
PHY–396 K. Problem set #1. Due September 4, 2024.

0. First of all, refresh your memory of special relativity. Make sure you understand index

summation conventions in Minkowski or Euclidean spaces. If you don’t understand (or

have hard time deciphering) expressions such as Bi = εijk∂jAk (in 3 space dimensions) or

∂µF
µν = Jν (in the Minkowski spacetime), get up to speed ASAP or you would not be able

to follow the class.

1. Consider a massive relativistic vector field Aµ(x) with the Lagrangian density

L = −1
4 FµνF

µν + 1
2m

2AµA
µ − AµJµ (1)

where c = h̄ = 1, Fµν
def
= ∂µAν − ∂νAµ, and the current Jµ(x) is a fixed source for the Aµ(x)

field. Note that because of the mass term, the Lagrangian (1) is not gauge invariant.

(a) Derive the Euler–Lagrange field equations for the massive vector field Aµ(x).

(b) Show that this field equation does not require current conservation; however, if the

current happens to satisfy ∂µJ
µ = 0, then the field Aµ(x) satisfies

∂µA
µ = 0 and (∂2 +m2)Aµ = Jµ. (2)

2. Next, consider a complex (i.e., complex-number valued) scalar field Φ(x) with the Lagrangian

density

L = (∂µΦ∗)(∂µΦ) − m2Φ∗Φ − λ

4
(Φ∗Φ)2. (3)

For the complex fields, the infinitesimal variations δΦ(x) and δΦ∗(x) are linearly independent

from each other, hence linearly independent Euler–Lagrange field equations of motion

∂µ

(
∂L

∂(∂µΦ)

)
− ∂L

∂Φ
= 0 and ∂µ

(
∂L

∂(∂µΦ∗)

)
− ∂L

∂Φ∗
= 0. (4)

(a) Spell out the Euler–Lagrange equation for the complex scalar field with the Lagrangian

density (3).
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(b) Show that when the fields Φ(x) and Φ∗(x) obey their Euler–Lagrange equations, the

current

Jµ(x)
def
= 2 Im(Φ∗∂µΦ) = −iΦ∗∂µΦ + iΦ∂µΦ∗ (5)

is conserved, ∂µJ
µ = 0.

Note: the current Jµ here is not the electric current and it does not couple to the EM fields.

Instead, the corresponding global charge
∫
d3x J0 is some kind of a conserved quantum

number similar to the baryon number or the lepton number.

Later in class we shall learn that the current (5) and its conservation are related by the

Noether theorem to the phase symmetry of the complex scalar field:

Φ(x)→ eiθΦ(x), Φ∗(x)→ e−iθΦ∗(x), but L remain invariant.

3. In spacetimes of higher dimensions D > 4, there are antisymmetric-tensor fields analogous to

the EM-like vector fields; such tensor fields play important roles in supergravity and string

theory.

For example, consider a free 2-index antisymmetric tensor field Bµν(x) ≡ −Bνµ(x), where µ

and ν are D-dimensional Lorentz indices running from 0 to D − 1. To be precise, Bµν(x) is

the tensor potential, analogous to the electromagnetic vector potential Aµ(x). The analog

of the EM tension fields Fµν(x) is the antisymmetric 3–index tension tensor

Hλµν(x) = ∂λBµν + ∂µBνλ + ∂νBλµ . (6)

(a) Check that this tensor is totally antisymmetric in all 3 indices.

(b) Show that regardless of the Lagrangian, the H fields satisfy differential identities

1
6∂[κHλµν] ≡ ∂κHλµν − ∂λHµνκ + ∂µHνκλ − ∂νHκλµ = 0. (7)

PS: By differential identities I mean higher-dimensional generalizations of the vector

calculus identities curl(grad s) = 0 and div(curl v) = 0. In the language of differential

forms, all such identities are special cases of d2 = 0 for the exterior derivative d.
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(c) The Lagrangian for the free Bµν(x) fields is simply

L(B, ∂B) = 1
12HλµνH

λµν (8)

where Hλµν are as in eq. (6). Treating the Bµν(x) as 1
2D(D − 1) independent fields,

derive their equations of motion.

