopole’s location. Consequently, in our coordinate system

B(x) =
Mn

r2
, (36)

hence

x× (E×B) = rn×
(
E× Mn

r2

)
=

M

r

(
n× (E× n)

)
=

M

r

(
E − (E · n)n

)
.

(37)

In index notations, this formula becomes

[
x× (E×B)

]i
= MEj

δij − ninj

r
= MEj∇jni, (38)
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hence eq. (29) for the angular momentum yields

LiEM =
1

4πc

∫∫∫[
x× (E×B)

]i
d3x

=
1

4πc

∫∫∫
MEj∇jni d3x

=
M

4πc

∫∫
niEj d2areaj − M

4πc

∫∫∫
(∇jEj)ni d3x .

(39)

Again, the surface integral on the bottom line here is over a sphere of radius R → ∞. For

R much larger that the distance between the electric charge and the monopole, we may

approximate

E(x) =
Q(x− xq)

|x− xq|3
≈ Qx

|x|3
=

Qn

r2
(40)

hence

Ej d2areaj = E · d2area =
Q

R2
R2d2Ω = Qd2Ω (41)

and therefore ∫∫
niEj d2areaj ≈

∫∫
niQd2Ω = 0. (42)

As to the volume integral on the bottom line of eq. (39), for the Coulomb field of the electric

charge Q located at xq,

∇jEj(x) = ∇ · E(x) = 4πQδ(3)(x− xq), (43)

hence

− M

4πc

∫∫∫
(∇jEj)ni d3x = −MQ

c

∫∫∫
ni δ(3)(x− xq) = −MQ

c
ni(xq). (44)

Thus altogether,

LEM = 0 − MQ

c
n(xq) (45)

where n(xq) is the direction of the radius vector of the electric charge in the coordinate

system whose origin is at the magnetic monopole. In a more general coordinate system,
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n(xq) becomes the unit vector pointing from the monopole to the electric charge, thus

n(xq) →
xq − xm
|xq − xm|

(46)

and therefore

Lnet =
MQ

c

xm − xq
|xq − xm|

. (47)

Quod erat demonstrandum.

Although the angular momentum (47) stems from the EM fields, it combines with the

particles’ orbital and spinor angular momenta into a single conserved quantity. For example,

problem 3 of your current homework#5 considers a spinless particle of electric charge q

orbiting a static magnetic monopole of charge M . For this system, you should verify (among

other things) that the conserved angular momentum is the combination

Ĵnet = L̂particle + L̂EM = x̂× ~̂π − Mq

c

x̂

r̂
. (48)

Also, the 3 components of this net angular momentum obey the usual commutation relation

[Ĵi, Ĵj ] = ih̄εijkĴk and form the usual |j,m〉 multiplets where m runs from −j to +j by 1.

However, the values of j are restricted to

j = jmin + a non-negative integer

where jmin =
|Mq|
h̄c

.
(49)

In particular, if Mq/h̄c happens to be a half-integer, then j must be half-integer rather than

integer!

Now consider a dyon — a bound state of magnetic monopole(s) and electrically charged

particle(s) with an overall magnetic charge M 6= 0 and electric charge Q 6= 0. Assuming

none of the constituent particles have a spin, the net angular momentum of the dyon is

Ĵnet = L̂net
particles + L̂net

EM , (50)

and the allowed values of the net j are as in eq. (49): j = (|MQ|/h̄c)+a non-negative integer.

Moreover, when you move two dyons around each other, their combined wavefunction picks
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an extra phase due to electric charges moving through monopole magnetic fields. And when

the similar dyons happen to end up exchanging their location, this extra phase turns out to

be an overall sign

(−1)2MQ/h̄c =

{
+1 for integer MQ/h̄c,

−1 for half-integer MQ/h̄c.
(51)

This formula affirms the spin-statistics theorem for the dyons: If a dyon has integral MQ/h̄c

then it has integer net angular momentum j and bosonic statistics, while if its MQ/h̄c is

half-integral, then it has a half-integer j and fermionic statistics. Either way, the net j agrees

with the statistics!

More generally, the monopoles and the electric charges comprising a dyon may have

spins, in which case

Ĵnet = L̂net
particles + L̂net

EM + Ŝnet , (52)

so the values of the net j being integer or half-integer according to

(−1)2j =
∏

particles

(−1)2s × (−1)2MQ/h̄c . (53)

Again, the EM fields contribute non-trivially to the net angular momentum of the dyon, and

also — via extra phases due to moving electric charges in monopole magnetic fields — to

the statistics of multiple dyons. And in every case, the statistics matches other overall j:

bosonic foe integer j and fermionic for half-integer j.
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