Similar to the EM fields, the Bµν fields are subject to gauge transforms

B′µν(x) = Bµν(x) + ∂µΛν(x) − ∂νΛµ(x) (9)

where Λµ(x) is an arbitrary vector field.

(d) Show that the tension fields Hλµν(x) — and hence the Lagrangian (8) — are invariant

under such gauge transforms.

In spacetimes of sufficiently high dimensions D, one may have similar tensor fields with more

indices. Generally, the potentials form a p-index totally antisymmetric tensor Cµ1µ2···µp(x),

the tensions form a p+ 1 index tensor

Gµ1µ2···µp+1 =
1

p!
∂[µ1

Cµ2···µpµp+1]

≡ ∂µ1Cµ2···µp+1 − ∂µ2Cµ1µ3···µp+1 + · · · + (−1)p∂µp+1Cµ1···µp ,

(10)

also totally antisymmetric in all its indices, and the Lagrangian is

L(C, ∂C) =
(−1)p

2(p+ 1)!
Gµ1µ2···µp+1G

µ1µ2···µp+1 . (11)

(e) Derive the differential identities and the equations of motion for the G fields.

(f) Show that the tension fields Gµ1µ2···µp+1(x) — and hence the Lagrangian (11) — are

invariant under gauge transforms of the potentials Cµ1µ2···µp(x) which act as

C ′µ1µ2···µp
(x) = Cµ1µ2···µp(x) +

1

(p− 1)!
∂[µ1

Λµ2···µp](x) (12)

where Λµ2···µp(x) is an arbitrary (p− 1)-index tensor field (totally antisymmetric).
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4. Finally, consider the electric-magnetic duality and its generalization to the antisymmetric

tensor fields from the previous problem. Let’s start with the EM field Fµν in the ordinary

3 + 1 dimensions. The dual field to the Fµν(x) is the

F̃κλ(x)
def
= 1

2εκλµνF
µν(x), (13)

where εκλµν is the Levi–Civita totally antisymmetric tensor, or in 3D components

Ẽ(x)
def
= −B(x), B̃(x)

def
= +E(x). (14)

(a) Suppose the Fµν(x) field obeys Maxwell equations for zero current Jµ(x) ≡ 0. Show

that in this case, the dual field F̃µν(x) also obeys Maxwell equations for zero dual cur-

rent J̃µ(x) ≡ 0.

Now let’s generalize the duality (13) to other types of antisymmetric tensor fields. In a

spacetime of D dimensions (D − 1 space, 1 time), a p-index tensor field Cµ1,...,µp(x) and a

q-index tensor field C̃µ1,...,µq(x) with p + q = D − 2 are considered dual to each other when

the corresponding tension tensors Gµ1,...,µp+1(x) and G̃µ1,...,µq+1(x) are related to each other

as

G̃µ1,...,µq+1(x) =
1

(p+ 1)!
εµ1,...,µD G

µq+2,...,µD(x)

m

Gµ1,...,µp+1(x) =
±1

(q + 1)!
εµ1,...,µD G̃

µp+2,...,µD(x)

for ± 1 = (−1)D−1 × (−1)(p+1)(q+1) =

{
(−1)p = (−1)q for even D,

+1 for odd D.

(15)

(b) Show that the field equations — which include both the differential identities and the

Lagrangian equation of motion — for the G and G̃ tension fields are equivalent to

each other. Specifically, the differential identity for the G field is equivalent to the free

equation of motion for the G̃ field while the free equation of motion for the G field is

equivalent to the differential identity for the G̃ field.
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(c) For an example of such duality between the tension fields and the equations they obey,

consider the two-index potential field Bµν(x) = −Bνµ(x) in D = 3 + 1 dimensions and

show that it’s dual to a massless scalar field φ(x).

Note: the φ field could be a true scalar or a pseudoscalar, depending on the parity of

the B tensor, but the parity issue is beyond the scope of this homework.
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